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The digestive micro�ora is characterized by a high degree of complexity and diversity. Variation in the composition of the digestive �ora
of an individual occurs in space and time. Two kinds of strains can be de�ned: transient strains in opposition to resident strains, which
are repeatedly isolated from the digestive tract over a long period of time. The latter can be assumed to have colonized the digestive tract.
We will present here studies on the properties of bacteria implicated in the colonisation process. Firstly, we summarize data on the role
of adherence in this process, the mechanisms involved in adhesion to mucosal structures (cellular and mucus glycoproteins, extracellular
matrix components) and give examples of adhesion in various intestinal bacterial groups (commensal and potentially pathogenic bacteria).
Secondly, we describe the role of glucidolytic and proteolytic enzymes involved in host-bacteria interactions and implicated in
colonisation and maintenance of the indigenous intestinal �ora. Key words : colonisation, colonisation resistance, bacterial adherence,
bacterial metabolic enzymes.

ORIGINAL ARTICLE

INTRODUCTION

The digestive micro�ora is characterized by a high degree
of complexity. Although adult individuals tend to have
their own predominant species combinations that �uctuate
little over time, there is a constant turnover of individual
bacterial strains in the micro�ora. Unfortunately, studies
on variations in the micro�ora at the strain level have only
been carried out for very few bacterial groups. Only E. coli
has today been systematically studied concerning the lon-
gitudinal colonisation patterns of individual strains, but
the same pattern has been described for other enterobacte-
ria, such as Klebsiella and Enterobacter (1). Tannock re-
ported that certain ribotypes of bi�dobacteria could be
recovered repeatedly from a person’s intestinal micro�ora
while others appeared only transiently (2).

It is very dif�cult to deliberately implant new strains
into the intestinal micro�ora of an individual. However,
renewed colonisation occurs all the time, since there is a
constant appearance of new bacterial strains in the mi-
cro�ora of an individual while others disappear. The tem-
poral variation in the micro�ora of an individual was �rst
studied by Sears 50 years ago. He noted that an individual
typically harboured a few E. coli strains in the colonic

micro�ora at one point in time. Some of these strains
persisted for extended periods of time (months or years) in
that individual. In contrast, other E. coli strains identi�ed
in the same individual would vanish from the micro�ora
between two sampling occasions (3–5). He called the �rst
type of strain ‘resident’ and the second type ‘transient’,
terms that have been used ever since. Usually, a resident
strain has to be repeatedly isolated over a period of at least
three weeks in order to be de�ned as such. Despite the fact
that many individuals in Western societies have prolonged
intestinal transient times-even latex particles that are in-
gested may be excreted during one to two weeks—a strain
repeatedly isolated from the faeces for more than three
weeks has to be able to replicate in the intestine. Such a
strain can thus be assumed to have colonized the
individual.

The ability of a bacterial strain to colonize and persist in
the micro�ora may be in�uenced by a number of factors.
The �rst strain may have an advantage, as it can establish
without having to compete with other strains for nutrients,
growth factors, binding sites etc. Thus, it is relatively easy
to experimentally colonize newborn infants with E. coli
during the �rst days after birth. Subsequently a ‘barrier’
towards implantation of new strains successively develops
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(6, 7). This ‘barrier’ is probably formed mostly by compe-
tition from other strains that are already established in the
micro�ora, and the barrier effect is called ‘colonisation
resistance’. In addition, the ability to adhere to intestinal
cells or mucus structures, as well as the ability to use
certain substrates (which requires possession of certain
enzymes) can in�uence the ability to colonize and persist in
the gastrointestinal tract.

BACTERIAL ADHERENCE IN THE
ESTABLISHMENT OF THE NORMAL INTESTINAL
MICROFLORA

It is intuitively imagined and repeatedly stated that bacte-
rial adherence to mucosal structures is a prerequisite for,
or at least strongly facilitates, colonisation and persistence
of individual bacterial strains in the normal intestinal
micro�ora. Bacterial attachment allows bacteria not to be
swept away by intestinal motility and secretion and to
install in an appropriate ecological niche favourable for
growth since nutrients tend to concentrate at solid-liquid
surfaces. The in vitro capacity to adhere to any mucosal
structures has even been suggested as a ‘selection criterion’
to identify probiotic strains which might be successful to
colonize human beings or animals (8, 9).

However, the simple notion of adherence as a prerequi-
site for colonisation and:or persistence has by no means
been proven. Few studies have directly addressed the issue
and existing studies are limited to E. coli. This species
carries a number of well-characterized adhesins, many of
which confer adherence to mucosal structures. The lesson
that can be learnt from E. coli is that adherence via certain
speci�c adhesins to their reciprocal receptor structures in
the intestine confers colonising capacity, whereas binding
via other adhesin:receptor pairs apparently does not.
Thus, adherence per se is no good predictor of colonising
capacity. For intestinal bacteria other than E. coli, infor-
mation on adhesins and their capacity to bind to gas-
trointestinal mucosa is at the best scanty. In fact, with the
exception of one study of the adherence of a large number
of human mucosal Lactobacillus isolates to a colonic cell
line (10), only a few strains at a time have been examined
for their adherence capacity. We will here summarize
studies of the capacity of various intestinal bacterial
groups to adhere to mucosal structures mainly in the
human intestine and present data on the role of adherence
in intestinal colonisation.

Role of bacterial adherence

The proximal small intestine contains only approximately
102–103 bacteria per ml of intestinal �uid. This paucity of
microbes seems primarily to be caused by the forceful
peristalsis in the small intestine (11). Since the �ow of
intestinal contents at this site exceeds the maximum rate of
bacterial multiplication, only bacteria, which adhere to the

mucosa, can persist (12). For pathogenic E. coli strains
that colonize and infect the small intestine, adherence to
the epithelium is therefore a prerequisite for colonisation
as well as for the pathogenic effect (13).

In the colon, peristalsis is much more sluggish than in
the small intestine. The bacterial population reaches im-
mense numbers (approximately 1011–1012 per gram of
faecal contents) and only a small fraction of the bacterial
mass is in close contact with the epithelium. The role of
adherence for large intestinal colonisation may, thus, seem
minor. However, adherence may place bacteria in a fa-
vourable position vis-à-vis their growth substrate. Colonic
lumenal contents are a very poor growth substrate for
bacteria (14, 15). Fresh mucin from mucosal goblet cells
can be degraded by certain members of the micro�ora (16)
generating mono- and oligosaccharides that in turn may be
utilized as growth substrates by other bacteria (16). Fur-
ther, the mucin is admixed with secreted and transudated
glycoproteins and sloughed epithelial cells. The result is a
complex blend termed mucus, which is an excellent sub-
strate for bacterial growth (14, 15). Adherent bacteria may
also get access to micronutrients that leak out of the
epithelial cells (17). Lastly, the oxygen tension is higher
close to the mucosa. This would favour the growth of
facultative anaerobes, which grow more rapidly in the
presence than in the absence of O2. It can, thus, be
anticipated that bacterial factors which promote colonisa-
tion of the mucus layer will enhance metabolism and
thereby multiplication and persistence. Although it has
been repeatedly shown that the species composition of
bacteria cultured from faecal samples resembles that of
intestinal biopsies (18, 19), the mucus layer probably con-
tains most of those bacteria that are actively replicating.
Indeed, it has been calculated that the generation time of
E. coli in the mucus layer is between 40 and 80 minutes,
whereas the luminal population is static (20).

