
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tapx20

Advances in Physics: X

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tapx20

Modeling of plasmonic properties of
nanostructures for next generation solar cells and
beyond

Sergei Manzhos, Giacomo Giorgi, Johann Lüder & Manabu Ihara

To cite this article: Sergei Manzhos, Giacomo Giorgi, Johann Lüder & Manabu Ihara (2021)
Modeling of plasmonic properties of nanostructures for next generation solar cells and beyond,
Advances in Physics: X, 6:1, 1908848, DOI: 10.1080/23746149.2021.1908848

To link to this article:  https://doi.org/10.1080/23746149.2021.1908848

© 2021 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 06 Aug 2021.

Submit your article to this journal 

Article views: 11

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tapx20
https://www.tandfonline.com/loi/tapx20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/23746149.2021.1908848
https://doi.org/10.1080/23746149.2021.1908848
https://www.tandfonline.com/action/authorSubmission?journalCode=tapx20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tapx20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/23746149.2021.1908848
https://www.tandfonline.com/doi/mlt/10.1080/23746149.2021.1908848
http://crossmark.crossref.org/dialog/?doi=10.1080/23746149.2021.1908848&domain=pdf&date_stamp=2021-08-06
http://crossmark.crossref.org/dialog/?doi=10.1080/23746149.2021.1908848&domain=pdf&date_stamp=2021-08-06


REVIEW

Modeling of plasmonic properties of nanostructures for 
next generation solar cells and beyond
Sergei Manzhos a, Giacomo Giorgi b,c, Johann Lüder d,e 

and Manabu Ihara f

aCentre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique - 
Université du Québec, Quebec, Canada; bDepartment of Civil & Environmental Engineering, (DICA), 
The University of Perugia, Perugia, Italy; cCNR-SCITEC, Perugia, Italy; dDepartment of Materials and 
Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, Taiwan; eCenter of Crystal 
Research, National Sun Yat-sen University, Kaohsiung, Taiwan; fSchool of Materials and Chemical 
Technology, Tokyo Institute of Technology, Meguro-ku, Japan

ABSTRACT
Plasmonic particles and nanostructures are widely used in 
photovoltaic and photonics. Surface plasmons were found to 
enhance different types of solar cells including plasmonic 
DSSCs, plasmonic solid semiconductor solar cells, plasmonic 
organic solar cells, and plasmonic perovskite solar cell. Size, 
composition, and shape of plasmonic nanoparticles as well as 
nanometer-distance control between particles are key design 
factors of plasmonic nanostructures. Modeling is rapidly 
gaining in importance for mechanistic understanding and 
rational design of plasmonic nanostructures. We review the 
modeling approaches used to model plasmon resonance 
features of nanostructures, from classical approaches that 
can routinely handle most particle sizes used in solar cells 
to approaches beyond classical electrodynamics such as ab 
initio approaches based on time-dependent density func
tional theory (TD-DFT). We highlight recently emerging 
approaches which have the potential to significantly 
enhance modeling capabilities in the coming years, in parti
cular, by allowing atomistic (ab initio) modeling at realistic 
length scales, i.e. of particle sizes beyond 10 nm which are of 
most interest to plasmonic solar cells but remain problematic 
with traditional DFT-based techniques, such as density func
tional tight binding (DFTB) based approaches, time-depen
dent orbital-free DFT, and machine learning-based 
approaches, as well as many-body perturbation theory 
which is expected to gain usage with advances in computing 
power.
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Introduction

When metal nanoparticles (NPs), such as silver (Ag) and gold (Au), as well 
as some doped semiconductor nanoparticles are irradiated by light, their 
localized surface plasmons, i.e. collective oscillations of charge density, are 
excited, thus causing light scattering and light absorption. The classical 
theory established early on that for metal particles with a diameter below 
about 40 nm, the energy absorbed is used for the excitation of surface 
plasmons (SPs), which is a predominant process [1,2]. On the other hand, 
for particles with a diameter above 100 nm, the scattering effects dominate. 
Particles of such large sizes are therefore often used for light management 
e.g. in dye-sensitized solar cells (DSSC) and other types of solar cells. Both 
absorption and scattering are present in NPs of intermediate sizes. The 
effects of interest to us here are produced by particles of sizes up to about 
100 nm, which, as we will see below, are already too large for direct atomistic 
(ab initio) modeling, even though the smallest sized NPs used in applica
tions (on the order of a nm) can be directly modeled with the mainstream ab 
initio methods and tools. The number and wavelength of surface plasmon 
resonances (SPRs) determines the optical spectrum peaks and their intensity 
and width. The peaks can be tuned by modifying the size, morphology, 
chemical composition, and other properties.

In recent years, plasmonic phenomena found increasing use in photo
voltaics (PV) and other applications. In 1997, the concept of a DSSC that 
utilizes localized surface plasmons was introduced [3]. In this DSSC, near- 
field light was used to enhance both the photoabsorption of Ru-dye and the 
generation of photoelectrons. By introducing AgNPs into a film of N3 dye, 
the absorbance of the dye was increased by a factor of about 150. Absorption 
enhancement has also been reported when the composite films are formed 
with AuNPs and black dye (BD). A key factor for enhancing the 
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photoabsorption of a plasmonic DSSC with such a composite film is an 
overlap in the photoabsorption spectra between the metal NPs and the dye 
[4]. The NP spectrum, specifically the plasmonic resonance peak, is thus a 
key design criterion. Already first DSSCs with Ag NPs modified with poly
acrylate-based comb-shaped block copolymer showed improved photoelec
tric conversion efficiency (PCE) of 2.5%, compared with about 1.5% for a 
DSSC without Ag NPs[5]. In the following years, plasmonic solar cells have 
been extensively researched and efficiency improvements shown in different 
types of cells beyond DSSC were reported [3–18]: plasmonic solid semi
conductor solar cells [19–38], plasmonic organic solar cells [39–45], plas
monic perovskite solar cells [46–53] and other types of plasmonic solar cells 
[54–59] based on the features of their localized surface plasmons and surface 
plasmon polaritons [60].

Plasmons are the collective oscillation of free electrons in a material. As 
shown in Figure 1, plasmons can be roughly classified into surface plasmons 
and plasmons in bulk. Surface plasmons have been extensively researched, 
including the basic theory of plasmons and the various approaches to 
applications such as surface-enhanced Raman scattering, optical near-field 
optical microscopy, and nano-manufacturing [61,62]. Surface plasmons can 
be classified further into surface plasmon polaritons (SPPs) and localized 
surface plasmons (LSPs), as schematically shown in Figures 2 and Figure 3, 
respectively.

A plasmon is a charge density wave, which is a type of longitudinal wave. 
In general, when a wave is excited by another wave, both waves must match 
in both frequency and wave number vector. Because light such as sunlight is 
a type of transverse electromagnetic wave, the longitudinal wave of a 
plasmon in bulk usually cannot be excited by using the transverse wave of 
light due to the dispersion relations.

However, on a metal surface in the Kretschmann configuration in which 
a prism is used, SPPs can be excited by such light due to the different 
boundary conditions at the surface from those at the bulk [63]. This con
figuration enables a special dispersion relation of the light. The excitation of 

Figure 1. Classification of plasmons.
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SPP produces a transverse magnetic wave (TM wave), which can propagate 
along the surface of a metal. A feature of a TM wave is that its oscillation is 
localized near the surface and its amplitude is attenuated exponentially with 
increasing distance from the surface. Therefore, the strong electric field 
called an evanescent wave, sometimes a hundred times stronger than that 
of irradiated light, can be generated near the surface of metals by the 
resonant excitation of SPPs.

In contrast, LSPs can be excited by light such as sunlight without a 
special configuration such as the Kretschmann configuration. Compared 
with SPPs, this is an advantage when LSPs are applied to solar cells. 

Figure 3. Concept of localized surface plasmon.

Figure 2. Concept of surface plasmon polariton (SPP) .

4 S. MANZHOS ET AL.



LSPs are excited in metal NPs whose diameter, usually ranging from 
several nanometers to several tens of nanometers, is much smaller than 
the wavelength of irradiating light. In that case, NPs are effectively 
exposed to irradiation of a longitudinal wave due to negligibly small 
effect of the retardation originating from the finite velocity of light, 
although a transverse wave of sunlight actually irradiates NPs. 
Therefore, oscillations of an electric dipole can be induced at metal 
NPs. These oscillations produce a strong electric field at the surface of 
the metal NPs, called optical near-field whose electric field, which is 
sometimes a hundred times stronger than that of the irradiating light. 
The optical near-field is not propagated, but is localized within an area 
about an NP diameter from the surface of metal NP.

Two types of applications of surface plasmons to photoelectric conver
sion have been reported. The first application uses surface plasmons to 
enhance the photoabsorption of original photoabsorbing materials of solar 
cells by the two effects described below. This type of solar cell is usually 
called a plasmonic solar cell. In contrast, the second application is that the 
photoelectric conversion does not have original photoabsorbing materials 
without metal NPs, but collects photocarriers directly from metal NPs using 
plasmon resonance absorption [64,65].

