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The large and heterogeneous microbial population colonising the human intestinal tract includes a number of aerobic and anaerobic
bacteria that produce one or more toxins. While exhibiting very different physico-chemical properties these exotoxins share the ability to
penetrate intestinal cells after their binding to a speci�c surface receptor, thus reaching a subcellular target at membrane or cytoskeleton
level. The most relevant in vitro and in vivo data, reported in the literature, on the mode of action of the major enterotoxins and
cytotoxins produced by bacteria belonging to the human gut micro�ora are reviewed in the light of our recent knowledge on bacteria-host
cell interactions.

ORIGINAL ARTICLE

INTRODUCTION

Intraluminal �ora of the intestinal tract forms an ex-
tremely large and heterogeneous microbial ecosystem in-
cluding aerobic, microaero�lic and strictly anaerobic
bacteria. The small intestine represents a transition area
between the scarcely colonised stomach and the abundant
colonic �ora, normally reaching in healthy subjects 1011

colony forming units:mg of intestinal content. In fact, a
third of the faecal dry weight consists in bacteria, the
anaerobes outnumbering the aerobic species by a hundred
to ten thousand times.

Among the numerous extracellular products, exotoxins
produced and released from bacteria belonging to the
normal gut micro�ora appear to be potent weapons whose
possible harmful effects on the intestinal mucosa deserve in
our opinion wider attention. Even more by the light of the
increasing amount of in vitro and in vivo results obtained
in recent years on their mode of action. These toxins are
very heterogeneous as far as their physico-chemical prop-
erties and bacterial sources are concerned, being produced
by anaerobic (Bacteroides fragilis, Clostridium dif�cile,
Clostridium perfringens) and aerobic (Enterococcus fae-
calis, Escherichia coli, Staphylococcus aureus) species
(Table I). However, this group of toxins shares the ability
of penetrating animal cells after binding to a speci�c
receptor present on the cell surface, thus reaching an
intracellular target at membrane and:or cytoskeletal level.

In fact, recent studies on different mammalian cell lines
indicate the micro�laments, constituted by the 42 kDa
G-actin and several actin binding proteins, as the primary

targets for an increasing number of toxins (1–6) produced
by enteric bacteria. Recalling the signi�cant role of the
actin cytoskeleton in numerous cellular functions (7–11)
and the participation of actin as the main constituent in
the intestinal brush border cytoskeleton, the direct or
indirect role of these toxins as proin�ammatory agents and
virulence factors needs to be further elucidated. In this
regard a review of the most relevant data available so far
on the main features and the mode of action of the major
enterotoxins and cytotoxins produced by enteric bacteria
colonising the human intestinal tract (12) may be of value
in identifying unclear aspects, missing data and future
research targets.

BACTEROIDES FRAGILIS TOXIN (BFT)

Bacteroides fragilis is an obligately anaerobic bacterium
that is part of the normal colonic �ora (13). Despite
accounting for only about 1%of 1011 organisms:g of stool,
B. fragilis is the obligate anaerobe most frequently isolated
from patients with intraabdominal abscesses and blood-
stream infections. However, neither diarrhoeal disease nor
extracellular toxin production due to B. fragilis was appre-
ciated until 1984. In fact, the initial suggestion that B.
fragilis could be a cause of diarrhoea came from studies of
diarrhoeal disease in lambs in which Myers and his col-
leagues (14) noted that stools from diarrhoeic lambs were
able to stimulate a secretory response in ligated intestinal
loops in healthy lambs. In a series of experiments involving
cultures on various media and serial passage of strains in
lamb ligated intestinal loops, it was determined that the
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secretory response observed could be attributed only to an
obligate anaerobe which was identi�ed as being B. fragilis.
By experimental inoculation of lambs with the secretion-
producing strains of B. fragilis, clinical signs of the natural
disease were reproduced, whereas with strains that were
nonsecretory in lamb ligated intestinal loops no signs of
disease were found. Further studies demonstrated that
culture �ltrates of the pathogenic B. fragilis strains, but
not of the control B. fragilis strains, concentrated 20-fold,
also stimulated a secretory response in lamb ligated intesti-
nal loops at 18 hours but not before 6 hours (15). Notably,
loops treated for \18 hours with concentrated culture
�ltrates tended to burst, an indication of the potency of
the secretory response. On the basis of these observations,
strains that stimulate secretion in lamb ligated intestinal
loops have been termed enterotoxigenic B. fragilis (ETBF).

The �uid response was dependent on the animal model
used. In fact, in the ileum this response was greater in
lambs than in rabbits and rats, whereas the �uid response
in the colon was greater in rabbits than in lambs and rats.
Analysis of the intestinal �uid elicited by the enterotoxin
revealed an accumulation of sodium and chloride as well
as albumin and total protein. After histological examina-
tion mild necrosis of epithelial cells, crypt elongation,
villus attenuation, and hyperplasia were revealed. More-
over, there was an extensive detachment and rounding of
surface epithelial cells as well as an in�ltration of neu-
trophils (16).