Bacterial adherence mechanisms

Bacteria can interact with epithelial cells, with the extracel-
lular matrix and the mucus layer. The mucus layer could
represent a physical barrier and a competitive inhibitor to
epithelial cell adherence but binding to mucus could also
serve as a �rst step in the colonisation process (21). When
the epithelium is intact, only the brush border membrane
is available as adhesion sites, but if the mucosa is dam-
aged, subepithelial structures may be uncovered to which
bacteria might bind.

Autoaggregation of bacteria probably occurs via the
binding of bacterial adhesins to their corresponding carbo-
hydrate receptor, located in the cell envelope. This type of
association may also occur between members of different
bacterial species; a coaggregation between vaginal lacto-
bacilli and E. coli was noted by Reid (22). The aggregated
state may be favourable for intestinal bacteria, as has been
observed with bacteria in other ecosystems (23).
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Bacteria adhere to host target structures by means of
adhesins, which are proteins recognising a de�ned carbo-
hydrate sequence present on host cell glycoproteins or
glycolipids, or less often, a de�ned protein structure. In
addition, non-speci�c adherence mechanisms may be
involved, including electrostatic forces and lipophilic:
hydrophobic interactions. To demonstrate the lectin-
carbohydrate nature of bacterial adhesion, inhibition of
binding reactions by soluble saccharide structures may be
utilized. In some instances, lectins from other sources than
bacteria (e.g. plant lectins) that mimic the binding of
bacteria to target cells have been used to infer the binding
structure. The �rst demonstration of an adhesin speci�city
was in 1955, when Collier and Miranda showed that the
haemagglutination by E. coli, which had been observed
since the beginning of the century, could be inhibited by
the monosaccharide D-mannose.

In Gram-negative bacteria, the adhesins are located on
surface structures termed �mbriae, �brillae or curli (24,
25). In Gram-positive bacteria, adhesins are usually lo-
cated in the cell wall or surface coat (so-called a�mbrial
adhesins), although �mbrial structures have been demon-
strated on, e.g., vaginal lactobacilli (26). A bacterium may
carry one or several different adhesins. The synthesis of
�mbriae and adhesins in Gram-negative bacteria may be
switched on and off, depending on environmental condi-
tions, a process called phase variation (25). Bacteria, which
cannot regulate their adhesin expression, are inef�cient
colonizers (27).

Adherence to cellular and mucus glycoproteins

Mucosal surfaces are characterized by an extensive carbo-
hydrate coat and the bacterial lectin-like adhesins use
cellular glycoproteins, glycolipids or the associated mucin
glycoprotein as receptors. Several adhesins of commensal
as well as pathogenic bacteria can be classi�ed as lectins.
Lectins are proteins or glycoproteins, which exhibit a
speci�c carbohydrate binding activity (28–30). Certain
carbohydrate-speci�c bacterial adhesins may recognize the
carbohydrate receptor both in an internal and terminal
position. However, surrounding chemical groups could
enhance or inhibit the binding (31). Both glycolipids and
glycoproteins can serve as targets for bacterial lectins. The
glycoproteins of the epithelial cell membrane are mostly of
the N-linked variety (32), whereas those of mucin
molecules are mainly O-linked (33).

The presence of bacterial adhesins can be demonstrated
by binding of the bacteria to target cells, e.g., freshly
isolated intestinal epithelial cells, or to cell lines of intesti-
nal origin. These often derive from colonic adenocar-
cinomas, e.g., the cell lines HT-29, Caco-2 and Intestine
407, and more or less faithfully mimic the assortment of
carbohydrate and other receptors found on mature intesti-
nal epithelial cells, which are dif�cult to culture in vitro
(34). However, malignant transformation may change the

glycoconjugate processing of the cell and, hence, alter the
repertoire of receptor structures on the cell surface (35).
Receptor structures identi�ed on epithelial cell lines should
preferentially be identi�ed also on freshly isolated intesti-
nal epithelial cells. Cell lines of non-intestinal origin have
also been used in adherence studies of intestinal bacteria,
e.g., the pharyngeal cell line HEp-2, extensively used as
target for binding studies of enteropathogenic E. coli, and
the cervical cell line HeLa.

The carbohydrate sequences that are recognized by bac-
teria on intestinal epithelial cells may also be present on
erythrocytes from the same or another animal species. This
phenomenon conveniently allows for the detection of some
bacterial adhesins by haemagglutination; bacteria aggre-
gate erythrocytes carrying the proper receptor for their
adhesin.

The speci�city of the interaction is shown by the ability
of soluble receptor structures, often mono- or oligosaccha-
rides, to block the adhesin-mediated adherence or haemag-
glutination. For example, the P �mbrial adhesin of E. coli
recognizes Galh1–4Galb-containing receptors on human
erythrocytes, whose agglutination can be inhibited in the
presence of Galh1–4Galb -containing receptor analogues.
Type 1 �mbriae in E. coli recognize mannose-containing
glycoproteins on, e.g., horse and guinea pig erythrocytes,
whose agglutination is abolished in the presence of man-
nose, hence termed mannose-sensitive haemagglutination.

Adherence to extracellular matrix structures

Many bacteria can adhere to extracellular matrix (ECM)
structures, e.g., the proteins collagen, laminin or
�bronectin. Such structures may be exposed if the epithe-
lial layer is injured. Indeed, adherence to the extracellular
matrix has been shown to promote bacterial colonisation
of damaged tissues (36). If translocating bacteria reach the
blood stream, adsorbtion of glycoproteins such as
�bronectin onto their surface can be a strategy to avoid
host defences (37, 38). E. coli strains isolated from patients
with colonic disorders, likely to have a damaged colonic
mucosa, express higher binding to extracellular matrix
proteins than E. coli strains from healthy subjects (39).

The intestinal bacterium for which binding to matrix
components is best de�ned is E. coli, which can bind to a
variety of different extracellular matrix proteins. Much of
this binding may be mediated through well known E. coli
adhesins, including type 1 �mbriae, P �mbriae, S �mbriae
and Dr adhesins. Type 1 �mbriae bind to oligomannoside
chains on the laminin network of basement membranes
(40). E. coli P �mbriae bind to �bronectin via a protein-
protein interaction that does not involve the adhesin sub-
unit, but rather the minor proteins PapE and PapF of P
�mbriae (41, 36). S �mbriae bind to sialic acid exposed on
the oligosaccharide chains of laminin (42). Dr adhesin,
which is a non-�mbrial adhesin, interacts strongly with
type IV collagen, which is a major component in basement
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membranes (43). Curli are thin hairlike structures found
on E. coli. They interact with matrix proteins such as
�bronectin and laminin. Furthermore, many E. coli ad-
hesins, including type 1, P and S �mbriae bind to the
lysine-binding sites of plasminogen. E. coli with S �mbriae
or curli have been shown to bind plasminogen and the
tissue-type plasminogen activator (t-PA) (44), resulting in
activation and generation of localized plasmin activity (45,
44). Plasmin digests different extracellular matrix proteins
and activates collagenase, providing effective means for
bacteria to invade host tissues (46, 47). Plasminogen bind-
ing is not dependent on the lectin binding subunits of
�mbriae (46).

Certain strains of Enterococcus faecalis bind to collagen
type I (48) or �bronectin (49). Both E. faecalis and E.
faecium have been reported to bind to vitronectin, lactofer-
rin and thrombospondin (50, 51).