There are two main LSP effects that are expected to contribute to the 
improvement in PCE of plasmonic solar cells.

(1) Enhancement effect by the electric field: improvement in photocur
rent density J by enhancement of photocarrier generation rate using 
the strong electric field of optical near-field.

(2) Effect of light scattering: improvement in J by anti-reflection and/or 
by increasing the optical length including light trapping.

Both the electric field enhancement effect and the light scattering effect can 
be revealed by the initial light absorption of metal NPs and by light scatter
ing at metal NPs, respectively. As mentioned in the previous section, 
because the light absorption/scattering ratio depends on factors such as 
the size, shape, and configuration of NPs, the above two effects can be 
controlled mainly by these factors when NPs are inserted into solar cells.

There are also two collateral LSP effects that can be expected:

(1) Improvement of the open circuit voltage VOC
(2) Improvement of the fill factor, FF.

By using the electric field enhancement and light scattering effects, the 
minimum thickness of the photoabsorbing layer to absorb sunlight com
pletely can be reduced. The open circuit voltage (VOC) in Si solar cells can be 
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improved using these effects by reducing the total thickness of solar cells 
[58]. Furthermore, the FF related to the internal serial resistance of solar 
cells can also increase by reducing the total thickness of the solar cells using 
effects 1 and 2 for LSPs.

As mentioned above, light absorption that induces a strong electric field 
and/or the light scattering by LSPs at metal NPs can be observed by the 
irradiation of light with certain wavelengths. The ratio of absorption to 
scattering depends on the size of the metal NPs, generally increasing with 
decreasing size. This size-dependence of the absorption/scattering ratio has 
been reported for Ag NPs in Ref. [66]. In accordance with the theory, the 
absorption of Ag NPs whose diameter was smaller than about 50 nm was 
dominant over the extinction of light. The optical properties of NPs and the 
optical near-field near NPs are influenced by the following factors: 1) 
dielectric function of the NPs, 2) wavelength of incident light, 3) size and 
shape of metal NPs, 4) dielectric constant of the surrounding medium, and 
5) configuration of metal NPs. Therefore, an appropriately chosen array of 
metal NPs can induce an interaction between LSPs and thus generate the so- 
called ‘hot spots’ – areas of greatly enhanced electromagnetic field compared 
with field strengths induced by single metal NP.

Rational design of plasmonic nanostructures therefore requires know
ing the optical properties as a function of composition and morphology. 
The ability to compute optical properties is therefore critical for rational 
design. Ideally, one would like to be able to compute not only the 
optical spectrum for a given composition and geometry but also to 
design nanostructures that possess desired optical properties, i.e. to 
solve the inverse design problem. Modeling is rapidly gaining in impor
tance for mechanistic understanding and rational design of plasmonic 
nanostructures [67–70], although atomistic electronic structure methods 
are still relatively less used. The difficulties in the modeling of plasmo
nic structures stem, in particular, from the length scale. Experimentally 
used NPs range from a few nm for hundreds of nm; in particular, NPs 
of sizes on the order of 1–10 nm are quite common. At this scale, the 
classic theory [1] already can fail while quantum mechanics based, ab 
initio approaches are quite expensive to use. As we will see below, time- 
dependent (TD) (Kohn-Sham) DFT is the most widely used ab initio 
approach to compute the plasmonic resonance peak. However, even 
ground state Kohn-Sham DFT [71,72] is very costly already for NPs 
of a few nm, which already imply models with hundreds of atoms. To 
model directly NPs of dozens of nm, models with many thousands of 
atoms are required which is impractical. Additional complications arise 
when computing spectra: linear response (Casida) TD-DFT [73,74] 
which is widely used in smaller-scale applications, is best suited for 
systems with a bandgap (non-metallic) and also becomes impractical 
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even with a few nm due to the rapid explosion of the number of 
excitations that have to be included to compute the spectrum through 
the plasmonic peak [75,76]. For this reason, real-time TD-DFT [77] has 
found wider use in plasmonics but still suffers from the high cost of 
Kohn-Sham DFT. The scale also poses serious cost hurdles for the 
application of approaches including many body effects [78–81]. It is 
therefore important to consider novel avenues for atomistic modeling 
which are suited for the modeling of plasmonics.

In this review, we survey the computational modeling approaches 
used to model plasmon resonance features. We describe the classical 
approaches which are still widely used and can handle most particle 
sizes of interest to photovoltaics and, as we will show, based on com
parisons with ab initio calculations, can remain valid even for relatively 
small NPs, but we place particular focus on approaches beyond classical 
electrodynamics such as ab initio approaches based on TD-DFT and 
related methods. While some more well-known approaches such as 
classical and TD-DFT were previously reviewed [82–84], the bulk of 
DFT-based literature deals with system sizes limited to a few nm, which 
is on the lower part of the range of particle sizes used in PV. We 
therefore specifically highlight emerging approaches which have the 
potential to significantly enhance modeling capabilities in the coming 
years, in particular, by allowing modeling at realistic length scales (of 
particles beyond 10 nm which are of most interest to plasmonic solar 
cells but remain problematic with Kohn-Sham DFT), such as time- 
dependent orbital-free DFT [85,86], linear response and real-time 
time-dependent density functional tight binding [87–90] and machine 
learning-based approaches, and by allowing modeling beyond the sin
gle-particle based (DFT) picture with many-body perturbation theory 
[78–81]. The latter approach, while being computationally expensive, is 
also finding increasing use in the modeling of plasmonics as access to 
computing power expands, and is therefore explicitly included in this 
review.

When using the terms ‘nanoparticles’, ‘nanoclusters’, ‘nanorods’, we 
usually follow the word choices of the original works. What should be called 
a nanoparticle or rather a cluster is somewhat debatable; especially as many 
DFT models use relatively small structures on the order of 1 nm, calling 
them clusters might be more appropriate. However, besides following the 
language of the reviewed works, we note that in many DFT works, systems 
with hundreds to thousands of atoms were used whose core preserves 
(which is not the case of molecular clusters) the structure (such as the 
crystal structure) of the respective bulk phase. This, and the fact that they 
are nanosized makes us adopt these terms.
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Modeling of plasmonic properties

Classical approaches

When metal NPs and nanostructures are large enough, their electronic 
structure is metallic, i.e. a continuous band of electronic states across the 
Fermi energy is formed, the band structure, and it does not allow to 
distinguish between discretized states. Under this condition of bulk-like 
properties, their optical response can be modeled with classical electrody
namics methods, because oscillations of electron density behave classically 
at large length scales (which is of course in agreement with the assumption 
of the Drude model).

Classically, in the approximation of a spherical nanoparticle, the localized 
surface plasmonic response (LSPR) frequency of the main absorption peak 
in metals and sufficiently n-doped semiconductors NP (i.e. when they 
behave as metallic) with spherical shape can be estimated with the classical 
Drude model [91,92] as 

ωLSPR ¼
ω2

p

�1 þ 2�

 !1
2

(2:1:1) 

where �1 is the high-frequency dielectric constant and � the dielectric 
function of the environment. This relation can be derived from the plasmon 
resonance condition, the permittivity of bulk material including the 
response of inner electrons and neglecting the shift from the imaginary 
axis. The LSPR frequency assumes a static electric field approximation with 
particle sizes much smaller than the wavelengths (i.e., the dipole approx
imation). The plasma frequency ωp of a volume plasmon [93] is given by 

ωp ¼

ffiffiffiffiffiffiffiffiffiffi
4πne

meff
e

s

(2:1:2) 

with ne the free electron density and meff
e the electron’s effective mass (we 

use atomic units). There is no general solution for particles of arbitrary sizes 
using the original Drude model. Note that size-dependence can be included 
in a classical description of surface plasmons through consideration of 
restoring forces, i.e., a damping term depending on the size of the NP in 
the equation of motion of electrons, that are often neglected in other the 
formal derivation [94]. The latter correction is particularly important for 
small NPs.

Common numerical approaches to compute optical response of plasmo
nic materials with relatively large geometric features, generally more than a 
few 100 nm, include, for instance, the finite element method (FEM) and the 
finite difference time domain (FDTD) approach [95–97]. In both, the 
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Maxwell equations of macroscopic electromagnetism are solved for a spe
cific geometry and the obtainable dielectric constant within the Drude 
model, which provides an accurate description for free electron metals, 
determines the optical absorption for the near- and far-field. FDTD and 
FEM are only two examples of established numerical methods at this length 
scale. For a comprehensive review for classical methods and their applica
tions, the reader is referred to Refs. [98,99]. Already with this rather simple 
approach, many plasmonic phenomena can be modeled, and it proved itself 
as a powerful technique capable of generating significant insight. For 
instance, Shen et al. [47] used FDTD to calculate the power conversion 
efficiency enhancement in Au-coated MAPbI3 by plasmonic absorption 
enhancement [100]. Lee et at. also used FDTD to simulate the effect of 
nanoprisms and nanospheres (sizes of several 100 nm) of Au on the flux 
amplification of hot electrons in Schottky nanodiodes [101].