Several studies suggest that the intestinal effects of B.
fragilis are attributable to a protein toxin (17). This toxin
is an extracellular heat-labile protein with an estimated
molecular weight of about 20000 Da as determined by gel
�ltration chromatography on Superose-12 and sodium do-
decyl sulfate-polyacrylamide gel electrophoresis. The
puri�ed toxin is stable at ¼20°C and 4°C and upon
freeze-drying, but it is unstable at temperatures above
55°C. It is characterised by an isoelectric point of approx-
imately 4,5 and is stable at pHs between 5 to 10. It is
resistant to trypsin and chymotrypsin but is sensitive to
proteinase K and Streptomyces protease (18). Like culture
�ltrates of ETBF, the puri�ed toxin stimulates �uid accu-
mulation in lamb ligated ileal loops and alters the mor-
phology of intestinal epithelial cells in vitro as well. Both of
these biological activities are neutralised by monospeci�c
antisera to the puri�ed toxin. The amino acid sequence
revealed a zinc-binding consensus motif signature
(HEXXHXXGXXH:Met-turn) characteristic of metallo-
proteases termed metzincins (19) and the sequence com-
parison shows high identity to matrix metalloproteases
(e.g., human �broblast collagenase) within the zinc-binding
and Met-turn region. One g-atom of Zn2» per molecule is
contained in the puri�ed enterotoxin and it is capable of
hydrolysing gelatin, azocoll, actin, tropomyosin, and
�brinogen. Moreover, the enterotoxin is capable of under-
going autodigestion. Optimal proteolytic activity occurs at

Table I

Bacteria colonising human gut and their major enteric toxins

Bacterium Toxins MW Mode of action

BFT Cytotoxic and enterotoxicBacteroides fragilis 20 kDa
Clostridium dif�cile Tox A 308 kDa Cytotoxic and enterotoxic

Pro-apoptotic
Tox B 270 kDa Cytotoxic

Pro-apoptotic
Enterotoxic and cytotoxic35 kDaEnterotoxinClostridium perfringens
Pore-former
Acting both as a haemolysin toxic to eukaryotic cells and as aCytolysinEnterococcus faecalis
bacteriocin active against gram-positive bacteria
Enterotoxic?
Inhibitor of cell division76 kDaCDTsEscherichia coli

CNFs 110 kDa Cytotoxic and dermonecrotic
Anti-apoptotic

LTs Enterotoxic85 kDa
Enterotoxic2 kDaSTs

Staphylococcus aureus SEA
SEB
SEC1 Enterotoxic, superantigen,
SEC2 22–29 kDa indirectly pro-apoptotic via T-cell
SEC3 activation and cytokine secretion
SED
SEE
Delta-toxin 3 kDa Cytolytic

Pore-former
Enterotoxic?
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37°C and pH 6.5. Primary proteolytic cleavage sites in
actin have been identi�ed, revealing cleavage at Gly-Met
and Thr-Leu peptide bonds. Enzymatic activity is inhibited
by metal chelators but not by inhibitors of other classes of
proteases. Additionally, both, the cytotoxic and entero-
toxic activity is inhibited by the metal chelators such as
EDTA and 1,10-phenanthroline.

Two isoforms of B. fragilis toxin (BFT) have been
isolated, one secreted by the lamb (ETBF strain VPI
13784) and the second by the piglet (ETBF strain 86-5443-
2-2). Nucleotide sequence analysis studies revealed 92%
identity and 95%similarity in the amino acid sequences of
these two isoforms of BFT. Based on their biochemical
properties, these isoforms represent two distinct proteins
and are therefore termed BFT-1 (strain VPI 13784) and
BFT-2 (strain 86-5443-2-2). However, the biological activi-
ties of these two proteins are very similar. The bft gene
from ETBF strain 86-5443-2-2 consists of one open read-
ing frame of 1,91 nucleotides encoding a predicted 397-
residue holotoxin with a calculated molecular weight of
44,493 Da. BFT is most probably synthesised as a pre-pro-
protein by ETBF strains as the comparison of the pre-
dicted BFT protein sequence with the N-terminal amino
acid sequence of puri�ed BFT indicates. These data sug-
gest that BFT is processed to yield a biologically active
toxin of 186 residues with a molecular mass of about 20
kDa which is secreted into the culture supernatant. In fact,
analysis of the holotoxin sequence predicts a 20-residue
amphipathic region at the carboxy terminus of BFT (20,
21). Comparison of the sequences available for the bft
genes from ETBF 86-5443-2-2 and VPI 13784 revealed two
regions of reduced homology.

Hybridisation of oligonucleotide probes speci�c for each
bft with toxigenic B. fragilis strains revealed that 51 and
49% of toxigenic strains contained the 86-5433-2-2 and
VPI 13784 bft genes, respectively. No toxigenic strain
hybridised with both probes. These two subtypes have
been termed bft 1 (VPI 13784) and bft -2 (86-5433-2-2).

The BFT is detectable (22) by morphological changes on
HT29, T84, and Caco-2 cells, continuous intestinal epithe-
lial cell lines derived from human colonic carcinomas. The
toxin does not alter the morphology of Chinese hamster
ovary (CHO), Y-1 adrenal, or MDCK cells, all of which
are nonintestinal cell lines (23). Numerous studies have
been performed on HT29:C1 cells, which represent a suit-
able model for studying the TBF and it constitutes an
established cytotoxic assay used to detect enterotoxigenic
B. fragilis (24). After treatment with crude or puri�ed
BFT, cells become rounded with numerous surface blebs
and the cell clusters dissociate within 3 hours (25, 26).
Such alterations in HT29 cells are completely reverted 24 h
after the addition of the toxin (27). Experiments with
puri�ed toxin reveal that subcon�uent HT29:C1 cells
treated with as little as 0.1 ng of puri�ed toxin:ml (5 pM)
develop morphological changes. Furthermore, staining of

toxin-treated HT29:C1 cells with rhodamine-phalloidin,
which speci�cally binds to �lamentous actin (F-actin),
reveals dissociation of F-actin after toxin treatment that is
consistent with the BFT altering the cytoskeleton of intes-
tinal epithelial cells. In fact, typical effects are the redistri-
bution of F-actin, which become completely marginalised,
and the loss of stress �bres, the �lamentous and contractile
form of actin (27). BFT acts also on cell volume and this
response is persistent and dependent on the proteolytic
activity of BFT. Intoxicated cells exhibit regulatory vol-
ume decrease, suggesting that toxin-treated cells remain
physiologically dynamic.