Staphylococcus aureus is traditionally not regarded as a
resident member in the intestinal ecosystem, but recent
studies of young infants indicate that these bacteria are
both common and quite numerous in the early intestinal
micro�ora (Lindberg, unpublished data). S. aureus express
a number of surface adhesins speci�c for collagen,
�bronectin, elastin, laminin and �brinogen, which are
thought to play an important role in pathogenicity (52–55,
38). Certain proteins seem to have a broad speci�city,
mediating binding to several different matrix glycoproteins
(56). Binding of S. aureus proteins to the lysine-binding
sites of plasminogen results in the formation of bacterial
surface-bound enzymatically active plasmin, which could,
as described above, facilitate bacterial invasion of host
tissues (57).

Lactobacillus isolates from the intestinal tract or oral
cavity of humans have been reported to bind collagen type
I (58, 59). L. reuterii and several other Lactobacillus spe-
cies adhere to �bronectin (60, 61) or to collagen type I
(62).

Bacteroides fragilis binds to laminin, �bronectin and
collagen (63), Bacteroides gingivalis to �brinogen (64) and
Fusobacterium nucleatum to �bronectin (65). Concerning
other groups of strict anaerobic bacteria, little is known
concerning their binding to extracellular matrix proteins.

Examples of adherence occurring in the normal human
intestinal micro�ora

Escherichia coli: Duguid demonstrated that the mannose-
speci�c haemagglutination of E. coli was associated with
surface structures, which he termed type 1 �mbriae. Two
years later, he demonstrated type 1 �mbriae on the closely
related species Shigella, and proved that these �mbriae
enabled the bacteria to bind to human and guinea-pig
colonic epithelial cells (66, 67). In U.S. literature, �mbriae
are often termed ‘pili’ after the term Brinton used to
describe the same structures as Duguid 10 years later (68).

Type 1 �mbriae are found in almost all isolates of E.
coli, pathogenic as well as commensal, as well as in other
members of the Enterobacteriaceae family, such as Enter-
obacter, Klebsiella, Shigella and Salmonella (69). In
addition, other Gram-negative bacteria, including Pseu-
domonas (70) and Vibrio cholerae (71) possess mannose-
speci�c adhesins, other than type 1 �mbriae. Binding to
mannose-containing receptors is, thus, the most common
adherence speci�city so far recognized among intestinal
bacteria, and is also found among certain species of lacto-
bacilli (see below).

The mannose-speci�c adhesin of type 1 �mbriated E.
coli, termed FimH, recognizes the receptor trisaccharide
Manh1–3Manb1–4GlcNAc, found in the branching re-
gion of N-linked oligosaccharide chains (72). The adhesive
protein FimH possesses a monovalent recognition site,
which might best accommodate molecules with the size of
a trisaccharide or those with 3 h mannosyl residues (73).
Since type 1 �mbriae only recognize the h3-linked man-
nose residue in a terminal position, neither complex type
chains (74), nor the least processed types of high-mannose
oligosaccharide chains, which carry repeating Manh1–
2Man units (75) are functional receptors. Type 1 �mbriae
bind to human intestinal epithelial cells (67, 76, 77). The
mannose-speci�c lectin of type 1 �mbriae also recognizes
the type of carbohydrate chains that appears on secretory
IgA, especially of the IgA2 subclass, which predominates
in the human colon (78). Mannose does not occur on
glycolipids, and it is questionable whether mucus contains
a suf�cient number of N-linked oligosaccharide chains of
the right type as to function as physiologically relevant
receptors for type 1 �mbriae.

Receptors for type 1 �mbriae, i.e., mannose-containing
glycoproteins, occur in abundance after mucosal injury,
because the newly synthesized immature intestinal epithe-
lial cells carry more glycoproteins with terminal mannose
(79, 80). In this context, it is interesting to note that
starvation of experimental animals leads to a massively
increased adherence of type 1-�mbriated E. coli to the
intestinal mucosa, which secondarily leads to increased
translocation over the intestinal barrier (81). Whether this
is a result of altered receptor conformation, or altered
adhesin expression by intestinal bacteria remains to be
shown.

Type 1 �mbriae have not been linked to long-term
persistence in the human gut. A majority of both resident
and transient strains seem to be capable of expressing type
1 �mbriae (82–84). In neonatal rats colonized with an E.
coli K1 isolate, the depletion of the �mA gene coding for
the type 1 �mbrial major subunit, impedes oropharyngeal
but not intestinal colonisation (85). Disruption of �mA
decreased transmission of E. coli between littermates dra-
matically (86). In gnotobiotic adult rats, a down-regulation
of type 1 �mbrial expression occurs some days after
colonisation (87, 88). Still, binding of E. coli to secretory
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IgA, probably via its mannose oligosaccharides, plays a
role in intestinal colonisation, since E. coli recovered from
people with selective IgA de�ciency less often carry the
gene for type 1 �mbriae and express less mannose-speci�c
adhesins per cell compared with E. coli recovered from
control individuals (89). In E. coli recovered from IgA-
de�cient individuals, other adhesins than type 1 �mbriae,
such as S �mbriae and P �mbriae, seem to be increased in
frequency, maybe as a compensatory mechanism (Friman,
unpublished data). Type 1 �mbriae may be most impor-
tant in initial stages of colonisation. Krogfeldt et al. noted
an upregulation of type 1 �mbriae in bacteria when estab-
lishing in the mouse large intestine (90) and a type 1-
�mbriated E. coli strain was a better colonizer of the
mouse intestine that its adhesin-negative counterpart in a
short-term experiment (91).

P �mbriae were identi�ed as a virulence factor for
pyelonephritis. The name derives from this association
(pØ yelonephritis), and from their capacity to agglutinate
human blood cells of the PØ blood group. Their receptor
was later identi�ed as the Galh1–4Galb sequence, which
occurs on glycolipids in human urinary tract epithelial cells
and human erythrocytes (92). Urinary tract isolates derive
from the intestinal micro�ora, and P �mbriae also bind to
small (77) and large (76, 77) intestinal epithelial cells of
humans and rats (87).

P �mbriae are the adhesins that have been most con-
vincingly linked to persistence in the intestinal micro�ora.
In epidemiological studies, resident E. coli strains more
often than transient ones express P �mbriae (82–84) or
carry the genes enabling their synthesis (Nowrouzian, un-
published data). In gnotobiotic rats, E. coli possessing P
�mbriae colonize much better than the isogenic counter-
part lacking these adhesins (87), and bacterial P-�mbrial
expression seems to be retained during intestinal colonisa-
tion (87, 88). On the other hand, a P-�mbriated E. coli in
which the tip adhesin was mutated retained its ability to
colonize the monkey intestine (93) as well as the rat
intestine (Herṍ as, unpublished data).

E. coli S �mbriae recognize terminal sialic acid on sialyl
oligosaccharide chains and are associated with urinary
tract infection and neonatal sepsis:meningitis (94, 95). S
�mbriae-mediated adherence of E. coli O18 to cellular
�bronectin is inhibited by neuraminidase treatment or by
incubation of the bacteria with sialyl h-2–3lactose (96). Dr
haemagglutinin, which binds to an epitope on the peptide
chain of the complement-regulating protein DAF, is found
in E. coli isolates from urinary tract infections (97, 98). S
�mbriae and Dr haemagglutinin both mediate attachment
to human intestinal epithelium (99, 77). However, these
adhesins are not more frequently found among resident
than transient E. coli (Nowrouzian, unpublished data) and
S �mbriae do not contribute to colonisation in the gnoto-
biotic rat model.