It was, however, early realized that the classical model and methods fail to 
describe intricate plasmonic features of smaller structures including NPs. 
The classic model fails to describe plasmons in geometries of small dimen
sions due to electron spill-out, nonlocal response and single-particle transi
tions [100,102–107]. The latter can be caused by discrete electronic states 
which are a result of finite sizes of NPs. Besides, the Drude theory is a single- 
pole model. Then, extensions of the theory were developed. For instance, 
McMahon demonstrated the importance of nonlocal Drude theory, which is 
a hydrodynamic model in real space represented through an extension of 
the dielectric function in the classical continuum limit allowing for conduc
tion band excitations of electrons [108,109]. Therein, the corresponding 
optical response is defined with an additional spatially dispersive permittiv
ity term. The nonlocality in the hydrodynamic Drude model (HDM) allows 
separating the longitudinal and transversal dielectric functions [110]. 
Because it is an extension of the local Drude model, HDM can also be 
implemented in existing FDTD codes [111,112]. Then, the nonlocal 
response of, e.g., systems with confined electrons gas in much smaller 
systems or those with more complex geometries can be simulated more 
accurately [109]. McMahon applied the method on nanowires with different 
diameters. Comparing classical calculations with local and nonlocal char
acter for nanostructures with sizes up to 40 nm, they found significant 
differences in spectral shape for small NPs (5 nm) and blue shift with 
reduced intensity for larger ones. Fernandez-Dominguez et al. studied the 
plasmonic properties of two touching nanowires with a nonlocal classical 
theory employing the transformation-optics approach [113] and detected 
significant plasmonic field enhancements. Later, two separated nanowires 
forming a junction were studied also with a nonlocal classical theory [114]. 
Also for this case, plasmonic field enhancement was observed. It should be 
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noted that charge transfer effects due to tunneling are not considered in the 
theory.

Further developments of classical methods aimed to reduce computa
tional complexity and demands or try to include missing effects, as the 
above-mentioned tunneling effect, to increase the accuracy and hence 
predictive power of the method, besides revealing the nature of plas
monic effects. Luo et al. [104] suggested a local analogue model that 
maps the nonlocal plasmon properties in a metal to those of a compo
site material consisting of a thin dielectric shell and a metal core with 
the aim to obtain the same optical activity in the composite materials 
using a local theory as in the pure metal employing a nonlocal descrip
tion. This allows describing the optical responses of angstrom-sized 
features with classical electrodynamics[104]. Because nonlocal features 
are rendered to a local model of the composite, rather simple calcula
tions can be carried out using a standard FDTD solver for Maxwell 
equations. As mentioned above, tunneling effects between nanostruc
tures with close vicinity (of 1 nm or less, a regime of interest for 
quantum plasmonics) are not considered in a classical approach. 
Esteban et al. [115] incorporated these effects via an fictitious effective 
medium that fills the vacuum of the junction and mimics the effect of 
tunneling, which motivated various studies to compare this and correc
tions/improvements to the classical Drude model [105,116,117].

Often, classical approaches using analytic models prevail in their compu
tational efficiency. Within their validity, analytic models can obtain striking 
agreement to experimental results. Restrictions apply regarding the details 
of the nanoparticle such as shape, size, distributions in the host materials, 
etc. (as consequence of the made approximations). One frequently 
employed ansatz to compute the plasmonic properties, in particular the 
absorption coefficient, is the effective medium theory (EMT)[118]. In the 
EMT, the macroscopic properties of a composite material are modeled 
under certain assumptions. In the simplest form, the EMT sets the optical 
response of a composite material (that is a host medium with embedded 
nanoparticles) to be equal to the response of a homogeneous material with 
the same dielectric polarization in the visible region. This crude formula
tion, however, does not consider the particle size and details of the intrinsic 
optical response of the nanoparticle (states, scattering, etc.).

For dilute nanoparticle distributions, where the particles have a low 
fractional volume (or small particle sizes) and interactions between nano
particles can be neglected, the Maxwell-Garnett (MG) EMT [119] describes 
the effective complex dielectric function of a composite with embedded 
spherical nanoparticles. The dipole approximation restricts particle sizes 
to be much smaller than the wavelength of the radiation, often only a few 
nanometers. However, details on the electronic structure, e.g. widening 
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band gaps with decreasing particle size, are not considered. Further exten
sions of the MGEMT incorporate confinement effect through use of Mie 
theory [1]. Another extension of the EMT was introduced by Hinsen and 
Felderhof based on inclusion of higher-order multipoles in the representa
tion of the effective dielectric function, Clausius-Mossotti relation [120]. 
Recently, Arefinia demonstrated the capabilities of classical approaches 
using these analytic models to reproduce experimental absorption coeffi
cient of Au and Ag nanoparticles in hybrid composites, that are mixtures of 
organic and inorganic materials where the latter are the metal clusters [121]. 
However, the limitation of nanoparticle sizes remains, although remarkable 
agreement between experimental and simulations of metallic nanoparticles 
(Au, Ag with average diameters of about 20 to 40 nm with spherical shapes) 
were obtained.

Already the classical equations (2.1.1–2) imply possibility of control of 
the plasmon peak by controlling the electron concentration (which can be 
achieved by static doping or injection) as well as the effective mass (by 
choosing a material with a corresponding conduction band shape) but, 
being derived in the classical ansatz, ignore the effects of bandstructure, 
the inhomogeneity of the electron density and the nonlocality of the elec
tron density response to the field as well charge transfer phenomena 
(including tunneling between NPs). They are therefore suited for relatively 
large nanoparticles with sizes larger than 10–100 nm, while for smaller 
nanoparticles there is need to explicitly account for discretization of energy 
levels and confinement effects. It has, however, been pointed out that for 
some types of systems the classical regime can hold well down to a couple of 
nm: Sinha-Roy et al. [122] concluded, by comparing classical and real-time 
TD-DFT calculations on Au and Ag rod between 19 and 145 atoms of 
different lengths and aspect ratios that the classical plasmonic frequencies 
are in surprisingly good agreement with those predicted by ab initio theory 
for the rods and quasi-one-dimensional chains, as long as collective surface- 
plasmon resonances lie far below the onset of d-electron excitations. Della 
Sala et al. [123] have modeled externally doped silicon nanocrystals classi
cally as well as with TD-DFT and concluded that the classical approach can 
be effective for particles larger than 2 nm. Earlier, Pi and Delerue [124] 
observed convergence between tight-binding calculations and the Drude 
model from about 4 nm for P-doped Si. Other quantitative comparisons of 
the classical ansatz with quantum mechanical treatments, in particular, with 
time-dependent DFT (see below), have been made in the literature 
[105,125]. For example, Figure 4 shows a comparison of the absorption 
cross-section of a dimer of Au nanoparticles as a function of inter-particle 
separation obtained with the classical model (lines) and real-time TD-DFT 
(using the jellium approximation) [125].
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Corrections to the Drude model have been proposed [126–130] to effec
tively capture the resonance frequency shift due to nanosizing and quanti
zation effects. Corrected Drude models were used to compute plasmonic 
resonances in Al-doped ZnO [131], B-doped Si [132], and naturally 
n-doped HgS [100].

Such corrections effectively provide a better estimation of the peak posi
tion but they do not overcome in substance the intrinsic limitations of 
classical models. For that, one needs to solve a multidimensional 
Schrödinger equation. This is computationally costly but can be done with 
ab initio approaches. Alternatively, one can solve a simplified quantum 
problem. Liu et al. [133] modeled a NP as a sphere with a uniform charge 
density and solved the Schrödinger equation for a particle in a sphere using 
the DVR (discrete variable representation) [134] approach. They applied the 
model to a near-spherical ZnO NP and obtained good agreement with DFT 
for distribution of excess electrons. The spherical models ignore the corru
gation of a real NP which can have as important an effect as other quantum 
corrections [135]. In particular, accounting for the atomistic structure of the 
NP has been shown to lead to an increased peak width (Figure 5). Quantum 
approaches involving the solution of the Schrödinger equation may still 
ignore important atomistic details such as the ionic potential, which may be 

Figure 4. Comparison of the absorption cross-section of a dimer of jellium Au nanoparticles as a 
function of inter-particle separation obtained with the classical model (lines) and real-time TD- 
DFT (color map). CTP and CTP1 are the charge transfer plasmon modes of the coupled dimer. 
Bonding dimer plasmon (BDP) originating from the hybridization of the dipolar plasmon modes 
of the individual nanospheres and the higher frequency hybridized bonding quadrupolar 
plasmon (BQP) modes are also indicated. Adapted with permission from Ref. [125]. Copyright 
2013 American Chemical Society.
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replaced by a uniform (jellium) background or by an effective potential. 
Effective potentials allow nevertheless capturing some important phenom
ena such as density accumulation near the surface [133].