For further assessment of the effect of crude and
puri�ed toxin on the physiology of intestinal epithelial cells
in vitro, HT29:C1, Caco-2, or T84 cells were used for
studies in Ussing chambers (28, 29). The Ussing chamber
is an experimental technique for investigating the physiol-
ogy of monolayers of cultured intestinal epithelial cells
under conditions of ionic, osmotic, and electrical equi-
librium. By assessment of three parameters, i.e., short
circuit current (I or Isc), potential difference (V or PD)
and monolayer resistance (R), changes in active ion trans-
port and monolayer resistance are measured. Under
voltage-clamped conditions, Isc and PD are measured; R is
calculated by Ohm’s law (V¾IR). The most consistent
observation with both crude and:or puri�ed toxin was a
striking decrease in monolayer resistance over time. The
onset of this decrease typically occurred 20–50 minutes
after treatment of apical or basolateral surfaces of the
monolayers with toxin. However, the loss of monolayer
resistance occurred more quickly and was more complete
with toxin application to basolateral surfaces. Depending
on the cell line used, in some experiments an increase in Isc
that was separable from the calculated changes in mono-
layer resistance was also observed. This increase in Isc
suggests that BFT may also stimulate chloride secretion.
These changes in the physiology of HT29:C1 or T84
monolayers occur without release of intracellular lactate
dehydrogenase or changes in protein synthesis, thus indi-
cating that cellular damage is not responsible for the loss
of monolayer resistance. In addition, T84 monolayers
stained with rhodamine-phalloiding showed alteration in
F-actin distribution in the cells that may account for the
diminished monolayer resistance observed. However, the
relationship of the changes in F-actin distribution to the
changes in Isc observed in T84 monolayers in response to
the ETBF toxin is presently unknown. Although the real
contribution of the BFT to the pathogenesis of diarrhoeal
disease is yet unknown, it is postulated that this toxin
potentially contributes to diarrhoea by altering the barrier
function of the intestinal epithelium and by stimulating
chloride secretion.

A recent report demonstrates that BFT speci�cally
cleaves E-cadherin within the extracellular domain of the
zonula adherens protein. Cleavage of E-cadherin by BFT
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is ATP-independent and essential for the morphologic and
physiologic activity of BFT. However, the morphologic
changes occurring in response to BFT are dependent on
target-cell ATP. E-cadherin is, thus, the cellular substrate
for a bacterial toxin and this phenomenon represents the
identi�cation of a mechanism of action, cell-surface prote-
olytic activity, for a bacterial toxin (30).

CLOSTRIDIUM DIFFICILE TOXINS

The Gram-positive anaerobic bacterium, Clostridium dif� -
cile, is the causative agent of pseudomembraneous colitis
and of most cases of antibiotic-associated diarrhoea (31–
40).

There are many virulence factors expressed by patho-
genic strains of C. dif�cile and involved in the onset of
diarrhoea and colitis, including �mbriae, proteases and
toxins (41–51). The most important and best studied since
the early 1980s (52–55) are two exotoxins: toxin A, a
cytotoxic enterotoxin (56–62) and toxin B, a more potent
cytotoxin lacking enterotoxic activity (63, 64). Both toxins
belong to the group of intracellularly acting bacterial
proteins which have to be internalised via receptor-medi-
ated endocytosis to exert their cytotoxicity.

Toxins A and B are very large single-chain polypeptides
having molecular weights of 308 kDa and 270 kDa, respec-
tively. The genes encoding C. dif�cile toxins have been
cloned and sequenced (65–69). The two toxins have about
60% homology at the amino acid level and share an
identical structural composition. The polypeptides are
composed of three functional domains: i) the N-terminal
catalytic domain; ii) the intermediate translocation do-
main; iii) the C-terminal receptor binding domain. The
N-terminal region is thought to specify toxin activity and
the rather small hydrophobic intermediate part is involved
in entry of the toxins into cells. Near the C-terminal
domain is a region comprising of CROPS (C-terminal
repeated oligopeptides), which might be involved in mem-
brane receptor binding. In toxin A these CROPS act as
receptor-binding sites for galactose-containing residues
(Gal–1-3Gal–1-4GlcNAc) on the surface of the intestinal
epithelial cells in hamsters and rabbits (70, 71). This is
similar to the receptor in the human intestine where I, X
and Y antigens in the membranes of epithelial cells lining
the mucosa may bind the toxin (72). All these carbohy-
drate antigens contain the type 2 core (Gal1–1-4GlcNAc)
that appears to be the minimum carbohydrate structure
bound by toxin A.

Other common structural features are a hydrophobic
region of approximately 50 amino acids in the middle part
of the protein and four conserved cysteine residues.

Excellent studies have been performed to investigate the
properties of these conserved features by constructing
toxin B mutants (73). In particular a signi�cant decrease of
cytotoxicity was observed by (i) substituting histidine with

glutamine at the nucleotide-binding site, suggesting that
this region could be the active site; and (ii) removing the
internal hydrophobic region that may be responsible for
processing and internalisation.

Despite their similarities, the biological activities of the
toxins differ. Toxin A causes tissue damage and changes in
permeability that result in �uid accumulation in rabbit
ileal and colonic loops (74, 75). By contrast, in the animal
model toxin B shows no effects on permeability or intesti-
nal integrity.

The observation that a mixture of toxin B with low
amount of toxin A when given to hamsters provokes their
death suggests that toxin B acts synergistically with toxin
A and that the latter is needed for initial tissue damage
(45).