In intestinal bacteria other than E. coli, adhesins with
de�ned speci�cities have rarely been described. When ad-
herence has been studied, a very limited number of strains
(B10) have been examined. Thus, with the exception of
human lactobacilli (10), no systematic studies have been
performed regarding the proportion of intestinal isolates
that can adhere to intestinal epithelial cells or other mu-
cosal components. We therefore do not know the ecologi-
cal signi�cance of adhesins in these bacteria. Clearly, much
more detailed studies are needed in order to elucidate the
role of adherence in colonisation and persistence for other
members of the intestinal micro�ora than E. coli.

Enterococci constitute a major part of the facultatively
anaerobic intestinal population in adults as well as infants.
Enterococci have been shown to adhere to urinary tract
epithelial cells (100), heart valves (100) and renal tubular
cells (101). The only identi�ed receptor structure so far is
the connective tissue component �bronectin (102, 103). In
an intestinal overgrowth model in mice, Enterococcus fae-
calis cells were seen to adhere to epithelial cell microvillus
membranes in the mouse ileum, caecum and colon (104,
105), but their capacity to adhere to human intestinal
mucosa has not been studied.

Lactobacilli are part of the normal �ora of the small and
large intestine. Lactobacilli have been shown to be associ-
ated with the human intestinal mucosa in vivo (106) and
may bind to freshly isolated human ileal (107) and colonic
(108) cells. Binding to human intestinal cell lines has been
shown for members of Lactobacillus acidophilus (109, 110),
Lactobacillus rhamnosus (111), and other lactobacilli (112),
although no receptor structures were de�ned. Strains of
Lactobacillus plantarum isolated from the human gas-
trointestinal tract express a mannose-binding adhesin (108,
10). This adhesin was expressed by a majority of mucosal
isolates of Lactobacillus plantarum, whereas most other
Lactobacillus groups were negative for adherence to the
HT-29 cell line (10). Since these lactobacilli were retrieved
from mucosal biopsies or from scraping the base of the
tongue, it is clear that lactobacilli may colonize the human
mucosa despite lack of demonstrable adherence in vitro.
Fuller observed that Lactobacillus adherence to chicken
crop epithelium was advantageous, but not a prerequisite,
for colonisation (113). Moreover, in vitro adherence to
isolated gastrointestinal epithelial cells did not predict in
vivo association with the mucosa (114). Autoaggregation
has been noted frequently among freshly isolated intestinal
lactobacilli from pigs (115) and humans (Ahrné, unpub-
lished data). It is possible that the autoaggregated stage is
advantageous for intestinal lactobacilli, as has been
demonstrated for bacteria in other ecosystems.

Fimbriated isolates of Bacteroides fragilis and Bac-
teroides ovatus adhere to intestinal epithelial cell lines (116,
117). B. vulgatus (118) and B. fragilis (119) agglutinate
erythrocytes from various species and autoagglutination
has been demonstrated in B. fragilis (120). Fimbriae are
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more often expressed by intestinal isolates of B. fragilis or
B. melaninogenicus than by isolates of these same organ-
isms cultured from blood (121). B. fragilis can adhere to
the connective tissue component laminin, in contrast to
isolates of the species B. thetaiotaomicron and B. ovatus
(122).

Some strains of bi�dobacteria adhere to the Caco-2 cell
line (123). Of strains recovered from infant faeces, all seven
Bi�dobacterium bi�dum strains were adherent, autoaggluti-
nating, hydrophobic and haemagglutination positive (124).
In contrast, 3:3 B. breve strains, 3:3 B. adolescentis strains
and one each of B. pseudolongum and B. infantis were
negative with respect to adherence, autoagglutination and
haemagglutination (124). Binding of bi�dobacteria to the
glycolipid asialo-GM1, the same receptor as utilized by
CFAI-carrying enterotoxigenic E. coli (125), has been
demonstrated (126).

Examples of adherence occurring in potentially pathogenic
bacteria: different pathovars of E. coli and Clostridium
dif�cile

Attachment is the �rst step in the pathogenesis of many
bacterial infections. Protein-carbohydrate interactions ap-
pear to play a critical role in the adherence of pathogens to
epithelial surfaces. Binding to epithelial cells may also
activate a complex signal transduction cascade in the host
cell, leading to an in�ammatory response, as well as the
expression of new genes in the bacterium that are impor-
tant in the pathogenic process (127, 128).

Bacteria causing gastrointestinal infection need to pene-
trate the mucus layer before attaching themselves to intes-
tinal epithelial cells. Among the enteric pathogens, we
review here the mechanisms of adherence of di-
arrhoeagenic Escherichia coli and Clostridium dif�cile. As
described above, E. coli is the predominant facultative
anaerobe of the human colonic �ora. However, certain E.
coli strains have evolved the ability to cause diarrhoeal
disease (129). The diarrhoeagenic E. coli are divided into 6
major categories differentiated on the basis of pathogenic
features (129, 130). The most highly conserved feature of
diarrhoeagenic strains is their ability to colonize the intes-
tinal mucosal surface despite competition for nutrients by
the indigenous intestinal �ora (129, 131). C. dif�cile is not
a signi�cant component of the colonic micro�ora in
healthy adults humans, but it can establish large popula-
tions in infants before they acquire a complete �ora (132,
133). In adults, C. dif�cile is the etiological agent of
antibiotic-associated pseudomembranous colitis and of
most cases of colitis or diarrhoea in patients undergoing
antibiotic therapy (134). Infection is associated with antibi-
otic use because the normal gut micro�ora has to be
disrupted before C. dif�cile can establish itself at high
numbers and produce toxins (135, 136).

Enterotoxigenic E. coli (ETEC) adhere to the small
bowel enterocytes by adhesins called colonisation factors

(CFAs) and cause diarrhoea through the action of entero-
toxins termed LT (heat labile) and ST (heat stable) (137).
ETEC �mbriae confer the species speci�city of the patho-
gen. Thus, human ETEC strains express adhesins termed
CFAs, calf strains K99 and pig strains K88. At present 20
different CFAs, classi�ed as �mbriae or �brillae based on
their morphology, have been described in ETEC causing
diarrhoea in humans (138). Epidemiological studies sug-
gest that CFA:I, CFA:II or CFA:IV are expressed by
approximately 75% of human ETEC strains worldwide
(139). Fimbrial gene clusters, containing a series of genes
which encodes the major �mbrial protein subunit and
accessory proteins, have been described (140, 141). Recep-
tors for CFAs are glycoconjugates present on eukaryotic
cell membranes (142). Subcomponents of CFA:II and
CFA:IV bind to asialo GM1 (125) and the subcomponent
CS3 of CFA:II bind to GalNAcb1–4gal-containing recep-
tor structures (143).