Linear response TD-DFT and TD-DFTB based on Casida formalism and related 
approaches

Computing the plasmonic resonant peak in a truly quantum approximation, 
however, requires computation of electron excitations. This can be done 
with time-dependent DFT [136,137]. Linear response (LR) time-dependent 
TD-DFT based on Casida formalism [73,74] is widely used for computing 
optical properties of various types of materials and is implemented in most 
popular molecular modeling codes such as Gaussian [138] and has recently 
been implemented in major periodic codes [139,140]. In LR TD-DFT, the 
excitation spectrum ω is obtained from the eigenvalue problem 

Figure 5. Illustration of the effects of inclusion of quantum effects and atomistic structure of the 
nanoparticle on the example of a spherical (BCC) Na331 and icosahedral (ICO) Na297 nanopar
ticles. The solid lines are absorption spectra including the main LSP peak computed with real- 
time TD-DFT. Dashed blue line: jellium model. The classical local-optics results are shown as 
dashed-dotted green line. Adapted with permission from Ref. [135]. Copyright 2014 American 
Physical Society.
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where matrices A and B depend on the integrals over Kohn-Sham orbi
tals [74] 

Kiaμ;jbν ¼

ðð

ϕ�iμ rð Þϕaμ rð Þ
1

r � r0j j
þ

δ2EXC

δρμ rð Þδρν r0ð Þ

 !

ϕ�jν r
0

� �
ϕbν r

0
� �

drdr0

(2:2:2) 

where indices i, j and a, b label occupied and virtual orbitals ϕ, respectively, 
and indices μ and v denote spin, ρ is the density, and EXC the exchange- 
correlation energy. This approach is simpler and often less demanding 
computationally and in terms of human effort than real-time (RT) propaga
tion (see below) when the number of involved orbitals is not high. In 
realistically-sized nanoparticles, however, it is very high, and the cost 
grows rapidly, notably, due to the necessity of including very large numbers 
of unoccupied as well as occupied orbitals in the calculation to achieve 
excitation energies up to and beyond the plasmonic resonance peak [75]. LR 
TD-DFT can be implemented using a density-response function in a way 
well suited to periodic systems [141,142]; Yan et al. [143] used such a TD- 
DFT approach to investigate surface plasmons of Ag(111) and H/Ag(111).

The Casida formulation is best suited for systems with a bandgap and 
a relatively low density of states but has also been used to model 
plasmonic spectra. In Ref. [144], LR TD-DFT calculations were per
formed on Ag tetrahedral clusters with up to 120 atoms. In Ref. [145] 
LR TD-DFT was used to compute spectra including plasmonic peaks of 
small (up to 165 atoms) silver, gold, and bimetallic Au-Ag particles of 
different shapes and sizes. The accuracy can be judged from the com
parison with the experimental spectrum for Ag55 shown in Figure 6 and 
is more qualitative than quantitative. One should consider however the 
compounded influences of the Casida approximation, the approxima
tion to the exchange-correlation functional (LDA for optimization and 
LB94 [146] for properties), the relatively small (double-ζ) basis used, 
and the scalar relativistic ZORA (zeroth order regular approximation) 
approximation. LSPR of gold nanoclusters (up to 314 Au atoms) cov
ered by a thiolate monolayer were studied by LR TD-DFT by Malola 
et al. [147], which is an example of combining metal NP with molecular 
surface modifications.

The issue of the cost associated with the need to include a very large 
number of excited states can be palliated with TD-DFTB (time-depen
dent density functional tight binding) [89,90], with which thousands of 
excited states can be included routinely and CPU time requirements can 
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be lowered by three orders of magnitude vs. DFT [144]. The self- 
consistent-charge density-functional-tight-binding (SCC-DFTB) 
approach achieves computational efficiency by using an expansion of 
the exact DFT energy functional around a reference density. The reader 
is referred to Refs. [148–150] for a description of DFTB. The method 
needs to be parameterized with the so-called Slater-Koster (SK) para
meters and allows for the formulation of TD-DFTB based on the Casida 
formalism [89,90]. Asadi-Aghbolaghi et al. [145] compared (LR) TD- 
DFTB with (LR) TD-DFT calculations with their proposed method 
which combines a full DFT ground state calculation with tight-binding 
approximations in the linear response calculation (called TD-DFT+TB), 
when computing optical properties of Ag, Au and bimetallic Ag−Au 
nanoparticles with tetrahedral icosahedral structures with up to 165 
atoms. The number of included excited states ranged 3,000 − 30,000 
depending on the cluster. An example of a comparison between the 
three methods and the experiment for Ag55 is shown in Figure 6 where 
spectra including plasmonic peaks are shown. DFTB [149,151] is usually 
parameterized to DFT calculations using GGA (generalized gradient 

Figure 6. Absorption spectrum of a Ag55 silver NP with TD-DFT (black line), TD-DFT+TB (red line) 
with DZ basis set and TD-DFTB (blue line) with DFTB.org/Hyb-0-2 for Ag and auorg-1-1 for Au 
parameter. The isosurface plot is for the TD-DFT+TB transition density of the most intense peak. 
Adapted with permission from Ref. [145] under CC-BY-NC-ND license.
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approximation) functionals, and as a result tends to underestimate 
bandgaps and excitation energies (as can be appreciated from 
Figure 6), in addition to errors due to the DFTB approximation itself 
such as accuracy of parameterization of integrals and limitations due to 
the use of pair-wise repulsive potentials. It is therefore important to 
benchmark TD-DFTB calculations to TD-DFT or experiments. The TD- 
DFT+TB approach provided an accuracy close to that of TD-DFT while 
lowering the computational cost. Especially as DFTB parameterizations 
suitable for metallic nanoparticles and customized for plasmonics 
become available, one can expect an increase in TD-DFTB applications 
in plasmonics. D’Agostino et al. [144] showed, also computing Ag 
nanoparticles (4,000 included excitations), that with appropriate 
(tuned) parameterization, (LR) TD-DFTB can be about as accurate as 
(LR) TD-DFT when computing spectra of plasmonic systems.

Liu et al. [152] studied with TD-DFTB the absorption spectra for nano
particle (up to Ag164) silver dimers at various inter-particle distances. 4,000 
excited states were included. Both homodimers and heterodimers were 
considered. They found that as the inter-particle distance decreases, a red 
shift arises from contributions of the transition dipole moment that are 
aligned along the z (inter-dimer) axis; blue shifts occur for peaks that 
originate from transition dipole moment components in the x and y direc
tions. When the nanoparticles were similar in size, the features in the 
absorption spectra were more sensitive to the inter-particle distance. 
Alkan and Aikens studied with TD-DFTB silver nanorods and nanorod 
dimers with up to 2000 atoms in side-by-side and end-to-end configurations 
[153]. To reach excitation energies up to 4 eV, up to 18,000 excited states 
had to be included. TD-DFTB was compared to TD-DFT for small clusters 
and dimers and it was found, unsurprisingly, that TD-DFTB excitation 
energies are underestimated. Nevertheless, similar spectral shapes and fea
tures were obtained with the two methods. Douglas-Gallardo et al. [154] 
studied with TD-DFTB icosahedral aluminum nanoclusters (up to Al923) 
with different degrees of oxidation (by oxygen), and aluminum nanoclusters 
with a disordered structure to study how the loss of crystallinity affects the 
optical properties. It was found that oxygen induces a redshift and a broad
ening of the dipole surface plasmon resonance band, and that loss of 
crystallinity leads to broadening of spectral features. In Ref. [155], the 
interactions, in an ultra-near-field regime, between a localized surface 
plasmon excitable in a tetrahedral Ag20 cluster and a molecular exciton 
with excitation energy in the same range were studied with TD-DFT for 
smaller molecules and TD-DFTB for larger. For metal–molecule distances 
below 5 Å, the optical response of the system resulted in the appearance of a 
double peak structure.
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Another approach developed to alleviate the issue of the computational 
cost with a large number of excited states computes the spectrum from the 
calculation of the complex dynamical polarizability independently at each 
frequency; this ensures good parallelizability. Baseggio et al. introduced the 
method for the calculation of plasmonic properties [156,157] and applied it 
to model Ag and Au clusters with up to 309 atoms. They showed near- 
quantitative agreement with Casida TD-DFT; e.g. for Au clusters deviations 
within 0.2 eV of the plasmon resonance peak position were obtained with 
the two methods [156]. Recently, calculations of spectra from real fre
quency-dependent polarizability computed separately at each frequency 
have also been proposed [158,159] but are yet to be explored for plasmonics.