Only recently was toxin B shown to cause greater dam-
age to human colonic epithelium in vitro than toxin A. In
fact it has been demonstrated that, like toxin A, toxin B
perturbs the cytoskeleton of human colonic cancer T84 cell
monolayers causing an increase in transepithelial resistance
(64). In addition, toxin B and toxin A have been tested on
human colonic mucosa mounted in Ussing chambers (76).
The results of this study demonstrated that both toxins
cause morphologic damage and dose-dependent electro-
physiologic alterations in human colonic mucosa and that
toxin B is more effective than toxin A. This is the �rst line
of evidence of the activity of toxin B on an undisturbed
mucosa and may represent a different behaviour of the
human intestine with respect to the animal models.

It is possible to speculate that the different biological
effects of toxins A and B in the animal model (77) are
related to the different receptors used by the toxins.

The main common activity of both toxins, the cytoxicity
in cultured cells, even if toxin A is 1000-fold less active
than toxin B, has been widely documented and character-
ised up to the recent determination of the exact mode of
action.

In fact, several lines of mammalian cells respond to both
toxins although differences in sensitivity can be noted
among cell types (78, 79). As viewed by light and scanning
electron microscopy, the morphological effect induced by
toxins A and B in cell monolayers mainly consists in the
retraction and rounding up of the cell body. These mor-
phological changes are generally irreversible and followed
by an inhibition of the cell division, but antioxidants are
able to protect epithelial cells against the oxidative imbal-
ance due to C. dif�cile toxins (80). Cytoskeleton appears to
be strongly involved in such modi�cations. As observed by
�uorescence microscopy, the early response to C. dif�cile
toxins is a dramatic change in the micro�lament organisa-
tion, evident when the cells are still adhering to the sub-
strate (78, 81–88). Prolonging time of exposure, the
progressive alteration in the F-actin pattern leads ulti-
mately to the formation of the rounded cells. Protrusions
or blebs on the cell surface are also observed by scanning
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electron microscopy, the blebbing phenomenon being dose
and time dependent (89). These modi�cations affect the
micro�lament network of the cytoskeleton without inter-
fering directly with F-actin formation, leading to a relocal-
isation of F-actin. The change in F-actin organisation is
the earliest visible sign of cellular intoxication and is
detectable prior to alteration in the microtubular and
intermediate �lament networks.

As recently demonstrated, toxins A and B are monoglu-
cosyltransferases which catalyse the incorporation of glu-
cose into the small GTP-binding proteins of the Rho
family (90–93).

Three subfamilies belong to the Rho family: Rho, Rac
and Cdc42. These are involved in the regulation of the
dynamic actin cytoskeleton (7). Each of them, however,
regulates distinct structures: Rho governs the formation of
stress �bres and focal adhesions, Rac is involved in mem-
brane ruf�ing and Cdc42 in the formation of �lopodia.
The best understood functional module is the formation of
the stress �bres: Rac and Rho regulate the phosphatidyl-
inositol 4-phosphate-5-kinase to form PIP2, which stimu-
lates actin polymerisation and �lament growth through
interaction with several actin-binding proteins (e.g. gel-
solin, pro�lin). The stress �bres, a supraorganisation of
actin �laments, are governed by the RhoA-dependent
Rho-Kinase which phosphorylates the myosin light chain
thereby activating the actin-myosin system in non-muscle
cells. The membrane attachment of the stress �bres is
managed through the ERM proteins (ezrin, radixin,
moesin). These bifunctional proteins bind through their
N-terminal part to transmembrane proteins (CD44 or
ICAM proteins) and interact through their C-terminal part
with the actin �laments. This interaction is essential for
Rho-governed cytoskeletal changes.

All three subfamilies are monoglucosylated by C. dif� -
cile toxins (91, 92). In fact, toxins A and B catalyse the
incorporation of glucose moiety into Thr 37 of RhoA or
Thr 35 of both Rac and Cdc42 (88, 94). This modi�cation
renders Rho, Rac and Cdc42 inactive, thereby losing their
properties to induce actin polymerisation and �lament
bundling. Inhibition of these GTPases causes the shut-
down of signal transduction cascades leading to: (i) de-
polymerisation of the cytoskeleton; (ii) gene transcription
of certain stress-activated protein kinases; (iii) a drop in
synthesis of phosphotidyl-inositol 4,5 biphosphate; (iv)
and possibly even the loss of cell polarity. By inhibition of
signal transduction cascades, toxins A and B are able to
block downstream responses (95–99).

Recently, it has been reported that intestinal cells ex-
posed to C. dif�cile toxins A and B exhibit typical features
of apoptosis in that a signi�cant proportion of the toxin
exposed cells shows nuclear fragmentation and chromatin
condensation (100–103). The inhibition of proteins be-
longing to the Rho family due to C. dif�cile toxins seems
to play a role in the induction of apoptosis in intestinal
cells.

It has also been demonstrated that toxin B is a potent
activator of human monocytes and toxin A is a potent
chemoattractant of granulocytes (104, 105).

Hence, toxin B, shown to be extremely toxic for mono-
cytes, initially induces the secretion of proin�ammatory
products (IL1, IL6, TNF) contributing to epithelium dam-
age, �uid secretion, mucus release and membrane perme-
ability and then eliminates the monocytes, thus preventing
phagocytosis of the bacteria.

It has been demonstrated that toxin A causes a rapid
dose-dependant increase of free cytosolic calcium in hu-
man granulocytes that stimulates cytokine release from
macrophages in vitro and may be a mediator in eliciting
chemotactic response.

Furthermore, a recent study provided indications of IL8
production in T84 and HT29 cells after exposure to toxin
A (103). In particular, it has been demonstrated that
cultured, as well as primary human colonic epithelial cells,
undergo apoptosis following cell rounding and detach-
ment, and then produce IL8.