Enteropathogenic E. coli (EPEC) diarrhoea is not medi-
ated by toxins. EPEC is a class of diarrhoeagenic E. coli
identi�ed by their ability to cause attaching and effacing
(A:E) lesions on intestinal cells (144). This histological
lesion is characterized by effacing of microvilli brush bor-
der and intimate adherence between the bacterium and the
epithelial cell membrane (145, 146). The resulting tight
association is accompanied by cytoskeletal changes in the
epithelial cell, including accumulation of polarized actin
and formation of paedestal like structures (144). The inter-
action between EPEC and host cells have been divided
into three stages: initial adherence, signal transduction and
intimate attachment (147–149). The initial adherence to
cultured epithelial cells in vitro is mediated by type IV
�mbriae known as ‘bundle-forming pili’ (BFP) (150). Re-
cently it has been demonstrated that BFP mediate bacte-
rial-bacterial interactions in a human intestinal organ
culture model (151). BFP is encoded by a 50 to 70 MDa
plasmid, known as the EAF plasmid. The second stage in
the interaction involves the secretion of several effector
proteins (EspA, EspB, EspD) by a type III secretion
system. Signal transduction events occur within the host
(152), including Ca2» release from internal stores, activa-
tion of phospholipase C (PLC), protein kinase C (PKC)
and inositol triphosphate (IP3) �uxes. In the third stage of
infection the intimate adherence of the bacteria to the
epithelial cells is mediated by a 94 to 97 kDa outer
membrane protein (OMP) called «intimin». This outer
membrane ligand binds to a receptor (Tir) which has
recently been found to be of bacterial origin (153). Intimin
can also bind b1-integrins (154). All the genes necessary
for the formation of A:E lesions by EPEC, including the
gene encoding intimin (eae), are located within a 35 kbp
pathogenicity island called LEE (locus of enterocyte ef-
facement) (155). This region is not present in E. coli strains
in the normal �ora.
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Several in vitro studies have identi�ed oligosaccharide
structures that are potential receptors for EPEC: GalNAc
(156), fucosylated milk oligosaccharide sequences (157),
GM3 gangliosides (158), GalNacb1–4Gal portion of
asialo-GM1 and asialo-GM2 structures (159) and asialo-
lactosamine sequences of N-linked glycoproteins (160).
The studies of Vanmaele et al. demonstrated that N-acetyl
lactosamyl-BSA (Galb1–4GlucNAc), followed by Lewis
X-BSA (Galb 1–4 Fuch 1–3 GlcNAc) were the most
effective inhibitors of EPEC attachment to Hep-2 cells.
Furthermore, the interactions of bacteria with these spe-
ci�c glycoconjugates cause a decrease in the expression of
BfpA, the structural subunit of BFP and intimin. These
results suggest that the glyconjugate inhibition of EPEC
binding to cells might be achieved, wholly or in part, by an
active mechanism that is distinct from simple competitive
antagonism of receptor-adhesin interactions (161).

The term Enterohaemorragic E. coli (EHEC) was coined
to denote strains that cause haemorrhagic colitis (HC) and
haemolytic uremic syndrome (HUS), express shiga-like-
toxin, produce A:E lesions on epithelial cells and possess a
ca. 60 MDa plasmid (130). The classic A:E histopathology
has been seen in gnotobiotic piglets, infants rabbits and
cultured epithelial cells infected with E. coli O157:H7
(129). These A:E lesions resemble those produced by
EPEC strains. The 94 to 97 kDa OMP intimin is the only
bacterial adherence factor identi�ed to date that has been
demonstrated important for intestinal colonisation in ani-
mal models (162). As reported above for EPEC, the eae
gene (encoding intimin) lies within the 35kb LEE patho-
genicity island in strains associated with human disease
(162). Other adherence factors distinct from intimin have
been suggested to play a role in the adherence of serotype
other than O157:H7 to epithelial cells, but no speci�c
candidate adhesins have been identi�ed (129).

Enteroaggregative E. coli (EAEC) pathotype is de�ned
by aggregative adherence (AA) to Hep-2 cells, where bac-
teria display adherence to the cell surface and also to the
intervening substratum in a stacked-brick con�guration
(163). EAEC strains characteristically enhance mucus se-
cretion with trapping of the bacteria in a bacterium-mucus
�lm; the ability of EAEC to bind mucus has been demon-
strated in vitro (164). The AA phenotype is associated with
the presence of a plasmid 60 to 65 MDa in size and with
the expression of one or two distinct aggregativeadherence
�mbriae (AAF:I and AAF:II) (165, 166). Recently it has
been reported that the genes encoding the Pet and EAST
(enteroaggregative heat stable enterotoxin) enterotoxins
and the proteins related to the AAF:II biogenesis are
located in a 23 kb region on the 65MDa virulence plasmid
(167). The relevance of adherence factors other than AAF
remains to be demonstrated.

An exact pathogenic scheme of Enteroinvasive E. coli
(EIEC) has yet to be elucidated. However, studies on
EIEC suggest that its pathogenic features are virtually

identical to those of Shigella spp. (168). The current model
of Shigella and EIEC pathogenesis comprises: (i) epithelial
cell penetration; (ii) lysis of endocytic vacuole; (iii) intra-
cellular multiplication; (iv) directional movement through
the cytoplasm; and (v) extension into adjacent epithelial
cells (169). This sequence of events is followed by a strong
in�ammatory reaction. A 140 MDa plasmid, named pInv,
carries the genes necessary for invasiveness, including the
loci encoding a type III secretion apparatus and the Ipa
protein effectors of the invasive phenotype (170).

Diffusely adherent E. coli (DAEC) is a category of po-
tentially diarrhoeagenic E. coli de�ned by diffuse adher-
ence (DA) to Hep-2 cells, where bacteria are dispersed
over the surface of the cell with little aggregation and little
adherence to the intervening substratum (163). DAEC
strains are able to induce �nger-like projections extending
from the surface of infected Caco-2 or Hep-2 cells in which
bacteria are embedded (171). A surface �mbria and a 100
kDa outer membrane protein, which are associated with
the DA phenotype, have been described (172).

Our understanding on the pathogenesis of enterodi-
arrhoeagenic E. coli has made remarkable progress in
recent decades. These pathogenic E. coli display a large
versatility in their ability to adhere to the epithelial cells.
Several different pathogen-speci�c adhesive factors have
been discovered; however, many questions regarding
pathogenic E. coli:host cell interactions remain to be
answered.

Clostridium dif�cile The major virulence factors in C.
dif�cile are the toxins A and B, but other factors are
implicated in the colonisation process such as adherence
factors and hydrolytic enzymes (173–176, 21). Although a
minority of strains of C. dif�cile have been found to carry
a small number of �mbriae, no de�nitive role in the
colonisation process for these structures can be ascribed at
the moment (177). No salient genes encoding �mbriae
have been identi�ed on the genome sequence of C. dif�cile
630 (Wren, unpublished data). C. dif�cile cell surfaces are
relatively hydrophobic and their net charge is positive
(178). This might facilitate interactions with negatively
charged host cells and, thus, contribute to gut
colonisation.

It is clearly established that C. dif�cile can associate
with the intestinal mucosa in man (179) and animals (180,
181, 21, 182). In the hamster model, a highly virulent
toxigenic strain adhered better than an avirulent non-toxi-
genic one. However, co-administration of toxin A with the
non-toxigenic strain substantially raised adhesion, suggest-
ing that adhesion is facilitated by toxin A-mediated dam-
age (180). These data have been recently con�rmed using
an ‘in vivo’ and an ‘ex vivo’ model of axenic mice to study
adhesion to or association with caecal mucus (182).

C. dif�cile can adhere to tissue culture cells of intestinal
origin such as Caco-2 cells and mucus-producing HT-29
cells, but also to cell lines of other origin (Vero, HeLa,
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KB). The bacteria interact with the Caco-2 brush-border
microvilli on the mucosal surface and strongly bind to the
mucus layer that covers the surface of HT29-MTX cells. In
aerobiosis, the adherence process is increased after heat
shock (181, 21). A gene encoding a putative adhesive
protein was cloned and the recombinant clone adhered to
Vero, Caco-2, KB and HeLa cells and to mucus isolated
from axenic mice (21). The adherence was blocked by anti
C. dif�cile antibodies, by a surface extract of C. dif�cile
and by mucus isolated from axenic mice.