Real-time TD-DFT

The most widely used TD-DFT approach in modeling of plasmonic spectra 
appears to be time-propagation in real space [77]. In it, the absorption 
spectrum is computed from the imaginary part of the complex frequency 
dependent dynamic polarizability α ωð Þ as 

σabs ωð Þ ¼
4πω

c
Im α ωð Þ½ � (2:3:1) 

where σabs ωð Þ is the absorption cross-section. The dynamic polarizability is 
computed from perturbation-induced time-dependent electron density var
iation δn r; tð Þ which obtains following a delta-like perturbation with an 
electric field E r; tð Þ ¼ k0δ tð Þex, where ex is a unit vector of the electric field 
direction (here assumed to be along the x axis) and k0 is the amplitude, 
which is typically small enough (on the order of 10� 3 a.u.) to ensure a linear 
response regime. Harmonic perturbations can also be used. The density 
variation computed over the propagation time T is transformed into its 
spectral representation as 

δn r;ωð Þ ¼

ðT

0

δn r; tð Þe iω� γð Þtdt (2:3:2) 

where the damping frequency γ is introduced to account for the spectral 
broadening due to various losses. It is easy to see that δn r;ωð Þ is a complex 
electron density induced by the field Eω r; tð Þ ¼ k0e� iωtex (i.e. by the corre
sponding Fourier component of the delta-like perturbation). The dynamic 
polarizability is then computed as 

α ωð Þ ¼ �
1
k0

ð

xδn r;ωð Þdr (2:3:3) 
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In applications, one most often uses the adiabatic (i.e. the exchange-correla
tion potential depending only on the instantaneous density – the approx
imation widely used with TD-DFT for other applications as well) local 
density approximation (ALDA) with the exchange-correlation functional 
of Gunnarson and Lundqvist [160]. ALDA provides in many cases a rather 
accurate description with relative errors within 10% (which is small com
pared to the well-known band-gap issue of DFT with relative errors of up to 
50%) [142,161], while representing a rather simple formalism. Other 
exchange-correlation approximations (e.g. AGGA) are also used 
[84,122,157,162]. It should be mentioned the failure of TD-ALDA for 
periodic systems has motivated developments of many-body techniques 
for these systems such as GW and BSE formalisms (see below), while 
other works aim at increasing TD-DFT accuracy beyond that of typical 
LDA and GGA functionals with, for instance, the adiabatic Gritsenko-van 
Leeuwen–van Lenthe–Baerends – solid-correlation (GLLB-SC) exchange- 
correlation functional which reduced self-interaction error by the introduc
tion of an orbital energy-dependent localization of the exchange hole and 
has the advantage of improved d-states description [162–164].

The time propagation of the density n r; tð Þ ¼
P

i
fi Ψi r; tð Þj j

2 (where fi are 
occupation numbers of the KS orbitals Ψi r; tð Þ) can be done via time 
propagation of the basis coefficients of orbitals: 

Ψi r; tð Þ ¼
X

n
Cni tð Þϕn rð Þ

iS
@C tð Þ
@t
¼ H tð ÞC tð Þ (2:3:4) 

where C is the matrix of expansion coefficients, H is the Hamiltonian matrix 
Hnm ¼ ϕnjĤKSjϕm

� �
, and S the overlap matrix Snm ¼ ϕnjϕm

� �
.

Zhang et al. employed and compared RT TD-DFT and FDTD calcula
tions on Al NPs with tetragonal shape and their size dependence on optical 
properties [165]. For clusters containing up to 560 atoms, corresponding to 
cluster sizes of less than 3.7 nm, FDTD and RT TD-DFT obtained noticibly 
different spectra (besides, RT TD-DFT and LR TD-DFT obtained agree
ment in the low energy excitations). The detected discrepancy can, of 
course, be explained with the missing reproduction of confinement effects 
by the FDTD method. At very large particle sizes, agreement can be 
expected to be much better although, as mentioned above, KS-based ab 
initio methods are just not yet capable of handleing the required system 
sizes. Instead, the developments of RT TD-OFDFT and RT TD-DFTB are 
more promising (see below). Kuisma et al. [162] studied with RT TD-DFT 
silver clusters of size up to Ag561. They noted that already at about 2 nm 

18 S. MANZHOS ET AL.



LSPR peaks agreed with the classical limit (of 3.4 eV), while higher peak 
energies were obtained with smaller NPs. Lopez-Lozano et al [166] used RT 
TD-DFT to compute surface plasmon resonances of gold nanorods of 
length up to 7 nm. They studied the size and aspect ratio dependence and 
showed that by changing the length and width, the energy and the character 
of the resonance can be tuned. Li et al. [167] modeled Na nanoclusters up to 
Na331; in particular, they used different cluster shapes including some rather 
jagged boundaries and obtained good agreement with experiment (peak 
position accurate on the order of 0.1 eV) for cases where comparable 
experimental data were found. Iida et al. [168] computed LSPR for Au 
clusters with up to 1414 atoms, which is one of the largest scale calculations 
at the full RT TD-DFT.

In plasmonic systems, when nanoparticles are in close proximity to each 
other, there is inter-particle interaction due in particular to electron density 
spillover beyond the NP surface. Charge transfer excitations and electron 
tunneling can occur. LSP can hybridize in such systems. These are practi
cally important phenomena, in particular, for the realization of nanodevices 
with sub-nm gaps [169,170]. A critical phenomenon is plasmonic field 
enhancement, including in the region between nanoparticles. The enhance
ment is strongly affected by LSP hybridization [125,135,171]. A dimer of 
two interacting nanoparticle serves as a prototypical system to study such 
interactions. Marinica et al. [125] computed optical properties and field 
enhancement as a function of inter-particle distance of a dimer of spherical 
nanoparticles, with real-time TD-DFT and the jellium model (of gold) 
(Figure 7). They showed, by comparing real time TD-DFT results with 
both classical as well as a linear quantum mechanical description of the 
system, that the latter approximations fail to describe field enhancement 
even for moderate incident light intensities. The charge transfer current 
between the NPs is also underestimated in the linear approximation. 
Teperik at al. [105] modeled with real time TD-DFT coupled Na nanowire 
dimers of radii up to 10 nm also using the jellium approximation. They 
computed optical spectra, induced charge densities, and near fields, reveal
ing nonlocal quantum effects (consisting of electron tunneling between the 
nanowires at small junction widths and dynamical screening) determining 
the plasmonic modes and field enhancement. They compared TD-DFT 
results to the Drude model (see section 2.1).

In Figure 8, the optical responses of Na nanowire dimers computed with 
different methods in Ref. [172] are shown. In particular, they compare 
accurate TD-DFT calculations to classical models with and without addi
tional corrections such as nonlocal and tunneling terms (as in the nonlocal 
HDM and the quantum corrected model [115], respectively). Most obvious 
differences in the plasmonic response to the TD-DFT can be seen in the 
Drude and NLHD calculations were intensity ratios and relative peak 
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positions are mismatched. For the Drude model, even the number of modes 
assigned to charge transfer (for separation less than 0 which was also 
considered, i.e. overlap of nanowires) is overestimated. The comparison 
between QCM and TD-DFT shows good agreement besides a mismatch in 
the intensity ratio between dipole and quadrupole excitations. Also, it 

Figure 8. Comparison of length-normalized cross sections computed with different methods for 
a dime of Na nanowires with diameters of 9.8 nm at different separation distances S. From left 
to right (jellium) TD-DFT, a quantum corrected model (QCM), Drude model and the nonlocal 
hydrodynamic model (NLHD). Labeled plasmon poles include dipole plasmon (DP), quadrupole 
plasmon (QP), charge transfer plasmon (C1 and C2) and higher-order mode (HM). Adapted with 
permission from Ref. [172]. Copyright 2013 American Physical Society.

Figure 7. Plasmonic field enhancement at the point between the nanoparticles as a function of 
separation between jellium Au nanoparticles computed in Ref. [125] with RT TD-DFT, for 
different light intensities. Adapted with permission from Ref. [125]. Copyright 2013 American 
Chemical Society.
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should be noted that qualitative differences of the changes of the type of 
plasmon excitation over different separation distances arise. For instance, 
the QP peak in TD-DFT continuously changes to a charge transfer plasmon 
(C2) with decreasing separation while in NLHD, this is somewhat abrupt.