As IL8 is a potent chemoattractant for polymorphonu-
clear cells its production may be pivotal in the induction of
the intestinal in�ammation seen in pseudomembranous
colitis.

All these results certainly demonstrate that these two
exotoxins represent the major virulence factors produced
by C. dif�cile (46, 106), even if other putative virulence
determinants (107) could play an important role in its
pathogenicity.

CLOSTRIDIUM PERFRINGENS ENTEROTOXIN

Clostridium perfringens is an ubiquitous anaerobic, spore-
forming, gram-positive bacterium resident in human gut
and associated to gastrointestinal disorders since 1895 by
the German microbiologist E. Klein. However, the �rst
episode of food poisoning caused by C. perfringens involv-
ing about 250 people was described only several decades
later, in 1943, by English epidemiologists. This common
foodborne illness (108) is caused by the ingestion of foods
contaminated with very high concentrations (\105 bacte-
ria:g) of type A vegetativecells. The production of toxin in
the digestive tract (or in vitro) is associated with bacterial
sporulation.

C. perfringens enterotoxin (109) is a single polypeptide
chain with a molecular weight of 35 kDa, eliciting a
cytotoxic activity on intestinal cells. The primary subcellu-
lar target of the toxin should be represented by the cell
membrane as recently demonstrated by us also for C.
perfringens epsilon toxin (unpublished data). The following
steps should characterise the cytotoxic activity:

(i) Enterotoxin binding to a 50 kDa protein receptor
present on the membrane;
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(ii) Modi�cation of the toxin-receptor complex of about
90 kDa after interaction with a membrane protein of
70 kDa and following establishment of a larger
molecular complex of about 160 kDa;

(iii) Consequent structural and functional damages on cell
membrane resulting from pore formation due to the
partial membrane insertion of the large 160 kDa
complex containing the toxin (110).

The major repercussions of membrane damage on intes-
tinal physiology are the inhibition of amino acid transport
and the increased secretion of sodium chloride.

ENTEROCOCCUS FAECALIS CYTOLYSIN

This toxin produced by 60% of clinical isolates of E.
faecalis (111) is a heterodimeric polypeptide consisting of
two different structural subunits which are both required
for haemolytic and bactericidal activity (112). In fact, early
reports on this cytolysin (113, 114) described its ability to
inhibit the growth of gram-positive bacteria.

According to recent results (115) the toxin belongs to
subgroup A lantibiotics which are elongated, amphiphilic
peptides able to open voltage-dependent pores in the bac-
terial membrane, interfering with energy transduction and
modifying membrane potential.

Because of the ability of the toxin to act against gram-
positive bacteria, E. faecalis cytolysin-producing strains
are expected to be able to protect themselves but the
mechanism by which immunity is achieved is not de�ni-
tively understood (116). Recent results seem to demon-
strate, however, that immunity arises from a single open
reading frame at the 3Æ end of the cytolysin operon and
that the immunity gene is co-transcribed with the gene
encoding the extracellular cytolysin activator (117, 118). In
fact, the cytolysin is encoded by large, pAD1-type,
pheromone-responsive plasmids and the genetic organisa-
tion of the pAD1 operon has been elucidated by transpo-
son insertional mutagenesis, followed by intracellular and
extracellular complementation (112, 119).

The E. faecalis cytolysin is the only lantibiotic described
so far which is also toxic for mammalian cells.

Furthermore, this toxin has been demonstrated to sig-
ni�cantly contribute to the severity and lethality of entero-
coccal infection in three animal models (120–123) as well
as in humans (111, 124, 125).

ENTEROTOXIGENIC ESCHERICHIA COLI
CYTOTOXINS

Enterotoxigenic Escherichia coli (ETEC) are among the
most relevant causes of diarrhoea. ETEC are known to
produce 4 cytotoxin types: the heat-labile (LT1 and LT2)
and the heat-stable (STa and STb) enterotoxins, the cyto-
toxic necrotising factors (CNF1 and CNF2) and the cyto-
lethal distending toxins (CDTs).

E. COLI HEAT-LABILE ENTEROTOXINS (LTs)

LT1 enterotoxin is closely related to cholera toxin (CT),
sharing 80% sequence identity with the A and B subunits
of CT (126). LT1, like CT, is an A-B subunit toxin (A:B
ratio, 1:5) where B is the subunit (11.6 kDa) binding the
GM1 ganglioside receptor and A is the enzymatic intracel-
lular acting component. The A subunit consists of two
components generated by proteolysis. A1 (21.8 kDa) is an
ADP-ribosyltransferase and A2 (5.4 kDa) links A1 to the
B subunits. X-ray crystallography shows that the structure
of LT1 consists of 5 B subunits constituting a pentamer
with a central pore, where the carboxy terminus of A2 is
located. A2 is linked, by an alpha helix, to the A1 subunit
(127). The A1 subunit ADP-ribosylates the Gs alpha chain
of a heterotrimeric GTP-binding protein which controls
the activity of adenylate cyclase (Gs). ADP-ribosylation of
alpha Gs by LT1:CT occurs only in the presence of the
small GTP-binding protein ARF and leads to the inhibi-
tion of the GTPase activity of alpha Gs (128). This pro-
vokes the intracellular activation of adenylate cyclase with
consequent elevation of cyclic AMP. Like CT, LT1 enters
cells by endocytosis and is transferred from early endo-
somes to late endosomes where, apparently, the separation
between the A1 and the A2:B5 subunits occurs. The A1
subunit is therefore transferred from late endosomes to the
trans-Golgi network and, in a retrograde fashion, to the
endoplasmic reticulum from where it escapes into the
cytosol. The enzymatic moiety of LT1 is thus delivered
directly at the cell baso-lateral pole where the Gs alpha
subunits are located. The A2:B5 fragment ends in lyso-
somes where it is degraded (129).