Adherence inhibition studies revealed that glucose,
galactose and Gal-NAc, and oligosaccharides containing
these sugars partially block adherence to tissue culture
cells, suggesting that the adhesin is a lectin. In the same
way, the study of Naaber et al. (183) demonstrated that
both xylitol and colostrum inhibited the adhesion of C.
dif�cile to Caco-2 cells. Inhibition by xylitol was dose
dependent. Inhibition of adherence is one possible way to
develop treatment and prophylaxis against C. dif�cile
infections.

The adhesion of C. dif�cile to Caco-2 cells signi�cantly
increased following treatment aimed at opening intercellu-
lar junctions, suggesting that C. dif�cile adheres to the
basolateral surface of Caco-2 cells. Moreover, a 36kDa
surface protein might play a role in the adherence process
(184, 185). A relationship between the presence of a crys-
talline surface layer (S-layer) and bacterial adherence to
HeLa cells has been observed in a C. dif�cile strain: Fab
fragments prepared from antisera against the S-layer
protein subunits partially inhibited adhesion of the bac-
terium to HeLa cells (186).

Although the role of antibiotic exposure as a predispos-
ing factor to C. dif�cile colonisation and infection is well
established, the exact mechanisms by which the colonisa-
tion process is achieved is still unclear and need further
experiments.

As evident from above, there is no simple relationship
between in vitro adherence capacity to, e.g., intestinal cells
and colonising capacity. Thus, some E. coli strains present
for years in the intestinal micro�ora of an individual may
lack adhesive potential in vitro (83). Similarly, many lacto-
bacilli isolated from human mucosal biopsies are virtually
non-adherent to an intestinal cell line (10) and a Lacto-
bacillus rhamnosus strain which was able to persist in
experimentally colonized individuals (187) is non-adherent
to the colonic cell line HT-29 (Adlerberth, unpublished
data). Several reasons may account for this: �rstly, strains
carrying genes for adhesins may not express these adhesins
when cultured in vitro. Thus, P �mbriae and S �mbriae in
E. coli are expressed by approximately 50% of genetically
positive isolates (Nowrouzian, unpublished data). Sec-
ondly, the bacterium may carry adhesins recognising re-
ceptors not present on the cell line used, but which are
present on enterocytes or in mucus in vivo. In summary,
there is only one way to proceed if one wants to isolate

strains with superior colonising capacity: to test them in
administration studies using human volunteers. Thirdly,
other bacterial factors than adherence may play a decisive
role in the ability of bacteria to persist in the colonic
micro�ora. Such factors include capsule formation (88),
synthesis of the iron-trapping compounds such as aer-
obactin and a smooth LPS (188). Capsules and LPS render
the bacteria hydrophilic and negatively charged which has
been suggested to prevent their entrapment in mucus (189).
Metabolic functions are, in addition, likely to play a
decisive role in the colonisation process.

BACTERIAL PROPERTIES FACILITATING
COLONISATION AND HOST DAMAGE:
METABOLIC ENZYMES

One way for the intestinal microbiota to in�uence its
environment is by producing hydrolytic enzymes. Such
enzymes can be either cell-bound or extracellular (190) and
hydrolyse oligosaccharides, peptides, and aliphatic lipids
or steroids (191). Usually, only minor populations of
intestinal bacteria possess a certain hydrolytic capacity.
For example, only a subpopulation of bacteria, about 1%
of faecal cultivatable bacteria (192), is responsible for the
major degradation of the oligosaccharide chains of gut
mucin glycoproteins (190).

Role of glucidolytic enzymes

Direct mechanisms: cleavage of oligosaccharidic chains of
mucins. Mucins are the most important structural compo-
nents of the mucus layer that covers and protects the
intestinal mucosa. Mucins are glycoproteins composed of a
peptidic core with an abundance of attached O-linked
oligosaccharidic chains. Many glucidolytic enzymes are
involved in mucin degradation. In the �rst step, terminal
sugars conferring the blood group speci�city are removed
(fucose, h-galactose, N-acetylgalactosamine). During this
process sialic acids, b -galactose and N-acetyl glucosamine
are exposed, which may then be cleaved off sequentially
until only the protein core is left (193).

Mucin-degrading enzymes are produced by the endoge-
nous micro�ora in the large gut (190). Clostridium perfrin-
gens, Bacteroides fragilis, Ruminococcus torques and
Bi�dobacterium bi�dum are well known to display a high
mucinolytic activity. They produce extracellular speci�c
glycosidases which cleave monosaccharides (galactose, N-
acetylgalactosamine, sialic acid) from oligosaccharidic
chains (194, 195). Free monosaccharides function as nutri-
ents for the human colon ecosystem and the mucin-de-
grading glycosidases leads to structural and functional
changes in mucins. These changes can lead to a destruction
of receptors for some microorganisms or toxins or to an
unmasking of receptors buried in the mucus layer (196).
By the production of nutrients and unmasking or destruc-
tion of receptors, bacterial modi�cations of mucins could
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in�uence colonisation and maintenance of the indigenous
intestinal microbiota.

Indirect mechanisms: induction of expression of enzymes
by bacteria or the host. Studies of germ-free mice have
revealed that members of the autochthonous �ora can
interact with the intestine to in�uence speci�c biochemical
pathways in the host.

Addition of epithelial cell-derived mucins to an estab-
lished continuous-�ow culture of anaerobic isolates from a
human caecal �ora belonging to the genera Lactobacillus,
Bi�dobacterium, Propionibacterium, Clostridium and Strep-
tococcus as well as coliforms and Bacteroides fragilis
markedly increased the levels of secreted bacterial h- and
b -glycosidases. The augmentation of glycosidases was as-
sociated with enhanced growth (197).

Umesaki et al. found that colonisation of germ free
Balb:c mice with a suspension of faecal microorganisms
obtained from conventional mice leads to the induction of
a h1,2-fucosyltransferase activity in the epithelium (198).
Intestinal colonisation with segmented �lamentous bacte-
ria, which are indigenous intestinal bacteria strongly
bound to the ileal epithelial cells, induces the activation of
intraepithelial lymphocytes but also the expression of fuco-
syl asialo GM1 glycolipid, major histocompatibility class
II molecules and the enhancement of cryptal cell prolifera-
tion of the small intestine. The function of asialo GM1 is
not well known. It could act as a receptor for some
bacteria and the fucosylation of this glycolipid could mask
the receptor site for these bacteria (199).

Bry et al. have observed that conventional and germ free
NMRI mice are able to initiate production of Fuc h1,2
Galb-containing glycoconjugates in their distal small intes-
tine. However, in the absence of micro�ora, the capacity to
produce these fucosylated glycoconjugates is lost 25–28
days after birth. Inoculation of adult germ free NMRI
mice with a conventional �ora reinitiates production of
fucosylated glycoconjugates. Conventionalisation of germ
free mice results in transcriptional activation of a host h1,2
fucosyltransferase gene in the ileum. Reverse transcriptase
polymerase chain reaction (RT-PCR) of cellular duodenal,
ileal and colonic RNA from germ-free and ex germ-free
mice con�rms that production of fucosylated glycoconju-
gates is associated with accumulation of host-h 1,2-fucosyl-
transferase mRNA (200).

The ability of Bacteroides thetaiotaomicron to induce
production of fucosylated glycoconjugates has been stud-
ied. It is linked to its capacity to utilize fucose as a carbon
source. Fu 4 is a B. thetaiotaomicron mutant strain that
lacks the ability to utilize L-fucose and D-arabinose as
carbon sources. The Fu 4 strain is unable to reinitiate
production of host fucosylated glycoconjugates. The fact
that a strain unable to utilize fucose cannot neither induce
production of host fucosylated glycoconjugates suggests
that a fucose metabolite may be involved in mediating
some aspects of this host-microbial interaction. The ability

to produce enzymes and to induce production of its own
nutrients would provide a selective advantage to a mi-
croorganism competing with other occupants for a place in
an ecosystem with limited resources (200).