With TD-DFT, the enhancement of the local field strength between the 
nanowire dimers is quenched compared to classical models. Moreover, the 
characteristics of the field enhancement significantly differ. In the classical 
calculation, the point of largest enhancement is on the symmetry axis 
between the wires whereas in the quantum theory calculations it is slighty 
shifted. As pointed out by Teperik, the classical models do not consider the 
effect of quantum tunneling at small separation distances (on the subnan
ometer scale) between the wires causing these disagreements. In the quan
tum corrected model developed by Esteban et al., tunneling effects were 
effectively included by a fictious medium and reproducing the quenching 
[115]. In addition, accumulation of opposite effective charges across the 
junction in the wires should be considered. Considering both of these effects 
improves the physical description going beyond earlier reports of plasmonic 
properties with (quasi-)local and nonlocal classical methods applied to 
similar systems (i.e. couple nanowires) as reported by Luo et al. [104] and 
Fernandez-Dominguez et al. [114] At the same time, the comparison to 
these results employing classical models helps reveal the nature of plasmo
nic effects. It was concluded that the classical description overestimates the 
number of resonances and the local field enhancement due to the coupling 
effect across the vacuum junction. Furthermore, there is no significant 
difference except shifts in frequencies among the local and nonlocal 
model. Obviously the TD-DFT results have a more accurate description of 
the electronic effects than the classical approaches including electron spill- 
out, dynamic screening and transitions. For instance, Andersen et al. found 
agreement between classical and TD-DFT results in a Na nanowire dimer 
with nanometer-scale separations, while at subnanometer distances tunnel
ing yields a blue-shift in the plasmonic peaks caused by a decrease of 
induced charges [173]. In general, however, the nature of the screening 
effects depend on the involved electrons. In transition metal elements, the 
local character of d-electrons and their interband transitions can result in 
variations of plasmonic response and often manifest in broader features at 
higher excitation energies [142,143,162,166,174]. Also, they tend to opposite 
fields leading to dynamical screening, whereas the s- and p-electrons, e.g. in 
Na, behave as quasi-free electrons [122,175]. Because the treatment of 
d-electrons in DFT is non-trivial and several schemes such as DFT+U and 
long-range corrected functional were proposed to accuractly describe these 
states, this issue remains challenging and of importance [122,162].

Apart from all benefits that TD-DFT offers and the success that classical 
models achieved, many surface plasmon-related phenomena are rather 
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complex requiring explicit atomistic modeling of realistic sizes and shapes 
of particles without fallback on simplifications such as the jellium model, 
while many of the even small nanoparticle sizes are still outside the scope of 
TD-DFT. However, the continuum electrodynamics-based approaches 
remain their validity only for the large NPs and structures. Between these 
lengths scales, a wide theoretical gap opens that either of these theoretical 
frameworks is incapable or simply inadequate to describe plasmonic prop
erties (although in some cases classical approaches continue to work well at 
surprisingly small scale, as mentioned above). The recent developments in 
RT TD-DFTB and RT TD-OFDFT might be able to fill this gap briding the 
atomic scale with the mesoscale.

Real-time TD-DFTB

The use of DFTB promises significant computational cost savings and 
therefore ability to treat larger systems also with the real-time time-depen
dent approaches. RT TD-DFTB has been gaining use in plasmonics 
[87,88,176,177]. In RT TD-DFTB, the Liouville-von Neumann equation 

@ρ̂
@t
¼ � i S� 1Ĥ ρ̂½ �ρ̂ � ρ̂Ĥ ρ̂½ �S

� �
(2:3:1:4) 

where S is the overlap matrix (which is part of the DFTB parameterization) 
is numerically integrated to propagate the reduced one-electron density 
matrix ρ̂ in the presence of a perturbation, typically delta-like or harmonic. 
Here Ĥ ¼ ĤGS þ Vext tð Þ, where ĤGS is the ground state Hamiltonian and 
Vext tð Þ the external potential due to the perturbing field. Optical absorption 
spectra are then computed similar to Eq. (2.3.1).

RT TD-DFTB was used by Bonafé et al. [87] to compute optical response 
of isocahedral silver nanoparticles with up to 309 atoms. They saw evidence 
of breathing oscillations of the NP in the sub-picosecond regime via surface 
plasmon excitations whereby excited electrons populate excited states of 
antibonding character, weakening the bonds and causing an expansion of 
the nanoparticle, which then vibrates around a new equilibrium radius. Lu 
et al. [176] used RT TD-DFTB to study optical properties of gold nanopar
ticles with 3-mercapto-1,2-propanediol ligands on the surface which exhibit 
plasmonic circular dischroism (PCD). Absorption spectra were computed 
with the method for different directions of the external field and the average 
orientation of the transition dipole moment was used to help understand the 
PCD behavior.

Ilawe and Wong [177] showed that RT TD-DFTB produces a similar 
LSPR peak of Na55 as RT TD-DFT [167] and computed the response of a 
plasmonic nanoantenna made of four Na55 NPs. Douglas-Gallardo et al. 
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[88] computed optical properties of different icosahedral silver and gold 
nanoclusters of diameters between 1 and 4 nanometers (up to 1415 atoms, 
see Figure 9) and studied the plasmon-induced hot-carrier generation 
process under laser illumination. RT TD-DFTB is getting recognized as a 
promising modeling method for many types of plasmonic structures [177] 
and is expected to gain in importance in the coming years.

Real-time TD-OFDFT
Practically used plasmonic nanoparticles often have sizes (101–103 nm) 
which are not feasible for routine DFT calculations. With LR TD-DFT, 
the number of included excitations (related to the number of considered 
pairs of occupied and virtual orbitals in Eq. (2.2.2)) needed to reach the 
plasmonic peak rapidly balloons beyond feasibility, in particular, due to a 
high density of states in larger systems. Such calculations are still infeasible 
even with TD-DFTB where thousands of excited states can routinely be 
included [76]. However, more than tens of thousands excitations would 
have to be included for NPs of more than a few nm. Real-time TD-DFT 
circumvents this issue, but the underlying Kohn-Sham (KS) DFT calcula
tions are still very costly even for particle sizes on the order of 1–10 nm and 
are prohibitively costly for 100–1000 nm. This ultimately has to do with the 
near-cubic headline scaling of KS-DFT. Linear-scaling versions of KS-DFT 
[178–180] could be useful but come at a cost of large prefactors and 
additional approximations; specifically, their basic ansatz of forming a 
sparse Hamiltonian matrix (typically by the use of finite-support basis 
functions) is not well suited for metallic systems.

Figure 9. RT TD-DFTB optical absorption spectra of gold (left) and silver (right) NPs of different 
sized. Adapted from from Ref. [88] under CC BY NC ND License.
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Orbital-free (OF) DFT [86,181] offers a genuinely linear-scaling approach 
to DFT with small prefactors allowing routine calculations of million-atom 
systems. Even though not all kinetic energy functionals (KEF) are linear- 
scaling, semi-local KEFs [182,183] are, and non-local KEFs [184–188] in 
general results in a quadratic to n log(n) scaling which is still much advan
tageous over KS-DFT. The use of OFDFT in applications has until recently 
been held back for many years by the lack of sufficiently accurate KEFs, 
which aim to replace the non-interacting kinetic energy (KE) Ekin or kinetic 
energy density (KED) τ(r) of KS-DFT, 

EKS
kin ¼ ò drτKS rð Þ (2:3:2:1) 

where 

τKS rð Þ ¼ �
1
2

X

i
ψi rð ÞΔψi rð Þ (2:3:2:2) 

or its positively definite version 

τþKS rð Þ ¼
1
2

X

i
Ñψi rð Þ
�
�

�
�2 ¼ τKS rð Þ þ

1
4

Δρ rð Þ (2:3:2:3) 

with functionals of density (or any set of density-dependent variables): 

τ rð Þ ¼ τ ρ rð Þ½ � � τKS rð Þ Ekin ¼ Ekin ρ rð Þ½ � � EKS
kin (2:3:2:4) 

However, for light metals such as Mg, Al, or Na considered in a previous 
section, existing KEFs are already quantitatively accurate [189–193]. 
Moreover, in recent years, significant advances in KEF development, includ
ing advances in semi-local (i.e. linear-scaling) KEFs [182,183] as well as 
machine-learned KEFs [194–200], are being made. The newest functionals 
appearing in recent years can treat systems with more non-uniform densi
ties and give hope that in relatively near future many materials used in 
plasmonics (metals as well as non-metals) can be modeled with OFDFT 
with at least semi-quantitative accuracy.

The absence of the orbitals permits much better scaling but also makes 
impossible the use of LR TD-DFT (as well as DOS analysis and other 
analyses typically done with KS DFT which rely on KS states). However, 
real-time TD-DFT is possible with OFDFT. TD-OFDFT can be rationalized 
by considering the OFDFT formulation using a collective orbital 
ψ rð Þ ¼

ffiffiffiffiffiffiffiffiffi
ρ rð Þ

p
. In this case one solves the equation 

Ĥψ rð Þ ¼ μψ rð Þ (2:3:2:5) 

where μ is the chemical potential, with 
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Ĥ ¼ �
1
2

Δþ
δEPauli

δρ rð Þ
þ vs rð Þ (2:3:2:6) 

Here EPauli ¼ Ekin � EvW with EvW ¼
1
8 ò

Ñρ rð Þj j
2

ρ rð Þ dr being the von Weizsäcker 
kinetic energy. vs rð Þ ¼ δEH ρ rð Þ½ �

δρ rð Þ þ
δEXC ρ rð Þ½ �

δρ rð Þ þ Vext rð Þ, where EH is the Hartree, 
EXC the exchange-correlation, and Vext the external potential. The TD- 
OFDFT is then introduced by considering a time-dependent collective 
orbital defined based on the time-dependent density 
ψ r; tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ r; tð Þ

p
eiS r;tð Þ. One then solves the equation 

i
@ψ r; tð Þ

@t
¼ Ĥψ r; tð Þ (2:3:2:7) 

with 

Ĥ ¼ �
1
2

Δþ
δEPauli

δρ r; tð Þ
þ vs r; tð Þ (2:3:2:8) 

These equations can be numerically solved with techniques similar to those 
used in RT KS-DFT. RT TD-OFDFT has recently been implemented in the 
DFTpy code [85]. In Ref. [85], optical spectra of Mg clusters up to Mg50 have 
been computed, using a simple Thomas-Fermi-von Weizsäcker KEF and an 
LDA exchange-correlation functional, with RT TD-OFDFT and were com
pared with KS-DFT results with decent agreement.