Elevation of cAMP by LT1 activates a cAMP dependent
kinase (A-kinase) which up-regulates chloride secretion by
phosphorylation of the chloride channel CFTR. However,
LT1 activity on intestinal cells may induce others effects.
Elevating cAMP levels, LT1 also increases the production
of platelet activating factor (PAF), which in turn, stimu-
lates production of prostaglandins PGE1 and PGE2 of the
E series (130, 131). Despite the similarity with CT, in terms
of receptor binding and enzymatic activity, LT1-producing
E. coli induce mild disease compared to CT. Like CT, LT1
may also alter the activity of the enteric nervous system.
Serotonin (5-HT) and VIP are released into the lumen of
the small bowel in vivo after treatment with CT (132).
There is some evidence that CT (thus probably LT1) can
bind and activate VIP-containing neurons in the intestinal
sub-mucosa of guinea pigs (133).

LT2 has been isolated essentially from animals. It shares
only 55%identity with the A subunit of CT but essentially
no homology with the B subunit of CT (134). LT2 can be
divided into two subgroups, LT2a and LT2b, on the basis
of their amino acid sequences. The LT2 subunit B does not
bind to GM1 gangliosides; LT2a preferentially binds to
GD1b gangliosides and LT2b to GD1a gangliosides.
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E. COLI HEAT STABLE ENTEROTOXINS (STs)

This family of enterotoxins encompasses 2 main members:
STa and STb. STa is a cystein-rich peptide of 18 amino-
acids (aa), encoded by the transposon-associated estA gene
located on a plasmid (135). STa residues from 5 to 17
allow full binding to its receptor and enterotoxic activities.
STa binds to a receptor, the guanylate cyclase (GC) (a 120
kDa protein), localised in the intestinal brush border mem-
brane of the entire digestive tract. GC decreases from the
small intestine to the rectum and is present in large
amount in young children, rapidly dropping with increas-
ing age (136). This may explain why STa-induced di-
arrhoea is more severe in young children than in adults.
STa binding activates GC by changing GC conformation,
thus inhibiting the kinase activity domain of GC. In fact,
genetic deletion of the kinase domain provokes the perma-
nent activation of GC and its unresponsiveness to STa.
Activation of GC by STa increases the level of intracellu-
lar cyclic GMP which in turn stimulates chloride secretion.
This results in the inhibition of NaCl absorption. Activa-
tion of chloride secretion may occur via activation of a
cGMP-dependent kinase present in the apical membrane
of enterocytes which ultimately activates the chloride chan-
nel CFTR. It has been reported that the secretory response
to STa involves F-actin rearrangements only at the basal
pole of T84 cells (137). STb, a 71 amino acid peptide, is
plasmid encoded (estB) (138). The receptor for STb is still
unknown. STb does not activate the guanylate cyclase and,
consistent with the infrequent occurrence in human disease
of E. coli strains expressing STb, seems to have no effect
on human small intestine. In mouse intestine STb induces
histological changes consisting of a loss of villus epithelial
cells. No secretion of chloride has been detected. By acting
via a pertussis toxin-sensitive heterotrimeric G-protein,
STb stimulates a dose dependent increase in intracellular
calcium (126).

E. COLI CYTOTOXIC NECROTISING FACTORS
(CNFs)

CNF1, discovered by Caprioli and colleagues (139) as a
cell-associated product of E. coli strains isolated from
young children with diarrhoea (140), causes necrosis of
rabbit skin and multinucleation of different types of tissue
cultured cells (141–150). A second type of CNF (CNF2)
was then found in extracts of certain E. coli strains isolated
from calves with enteritis (151). CNF1 and CNF2 are
immunologically related (152, 153) and similar in apparent
molecular weight (110–115 kDa). CNF1 which is also
produced by E. coli strains isolated from animals (154,
155), is chromosomally encoded in a 620 Kb pathogenicity
island (PAI II) containing (156) the h-hemolysin and a
�mbrial gene (prs). CNF2 gene is located on a large
transmissible F-like plasmid (Vir). CNF1 and CNF2 are
encoded by a single structural gene. Analysis of the de-

duced amino acid sequences of CNF1 and CNF2 shows
that the two toxins are quite similar (85% identical and
99%conserved residues over 1014 amino acids). Addition-
ally, CNFs are predicted to have a relatively hydrophobic
transmembrane domains overlapping partially two pre-
dicted helices and no classical signal peptide sequence is
found in 50 N-terminal residues. At least for CNF1, it has
been reported that the C-terminal part (30 kDa) is respon-
sible for the catalytic activity of the toxin while the N-ter-
minal part comprises the portion involved in cell receptor
binding (157, 158). At the level of mRNA, the region
corresponding to the �rst 48 codons of cnf1 is involved in
the translational regulation of CNF1 synthesis (158).
CNFs share regions of homologous amino acids with two
other bacterial toxins: Pasteurella multocida toxin (PMT)
and the dermonecrotic toxin of Bordetella pertussis (DNT).
CNFs, PMT and DNT form the new family of dermone-
crotic toxins (157).