B. thetaiotaomicron must reach a critical population
density (104 CFU:ml) to induce production of fucosylated
glycoconjugates in the intestine of NMRI mice (200). No
binding of bacteria to epithelial cells was observed after
inoculation of germ-free mice with a wild-type strain.
These results suggest that the induction is the result of
secretion of a soluble microbial factor dependent on bacte-
rial density. The term «quorum-sensing» describes the
phenomenon of linking bacterial cell density to expression
of a particular metabolic process (201) (see a separate
review by Swift et al. in this supplement).

Examples of role of glucidolytic enzymes in intestinal
colonisation. Bacteroides ovatus produces at least three h

galactosidases (I, II and III). h galactosidases I and II
hydrolyse simple h galactosides such as melibiose,
raf�nose, stachyose and partially guar gum, whereas h

galactosidase III hydrolyses melibiose only. When B. ova-
tus h galactosidase III mutant and wild type strains are
mixed and inoculated in germfree mice, the mutant is
outcompeted by the wild type strain (202). The locus
which contains h galactosidase III may be important for
colonisation in vivo. However, the h galactosidase III
activity is very weak compared to the h galactosidases I
and II activity when B. ovatus is grown in vitro. One of the
explanations is that h galactosidase III could be an in-
ducible enzyme and the optimal inducer is not yet known.

Production of glycosidases can be enhanced when bacte-
ria grow in culture medium supplemented with porcine
gastric mucin. This phenomenon has been observed with
Streptococcus oralis (203) and B. ovatus, which produce h

galactosidase IV in presence of mucin. This is surprising,
since h galactoside residues are only minor components of
mucins. This could indicate that B. ovatus is highly
adapted to utilisation of galactosides from any available
substrate in the digestive tract (202).

B. thetaiotaomicron can ferment host-derived polysac-
charides such as chondroitin sulfate (CS), heparin (HP)
and hyaluronic acid. The pathways for utilisation of CS
and HP seemed to be independent of each other but a gene
termed chuR was identi�ed that provided a link between
these two utilisation systems. This chuR gene is probably a
regulatory gene. Some of the genes controlled by chuR
(like those that permit B. thetaiotaomicron to utilize CS
and HP) are important for the survival of this bacterium in
the digestive tract. A chuR mutant strain that lacks the
ability to utilize chondroitin sulfate and heparin is unable
to compete with the wild type for colonisation of the
intestinal tract of germ-free mice. When the authors intro-
duced a second mutation in the chuR mutants to obtain
suppressor mutations, they restored the ability of a chuR
disruption mutant to utilize CS and HP. Unlike chuR
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mutant, suppressor mutants coexist with the wild type
strain in the murine intestinal tract (204, 205).

Example of role of glucidolytic enzymes in colonisation
and colonisation resistance. C. dif�cile produces enzymes
able to hydrolyse chondroitin sulfate, hyaluronic acid and,
to a lower extent, heparin (206). A simpli�ed in vivo model
of anti C. dif�cile barrier �ora has been obtained in
trixenic mice. Three species are involved in this barrier
effect: Clostridium indolis, Clostridium cocleatum and
Clostridium fusiformis. C. indolis produces a sialidase activ-
ity as its only mucinolytic activity. In contrast, C. coclea-
tum displays much higher and varied mucin-degrading
activity: h galactosidase, b galactosidase, b glucosidase,
b -N-acetylglucosaminidase, sialidase and h-N–acetyl-
galactosaminidase (207). It has been suggested that the
sialidase activity expressed by C. indolis could play a role
in the colonisation process by creating a speci�c niche for
C. cocleatum. In fact, C. cocleatum is able to colonize the
digestive tract of the mice only after the implantation of C.
indolis. Similarly, C. cocleatum with its high glucidolytic
activity creates a niche for C. fusiformis. In this simpli�ed
model, the implantation of the strains in the digestive tract
is sequential: the �rst strain capable to colonize is C.
indolis, then C. cocleatum and last C. fusiformis. The
colonisation resistance could be due to a competition
between C. fusiformis and C. dif�cile for nutrients or
receptor sites. The sialidase genes from C. indolis and C.
cocleatum have been cloned to try to understand their role
in the colonisation process (208).

Role of proteolytic enzymes

Many bacteria produce large amount of various prote-
olytic enzymes with broad substrate speci�city (209–211).
Bacteria need nutrients such as amino acids or oligopep-
tides for growth. By furnishing nutrients for the bacteria,
proteolytic enzymes could facilitate intestinal colonisation.

Some bacteria produce proteases and peptidases, which
degrade large proteins such as casein and bovine serum
albumin into short peptides and free amino acids. This has
been described, for instance, in lactic acid bacteria (212,
213). In vitro studies have shown that casein and bovine
serum albumin are partly degraded in human faeces over a
96 h-incubation period. The products are soluble peptides,
ammonia and volatile fatty acids. The predominant prote-
olytic bacteria in the faecal samples were identi�ed as
Bacteroides sp. and Propionibacterium sp. Other proteolytic
bacteria belong to the genera Streptococcus, Clostridium,
Bacillus and Staphylococcus (214).

Macfarlane et al. demonstrated that a substantial popu-
lation of the proteolytic activity in normal faeces was of
bacterial origin. The faecal proteolysis was both qualita-
tively and quantitatively different from that of the small
intestine (215). Indeed, different proteolytic activity in-
hibitors such as iodoacetate, EDTA or cysteine signi�-
cantly inhibit proteolysis in faeces but not in the small

intestinal contents, showing that cysteine and metallo-
proteases produced by bacteria in the colon are important
sources of proteolysis in addition to pancreatic enzymes.
Cell-bound proteases were found in B. fragilis, whereas
extracellular proteases are synthesized by Enterococcus
faecalis, Propionibacterium acnes, Clostridium perfringens,
Clostridium bifermentans and Clostridium sporogenes.

Role in evading human immune system. IgA1 proteases
have been described in different bacteria. These include
colonizers of the upper respiratory tract involved in menin-
gitis: H. in�uenzae (216), Neisseria meningitidis (217) and
Streptococcus pneumoniae (218) as well as species involved
in urogenital infections: Neisseria gonorrhoeae (219) and
Ureaplasma urealyticum (220).

Cleavage of IgA1 by IgA1 proteases could allow the
bacteria to evade human immune system facilitating mu-
cosal colonisation (221). The role of IgA1 proteases for
bacteria persistence in the colon has not been studied. The
dominant IgA isotype in colonic secretions is IgA2, which
cannot be cleaved by most IgA proteases.

Role in invasion or demasking receptors. The role of
proteolytic enzymes in colonisation has been well studied
in Porphyromonas gingivalis. This bacterium plays a major
role in periodontal disease.

Kontani et al. have shown that a cysteine protease
enhanced the binding of puri�ed P. gingivalis �mbriae to
the cell surface of monolayered �broblasts and matrix
proteins. Degradation of matrix proteins by the protease
exposed arginine residues, to which P. gingivalis �mbriae
could bind effectively (222).

Tokuda et al. have demonstrated that a cysteine
protease mutant of P. gingivalis displayed reduced interac-
tion with Gram-positive bacteria, immobilized extracellu-
lar matrix proteins, type I collagen and human epithelial
cells (223, 224). Thus, the proteases of P. gingivalis could
play a major role in colonisation.