Given its computational cost advantage, RT TD-OFDFT has the potential 
to be a game changer and is expected to gain significant ground in the 
modeling of plasmonics in the coming years, in particular, by modeling 
systems of realistic sizes. The development of KEFs suited for optical 
calculations will remain an active area of improvement of RT TD-OFDFT, 
in particular for the correct description of localized d-states. Another 
challenging area is the development of local pseudopotentials (LPP) which 
are required by OFDFT for the atoms constituting most widely used plas
monic materials such as Ag or Au. A good LPP for Ag has been proposed 
[201]; the Ag case is simpler as its valence properties are largely determined 
by a single s electron. For other atoms beyond light metals new ideas are 
needed. Machine learning holds promise in this area [202].

Beyond the single-particle Hamiltonian: including many-body and excitonic 
effects

DFT remains a theory exact by construction only for the description of the 
ground state (GS) properties and can fail when applied to excited states 
[161]. This means it is not suitable in its native form for the prediction of the 
electronic bandgap, the key property in optoelectronics, to compare with 
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experimentally detected gaps, e.g., via (direct/indirect) photoemission spec
troscopy (PES) results[161], and other optical properties including excitonic 
effects. The neglected effects of self-interaction and the well-known deriva
tive discontinuity [203,204] represent the two main shortcomings that 
hinder the use of DFT for high-accuracy excited state calculations.

To solve these single-particle derived issues, the usage of hybrid func
tionals has been suggested or, alternatively, topic of the present section, the 
replacement of the exchange-correlation potential contribution with the so- 
called self-energy (Σ) either in a ‘one-shot’ approach or in an iterative, self- 
consistent way, i.e. updating the Green function G or both the Green 
function and the screening potential, W. The time-ordered Green’s function 
(governed by the T, the time-ordering operator) assumes the general form 

G x; t; x0; t0ð Þ ¼
Ψ0jT bψ x; tð Þbψy x0; t0ð Þ

� �
jΨ0

D E

Ψ0jΨ0h i
(2:4:1) 

where bψ x; tð Þ and bψy x0; t0ð Þ are the Heisenberg creation and annihilation 
field operators, respectively, and ψ0 the N-particle ground state. After a 
Fourier transform, in the frequency domain the Eq. (2.4.1) assumes the so- 
called Lehmann (spectral) representation 

G x; x
0

; ω
� �

¼
X

k

gk xð Þg�k x0ð Þ
ω � ENþ1

k � EN
0

� �
þ iη
þ
X

k

fk xð Þf �k x0ð Þ
ω � EN� 1

k � EN
0

� �
� iη

(2:4:2) 

where fk xð Þ ¼ ΨN� 1
k jψ xð ÞjbΨ

N
0
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(2.4.2) EN�1
k is the energy associated with the kth excited states of the 

N ± 1-particle systems, jΨN�1
k i. The relevance of Eq. (2.4.2) is that its 

poles represent the energy difference that can be compared, with experi
mentally detected energy difference obtained by direct and inverse PES, i.e. 
the energies of the system upon addition and removal of a particle.

The imaginary part of Eq. (2.4.2), the spectral representation, takes the 
form (similar relation holds for the advanced Green function, GA) 
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and assumes a physical meaning of localized density of states. Here GA is the 
advanced and GR the retarded Green’s function, corresponding to different 
signs (direction of time) in the time propagator. The concept of 
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quasiparticle (QP) is a direct result of Eq. (2.4.3). In terms of non-interact
ing electrons, the spectral function consists of several delta function peaks, 
each of them corresponding to the excitation of a single non-interacting 
particle. Turning on the interaction, the matrix elements of the spectral 
function will consist of several elements with finite amplitudes: the resulting 
peak associated with this merging process is the quasiparticle associated to 
the excitation. The peak may oscillate before being damped, giving similarly 
rise to a higher energy satellite peak which is the result of the plasmon-QP 
interaction.

By means of the Dyson equation ansatz, the Green function of an inter
acting system is expressed as a function of G0, i.e. that of the non-interacting 
system [205,206] as 

G� 1 r; r
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;ω
� �
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0 r; r

0

ω
� �

þ � r; r
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where the previously introduced self-energy, Σ is described as 
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and where the screened Coulomb interaction is expressed as a function of 
the bare Coulomb interaction (V) and the microscopic dielectric function 

W r; r
0

; ω
� �

¼ ò V r
00

; r
0

� �
ε� 1 r; r

00

; ω
� �

dr00 (2:4:6) 

On the other hand, the diagonal ansatz of the Green’s function (Lehmann) 
allows for a formulation where poles (En) and eigenstates Ψn satisfy the 
general equation: 

�
Ñ2

2
þ Vext þ VHartree rð Þ

� �

Ψn rð Þ þ ò dr0� r; r0;ωð ÞΨn rð Þ ¼ En ωð ÞΨn rð Þ

(2:4:7) 

This equation motivates the choice of DFT as the best initial guess for 
excited state as well, since when the self-energy approaches the exchange- 
correlation potential of KS (� ¼ VKS

xc rð Þδ r � r0
� �

) it becomes equivalent to 
the single-particle Kohn-Sham equations.

We now briefly introduce a theoretical tool of which applications are 
discussed in the following and which enables the calculation of optical 
spectra including local-field and excitonic effects, namely the Bethe- 
Salpeter equation (BSE) which exploits an excitonic two-particle (electron 
and hole) Hamiltonian whose resonant part, Hermitian, includes QP ener
gies calculated at the so-called GW level (named from the Green functions G 
and screened Coulombic interaction W), whereby an exchange term (V) 
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that includes local field effects, and a screened Coulomb interaction term 
(W) enter as 

Ĥvck;v0c0k0 ¼ � GW
ck � �

GW
vk

� �
δkk0δvv0δcc0 þ 2V vckð Þ v0c0k0ð Þ � W vckð Þ v0c0k0ð Þ (2:4:8) 

It is worth stressing that several flavors of the GW approach are used in 
applications. G0W0 is considered the best approach in terms of computa
tional cost – result benefit ratio, actually requiring only the diagonal ele
ments of the self-energy to provide G0 (more complex is the procedure, see 
Eq. (2.4.4), to get the fully interacting function, G). On the other hand, it 
depends strongly on the initial guess, which usually is a DFT or Hartree 
Fock GS calculation (energy and wavefunction), which in turn is used as 
starting point for the Green’s function G0 and the screened Coulomb 
potential, W0. Several studies have focused on the possibility of addressing 
this issue (see, among the others, Ref. [207]), trying to eliminate the depen
dence [208] which may lead to large discrepancies between calculated and 
experimental values, in terms of bandgap/band edge (and relative deeper 
states) values. An alternative procedure to the one-shot G0W0 is the eigen
values update in the Green’s function G only, keeping the screening 
Coulomb part as obtained from DFT (GW0 approximation) or the full 
update, i.e. the Green’s function and screening matrix eigenvalues (self- 
consistent GW, GW or scGW). The difference between the latter approach 
and the simple G0W0 mainly consists in the Coulomb correlation that, once 
included in the calculation, massively reduces the difference between the 
two approaches [209]. An alternative way to get good results already at the 
G0W0 level is to use hybrid functionals as initial guess [210,211].

With the development of increasingly efficient computational resources, 
plasmonics has become subject of investigation at the many-body, beyond 
single-particle, level of theory. As previously discussed, the method of choice 
for the study of NPs remains the real-time TD-DFT. There are, however, 
issues related to the use of TD-DFT. The peaks due to volume plasmons in 
TD-DFT are often quite small/vanishing, a feature ascribed to the fact that the 
plasma modes are excited differently by the external perturbation. In other 
words, localized surface plasmons and volume plasmons will ‘communicate’ 
differently with the perturbation, with the latter activated via the communica
tion with the former. GW in this sense helps in solving this shortcoming [78].