CNF1 is able to provoke a remarkable reorganisation of
F-actin structures in cultured cells (159, 160). This toxin
induces intense formation of stress �bers, focal contacts,
membrane folding and retraction �bers. Reorganisation of
the F-actin cytoskeleton by CNF1 results in the inability
of the cells to undergo cytokinesis, giving rise to extremely
�at large multinucleated cells. CNF1 induces actin reor-
ganisation (161) by stimulating permanently the Rho
protein. The �rst hint for this activity was observed as
follows: when the cytosol from HEp-2 cells previously
incubated with CNF1 was ADP-ribosylated with exoen-
zyme C3 it was observed that the Rho protein displayed a
shift of molecular weight to a slightly higher value. This
result indicated a possible post-translational modi�cation
of the GTP- binding protein in CNF1 treated cells (162)
which occurred directly in vitro without the need of cellular
co-factors. Microsequencing of CNF1-modi�ed Rho
showed a single modi�cation in the CNF1-treated GTPase
compared to wild type, Rho glutamine 63 changing into a
glutamic acid (163). Therefore, CNF1 exerts a speci�c
deamidase activity on Rho glutamine 63 (164). The equiv-
alent amino acid of Rho glutamine 63 in p21 Ras is
glutamine 61. An identical activity for CNF1 on Rho has
been reported using mass spectrometry (165). Rho glu-
tamine 63 is known to be an important residue for the
intrinsic and RhoGAP mediated GTPase of Rho (166).
Mutated Rho on glutamine 63 into glutamic acid
(RhoQ63E) exhibits a mobility shift, upon electrophoresis,
identical to CNF1-treated Rho. CNF1-treated Rho and
RhoQ63E nucleotide dissociation rate is increased by 2
orders of magnitude but the RhoGAP activity is totally
impaired on both CNF1-treated Rho and RhoQ63E.
Thus, CNF1 allows Rho to be permanently bound to
GTP, thereby enhancing the activity on Rho effectors. The
Rho family of small GTPases encompasses three sub-
families that are differently involved in the regulation of
the actin cytoskeleton. The Rho subfamily induces stress
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�bre assembly, Rac the ruf�ing activity and Cdc42 the
�lopodia extension (7). In addition to deamidation of the
glutamine 63 in Rho (163, 165), the other members of the
Rho family, Rac and Cdc42, are also activated by CNF1
in glutamine 61 (167). However, although CNF1 may
trigger all the Rho proteins, the activation of Cdc42 and
Rac does transiently occur at high concentrations of
CNF1 (167), Rho being the preferential target of the toxin.
CNF1 deamidase activity is borne by the 30 kDa carboxy-
terminus end of the molecule, whereas the cell binding
moiety of CNF1 is localised in the amino-terminus of the
molecule (157, 158). By covalently activating the Rho
proteins, CNF1 induces a number of actin-dependent phe-
nomena in epithelial cells, such as contractility, cell spread-
ing and the assembly of focal adhesion plaques (168, 169)
as well as the formation of actin stress �bres and an
intense and generalised ruf�ing activity (159). CNF1-in-
duced ruf�ing is reminiscent of the ruf�ing elicited by
invasive bacteria and is consistent with the ability of
epithelial cells to exert macropinocytosis (170).

Treatment of HEp-2 cells with CNF1, for increasing
lengths of time (from 4 to 72 h), induces an augmented
ability of the cells to ingest latex beads (170).
Macropinocytosis is totally blocked when CNF1 treated
cells are incubated with the F-actin disrupting drug cy-
tochalasin B, demonstrating clearly that the process is
F-actin dependent. In addition, non-invasive bacteria such
as Listeria innocua are found (170) to be as invasive as L.
monocytogenes when incubated with HEp-2 cells pre-
treated with CNF1. Only L. innocua harboring a plasmid
containing the listeriolysin gene was found to multiply in
the cytoplasm of HEp-2 cells treated with CNF1, indicat-
ing that macropinocytosis of bacteria was associated with
formation of vacuoles.

Incubation of intestinal T84 cells with CNF1 does not
in�uence transepithelial resistance, suggesting that the bar-
rier function and surface polarity are not affected by the
toxin (171). Incubation of T84 cells with CNF1 induces
F-actin accumulation and impaired PMNs transepithelial
migration (in either the luminal-to-basolateral or the baso-
lateral-to-luminal directions). Thus CNF1-activated Rho,
by reorganising F-actin structures in intestinal epithelial
cells, induces a decreased ability of PMNs to cross the
epithelial barrier. Furthermore, CNF1 effaces intestinal
cells microvilli allowing a better bacterial adherence and
probably also an improved growth of microbes by impair-
ing absorption of nutrients by microvilli.

Strictly correlated with the above mentioned ability to
induce an aspeci�c phagocytic-like behaviour in epithelial
cells is the capability of CNF1 to protect cells against
apoptosis (172, 173). The signi�cant inverse correlation
between the two phenomena suggests that they might be
part of a pathogenic mechanism used by bacteria. In the
mechanism used by CNF1 to hinder apoptosis, proteins of
the Bcl-2 family as well as the mitochondrial homeostasis

play a pivotal role. In fact, CNF1 is capable of reducing
the mitochondrial membrane depolarisation induced by
UVB and modulating the intracellular expression of some
Bcl-2 related proteins. In particular, the amount of death
antagonists, such as Bcl-2 and Bcl-XL, increases following
exposure to CNF1 while the amount of the death agonist
Bax remains substantially unchanged (174). Bcl-2 family
proteins as well as mitochondria play an essential role in
apoptosis and they are linked to each other. By modulat-
ing the expression of proteins of Bcl-2 family (probably via
Rho activation), CNF1 may operate on one of the main
regulatory systems which drive a cell towards death or
survival. Very recently, evidence that Rho-dependent cell
spreading activated by CNF1 is also involved in the pro-
tection against apoptosis in epithelial cells has been re-
ported (5). In addition to the impairment of nuclear
fragmentation, CNF1 protects cells from the radiation-in-
duced rounding up and detachment and improves the
ability of cells to adhere to each other and to the extracel-
lular matrix by modulating the expression of proteins
related to cell adhesion. In particular, the expression of
integrins such as a5, a6 and av, as well as of some het-
erotypic and homotypic adhesion-related proteins such as
the Focal Adhesion Kinase, E-cadherin, a and b catenins,
is signi�cantly increased in cells exposed to CNF1. Thus,
the toxin-induced improvement of cell adhesion and pro-
motion of Rho-dependent cell spreading are mechanisms
clearly involved in hindering apoptosis in epithelial cells.
This is in accordance with the recent opinion that cell
spreading favours cell survival (175). A toxin inducing cell
spreading without activating Rho, such as Cytochalasin B,
is in fact ineffective in favouring cell survival. Thus, by
inducing both phagocytosis and protection against apopto-
sis CNF1 might allow bacteria to invade epithelial cells
and to prolong their survival to permit copious bacterial
multiplication within them. Also, protection against apop-
tosis by CNF1 will allow cells to escape from their elimina-
tion by macrophages.