Toxic activity. Numerous proteolytic enzymes have
been described in Clostridium. Schiavo et al. have shown
that tetanus and botulinum toxins serotype B are metallo-
proteases. These proteolytic enzymes are able to cleave
synaptobrevin, which is an integral membrane protein in
small synaptic vesicles, hence blocking neurotransmittor
release (225). By the same way, Clostridium sporogenes
produces an haemorrhagic toxin, which is a collagenase
that hydrolyses type III and IV collagens, major compo-
nents of the tunic intra and media of blood vessels, causing
disruption of the vessel wall (226). Jin et al. have charac-
terized a metalloprotease in Clostridium perfringens named
lambda toxin. This enzyme hydrolyses different substrates
such as collagen, �bronectin, �brinogen, IgA and the
complement C3 component. In mice, it can induce an
increase in vascular permeability and haemorrhagic
oedema (227).

Other proteolytic enzymes have been described in
Clostridium but their role in virulence or colonisation has
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not been demonstrated. For example, C. histolyticum pro-
duces at least seven collagenases which have been puri�ed
and characterized (228). Finally, a protease activity has
been described in Clostridium dif�cile but its role in coloni-
sation has not yet been elucidated (229).

CONCLUDING REMARKS

The colonisation of the digestive tract is a complex phe-
nomenon associating several partners such as the bacterial
population, the host and the environmental factors, which
interact between each other. One of the �rst steps of
colonisation could be adhesion between bacteria and host
tissues. This phenomenon implicates non-speci�c and spe-
ci�c interactions. Several microbial surface components
are involved in the speci�c adherence mechanisms by
recognising adhesive matrix molecules on the host. Other
bacterial factors may play a decisive role in the ability of
bacteria to persist in the colonic micro�ora. Such factors
include the capsule, iron trapping compounds, �agella and
metabolic enzymes. Glycolytic and proteolytic enzymes are
likely to play an important role in the colonisation process
and the maintenance of the indigenous intestinal mi-
cro�ora. These enzymes act in a complex way including
direct mechanisms on the host components and indirect
mechanisms by inducing enzyme or protein synthesis in the
host. These interactions between bacteria and the host
implicate the release of soluble factors dependent also of
bacteria-bacteria communication. Much work has to be
performed at the molecular level to understand these com-
plex cross-talks.
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61. Nagy I, Fröman G, MaÊ rdh PA. Fibronectin binding of
Lactobacillus species isolated from women with and without
bacterial vaginosis. J Med Microbiol 1992; 37: 38–42.

62. Aleljung P, Shen W, Rozalska B, Hellman U, Ljungh AÎ ,
Wadström T. Puri�cation of collagen-binding proteins of

M
ic

ro
b 

E
co

l H
ea

lth
 D

is
 D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
N

yu
 M

ed
ic

al
 C

en
te

r 
on

 1
0/

26
/1

4
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.



Bacteria :host interactions in colonisation 235

Lactobacillus reuteri NCIB 11951. Curr Microbiol 1994; 28:
231–6.

63. Szoke I, Pascu C, Nagy E, Ljung AÍ , Wadström T. Binding
of extracellular matrix proteins to the surface of anaerobic
bacteria. J Med Microbiol 1996; 45: 338–43.

64. Lantz MS, Rowland RW, Switalski IM. Interactions of
Bacteroides gingivalis with �brinogen. Infect Immun 1986;
54: 654–8.

65. Babu JP, Dean JW, Pabst MJ. Attachment of Fusobacterium
nucleatum to �bronectin immobilized on gingival epithelial
cells or glass coverslips. J Periodontol 1995; 66: 285–90.

66. Duguid JP, Smith IW, Edmunds PN. Non-�agellar �lamen-
tous appendages (‘�mbriae’) and hemagglutinating activity
in Bacterium coli. J Pathol Bacteriol 1955; 70: 335–48.

67. Duguid JP, Gillies RR. Fimbriae and adhesive properties in
dysenteric bacilli. J Pathol Bacteriol 1957; 74: 397–411.

68. Brinton Jr CC. The structure, function, synthesis and genetic
control of bacterial pili and a molecular model for DNA and
RNA transport in Gram negative bacteria. Transact NY
Acad Sci 1965; 27: 1003–54.

69. Duguid JP, Old DC. Adhesive properties of Enterobacteri-
aceae. In E. C. Beachey (Ed.), Bacterial adherence, receptors
and recognition (pp. 185–217). London: Chapman & Hall,
1980.

70. Heumann W, Marx R. Feinstruktur und Funktion der Fim-
brien bei dem sternbildenden Bakterium Pseudomonas echi-
noides. Arch Mikrobiol 1964; 47: 325–37.

71. Bhattacharjee JW, Srivastava BS. Mannose-sensitive
haemaglutinins id adherence of Vibrio cholerae El Tor to
intestine. J Gen Microbiol 1978; 108: 407–10.

72. Firon N, Ofek I, Sharon N. Interaction of mannose-contain-
ing oligosaccharides with the �mbrial lectin on Escherichia
coli. Biochem Biophys Res Commun 1982; 105: 1426–32.

73. Lindhorst TK, Kieburg C, Krallmann-Wenzel U. Inhibition
of the type 1 �mbriae-mediated adhesion of Escherichia coli
to erythrocytes by multiantennary alph mannosyl clusters:
the effect of multivalency. Glycoconj J 1998; 15: 605–13.

74. Firon N, Ofek I, Sharon N. Carbohydrate speci�city of the
surface lectins of Escherichia coli, Klebsiella pneumoniae and
Salmonella typhimurium. Carbohydr Res 1983; 120: 235–49.

75. Neeser JR, Koellreutter B, Wuersch P. Oligomannoside-type
glycopeptides inhibiting adhesion of E. coli strains mediated
by type 1 pili: preparation of potent inhibitors of plant
glycoproteins. Infect Immun 1986; 52: 428–36.

76. Wold AE, Thorssén M, Hull S, Svanborg Edén C. Attach-
ment of Escherichia coli via mannose or Galh1–4Galb-con-
taining receptors to human colonic epithelial cells. Infect
Immun 1988; 56: 2531–7.

77. Adlerberth I, Hanson LAÍ , Svanborg C, Svennerholm AM,
Nordgren S, Wold AE. Adhesins of Escherichia coli associ-
ated with extraintestinal pathogenicity confer binding to
colonic epithelial cells. Microbial Pathogenesis 1995; 18:
373–85.

78. Wold AE, Mestecky J, Tomana M, Kobata A, Ohbayashi
H, Endo T, Svanborg Edén C. Secretory immunoglobulin A
carries oligosaccharide receptors for Escherichia coli type 1
�mbrial lectin. Infect Immun 1990; 58: 3073–7.

79. Baba E, Tsukamoto Y, Fukata T, Sasai K, Arakawa A.
Increase of mannose residues, as Salmonella typhimurium-ad-
hering factor, on the cecal mucosa of germ-free chickens
infected with Eimeria tenella. Am J Vet Res 1993; 54:
1471–5.

80. Pusztai A, Grant G, Spencer RJ, et al. Kidney bean lectin-
induced Escherichia coli overgrowth in the small intestine is
blocked by GNA, a mannose-speci�c lectin. J Appl Bacteriol
1993; 75: 360–8.

81. Hendrickson BA, Guo J, Laughlin R, Chen YM, Alverdy
JC. Increased type 1 �mbrial expression among commensal
Escherichia coli isolates in the murine cecum following
catabolic stress. Infect Immun 1999; 67: 745–53.
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