E. COLI CYTOLETHAL DISTENDING TOXINS
(CDTs)

Cytolethal distending toxins belong to an emerging toxin
family whose members have been found in several unre-
lated bacterial species including: E. coli, Shigella dysente-
riae, Campylobacter sp. and Haemophilus ducreyi. Three
adjacent or slightly overlapping chromosomal genes (cdtA,
cdtB and cdtC) encode A (27 kDa), B (29 kDa) and C (20
kDa) subunits of CDT (176). The biological activity of
CDT on cultured cells consists of the induction of giant
elongated cells (in CHO cells) and an inhibition of cell
division at the G2:M stage of the cell cycle. This mitotic
block is irreversibleand induces cell death after 3 to 5 days
of toxin exposure. Recently, it has been reported that
CDT-treated cells accumulate in late G2, because of the
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lack of cdc2 protein kinase dephosphorylation (177). CDT
might therefore interfere with a cell transduction cascade,
initiated in the S phase (during DNA replication), called
DNA damage checkpoint. However, the nature of the
CDT subunit inducing this effect and its exact molecular
intracellular activity is still unknown (for a review see 178).

STAPHYLOCOCCUS AUREUS ENTEROTOXINS
AND CYTOLYSINS

Staphylococcus aureus enterotoxins

S. aureus is a major cause of food-borne illness (179) due
to the ingestion of one or more types of pre-formed
enterotoxins. Furthermore, staphylococcal enterotoxins
have been implicated in the pathogenesis of other diseases
such as enteritis, septicaemia, skin infections and a few
cases of toxic shock (180). Among the different S. aureus
enterotoxins (SEs) described so far, �ve main types (A, B,
C, D and E) have been serologically identi�ed since the
early 1970s. Thence, on the basis of some differences
detected in minor epitopes, the serotype C has been further
subdivided into subtypes C1, C2 and C3 and the total
number of enterotoxins increased to seven: SEA, SEB,
SEC1, SEC2, SEC3, SED, SEE (181). All these toxins are
small monomeric proteins with molecular weights ranging
from 22 to 29 kDa, generally resistant to heat, acids and
proteases.

On the basis of structural homology ranging from 30 to
about 90%, two different groups (181–183) are recognised:
i) enterotoxins A and E exhibiting higher than 90%homol-
ogy constitute together with toxin D a strictly related
group; ii) a second group is represented by enterotoxin B
which shares a higher homology with toxins C1, C2 and
C3.

As far as the biological activity is concerned, their
binding to enterocytes has been demonstrated (184) even
though no damage at tissue level has yet been revealed.
This apparent contradiction found a satisfactory explana-
tion in the demonstration by Buxser and coworkers (185)
that SEA bound to murine lymphocytes. In the early 1990s
S. aureus enterotoxins were de�nitively recognised as su-
perantigens (186) able to massively (5–25%) stimulate T
cell proliferation (187); in fact, the only detectable tissue
effect in the small intestine of patients is represented by the
appearance of an abundant in�ltration of lymphocytes.
Furthermore, this strong polyclonal stimulation of cellular
immune response by enterotoxins should be responsible
for the observed massive release of lymphokines, including
IL-2, IL-4, IFN and TNF. Staphylococcal enterotoxins are
the most potent T-cell activators recognised so far, being
able to act at very low concentrations (10¼13–10¼16 M)
both in stimulation of lymphocytes and cytokine produc-
tion (183). Studies of the effect of staphylococcal entero-
toxins SEA, SEB and SEC on rat, dog and �ounder
intestine seem to indicate these toxins as inhibitors of

absorption and:or stimulators of intestinal secretion (188–
190).

STAPHYLOCOCCUS AUREUS DELTA-TOXIN

Almost all S. aureus clinical isolates produce a small
protein toxin with an estimated molecular weight of about
3 kDa, named delta-toxin. The amphipatic nature of this
exotoxin, belonging to staphylococcal cytolysins, is the
main support for the hypothesis that an association of six
molecules of delta toxin could bring about a transmem-
brane pore lined by the hydrophilic faces of the monomers
(191).

Although the speci�c contribution of this toxin to the
pathogenesis of human diseases is still poorly understood,
there are interesting data in the literature (192) indicating
a possible role in intestinal disease. In fact, a rapid alter-
ation in intestinal transport has been demonstrated in
guinea pig ileum after toxin exposure (193, 194), a high
concentration of toxin being able to modify the normal
histology of the gut epithelium (195).

CONCLUSIONS

In conclusion, the overall data currently available on the
mode of action of several protein toxins produced by
common enteric bacteria could provide in our opinion a
promising tool to explain how these toxins, acting sepa-
rately or in a synergistical way, might severely impair both
the actin cytoskeleton and the intercellular tight junctions
as well as alter intestinal permeability and damage or even
destroy (46, 196) enterocytes and microvilli.
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