The idea of investigating in depth nanoclusters and their plasmonic 
features in nanoplasmonic applications is motivated by the fact that NP 
shape/size can be tailored, tailoring accordingly the resonance of the 
associated devices, further paving the way to nanoobjects with enhanced 
performances in optoelectronics because of an improved work fre
quency. Interesting in this sense is the work of Matsko [79] who at 
first has investigated, with the G0W0 method, Si clusters with size below 
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30 Å: such size is critical since it is believed to be intermediate between 
the bulk-like behavior (>30 Å) from that of clusters (<30 Å) in terms of 
surface and volume plasmon distinguishability. In the same work parti
cular attention is similarly paid to the effect of passivation (with H) of 
Si clusters. To evaluate the plasmonic properties trend in Si NPs the 
spectral function of the system is considered which at the GW level 
reproduces two satellites for the QP peak, one per band edge, above 
(CB) and below (VB) the Fermi energy, respectively. The difference 
between the position of the two peaks is the plasma frequency which 
– at the GW level – is overestimated with respect to the experimental 
data because of the Green function poles affect the spectral function 
(plasmaron, i.e., a plasmon-hole interaction quasiparticle), while it does 
but to a lesser extent in the imaginary part of the Green function which 
is thus investigated and compared as a benchmark to experimental 
plasma frequency. An impressive improvement is found (from 28% to 
<0.4% deviation) when comparing the experimental plasma frequency 
to the theoretically calculated as imaginary part of Σ. The effect of 
passivation (see Figure 10 for a direct comparison between a bare and 
a passivated cluster in terms of spectral function, A(ω), imaginary part 
of the self-energy, Im(Σ), and inverse of the Green’s function, G−1(ω)) is 
to induce a change in the frequency and damping of the plasmons with 
the final result of a net differentiation between surface and volume 
plasmons even in the smallest passivated cluster. The same feature is 
not observed in the bare Si NP.

More recently, Matsko has investigated with GW the formation of 
normal surface plasmon modes in sodium NPs [78]. The work aims to 
provide theoretical insight which is especially important in view of the 
difficulties with experimental studies of normal SPP data for small NPs. 
Indeed, for NPs smaller than the incident light wavefunction, it is 
unfeasible to match wavevector and frequency of light with those of 
the SPP on the object interface. This shortcoming limits the experi
mental knowledge of such systems, in spite of the potential significance 
of normal surface plasmons for applications of such nano-objects in 
plasmonic devices. The primary role in this theoretical analysis is played 
by the calculation of the loss function, Im[ɛ−1(ω)], where the function 
ɛ−1(r, r’,ω) that accounts for the system’s response at r to a perturbation 
at r’ is represented by the equation [78] 

�� 1 r; r0;ωð Þ ¼
X

q;G;G0
ei qþGð Þrε� 1

GG0 q;ωð Þe� i qþG0ð Þr0 (2:4:9) 

where the inverse of the dielectric function is constructed from the response 
function which in turn includes the mean-field QP energy. Several clusters 
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(from 20 to 300 atoms) were included in the analysis, while the G0W0 
calculations were performed to solve Eq. (2.4.9)[212]. Results of such 
analysis are reproduced in Figure 11 where the loss function for Na clusters 
of increasing size is shown. In the small Na NPs ( � 2 nm) only the 
localized surface plasmon resonance is observed, while larger NPs show 
the raise of the SPP with the intensity of the LSPR decreasing, indicating 
2 nm as the lower limit for the devices to properly work with SPPs.

Several other papers have exploited GW to properly evaluate plasmonic 
properties of metallic clusters. Pavlyukh et al. [80] have calculated, by means 
of the combination of GW approach and Gaussian-type basis functions, 
lifetimes of plasmons in Naþ9 and Pt3 clusters (calculated from the plasmon 
peak’s width), finding a value of 0.7 fs, while a fast damping of the quasi
particles (11.3 and 3.4 fs) is found for the latter species, which clearly shows 
a more complex electronic structure where relativistic and electron correla
tion effects play a dominant role. Guerrini et al. [213] investigated 
J-aggregates of molecular crystals made of push-pull organic dyes. They 
used the concepts of plasmonicity index and generalized plasmonicity index 

Figure 10. A(ω) (solid line), Im(Σ) (dotted line), G−1(ω) (dashed line) functions for bottom 
valence electron state (a and c) and total Atot(ω) (b and d) for the Si30 and Si30H34 nanoclusters. 
Arrows indicate the peaks corresponding to the volume and surface plasmons (VP and SP, 
respectively). Reproduced from arXiv:1806.08993 under Creative Commons license.
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(GPI), to provide thus a more ‘manageable’ definition of plasmonics. The 
GPI (η) is here defined as the product between the excited state lifetime 
(Γ−1) and the plasmonic energy associated with the transition density (ρξ(r)) 
that is 

η ¼ Γ� 1Eplas
�

Eplas
� ¼

ð ρ�� rð Þρ� r0ð Þ
r � r0j j

drdr0 (2:4:10) 

Figure 11. The loss function Im[ε−1(ω)] for sodium clusters containing 20–300 atoms. Peaks 
corresponding to LSPR, SPP and VP excitations are marked for the upper curve, i.e. for the 
cluster Na300. Reproduced from arXiv:1912.08604 under Creative Commons license.
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Here the many-body approach is employed, first to correct, by means of the 
GW approach, the DFT bandgaps, while optical spectra of monomers and 
J-aggregates are further improved by including local-field and excitonic 
effects, nominally solving the BSE. From the BSE Hamiltonian, information 
about transition densities is obtained, thus Eq. (2.4.7) is solved and the GPI 
is calculated and compared between monomers and aggregates. Authors 
report an overall GPI lowering induced by the aggregation of molecules in 
the crystal.

Mowbray et al. [81] have on the other hand applied a self-developed G0 
(W0+ ΔW)-BSE theoretical setup [214,215] to the study of the interaction of 
light with molecules (nominally, benzene C6H6, terrylene C30H16, and full
erene C60) physisorbed on a metallic substrate. The methodology employed 
is multi-step, treating at first the isolated molecules (DFT first and then 
G0W0 to get a reasonably good convergence for the bandgap of the mole
cules) and then their interactions with the surface. The core of the latter part 
is based on the introduction of the surface screening, process performed by 
correcting the quasiparticle G0W0 energies by means of the G0(W0+ ΔW) 
method [214,215], where ΔW is the surface-induced dynamical Coulomb 
interaction. Aiming at including the role played by the metal surface, the 
bare Coulomb interaction is replaced by the screened V þ ΔW while the 
screening W in BSE is replaced with W0 þ ΔW: the surface screening will be 
then included in the exchange (implicitly) and in the correlation (explicitly) 
terms of the self-energy. Among the cases investigated, fullerene deserves 
particular attention. Its π plasmon resonance is characterized by an intense 
peak at 6.4 eV, energy corresponding to the highest bright exciton energy in 
C60. Such exciton (the others are at 3.9 and 5.2 eV, respectively) is mostly 
affected by the interaction with the metal surface. Additionally, the hybri
dization between C60 and the metal surface seems to turn the dark exciton of 
the fullerene (higher in energy, at ~6.8 eV) into a bright, optically active, 
one. This results from several conditions that the system must fulfill. Among 
them the condition that the surface-plasmon frequency must be smaller, or 
at most comparable, with the fullerene dark exciton frequency [214]. 
Figure 12 illustrates the mechanism of interaction between the metal and 
the fullerene. After the hybridization, the surface-plasmon branch evolves as 
another, higher in energy, branch (ω3) and does not continue as a π 
plasmon. Another branch (ω2) emerges at the π plasmon energy. Thus, 
when molecular π plasmon and the surface plasmon (this is mostly effective 
for Ag and Au) resonate, the interaction with the surface induces three 
separate optically active modes.

Formulaically, the hybridization between the exciton and the surface 
plasmon is obtained from a quantum system whose Hamiltonian eigenener
gies are (V is the coupling energy; ωs and ωex are surface plasmon and 
exciton frequencies, respectively): 
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Figure 12. Fullerene’s G0[W0 + ΔW]-BSE optical absorption intensity as a function of the 
incident x-polarized light’s energy ℏω in eV and the substrate Wigner–Seitz radius rs in a0 at 
a minimum height z0 = 6, a0 ≈ 3.18 Å above the substrate. The upper panel shows the excited 
electron (blue) and hole (red) densities schematically (left) and from G0W0-BSE calculations 
(right) for fullerene’s third bright π–π* exciton at 6.0 eV in gas phase. The exciton frequency ωπ, 
surface plasmon frequency ωs, their hybridized modes ω1,2 from Eq. (2.4.11) and the third 
quadrupolar exciton mode ω3 are marked. Reproduced with permission from Ref. [81]. 
Copyright 2019 American Chemical Society.
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Topological insulators (T.I.) have been similarly extensively investigated in 
view of their usage in nanoplasmonic devices [216,217]. For this class of 
materials, indeed, a strong plasmonic response has been detected with fea
tures that seem to improve over those of Au and Ag in the UV- and blue- 
region[216]. Accordingly, Sb2Te3 [217] but also alloys like BixSb1-xTeySe1-y 
[216] have been investigated at the MBPT level of calculation. For the former, 
Nechaev et al. [217] provided a theoretical comparison between DFT and GW 
computed Electron Energy Loss Spectrum (EELS) reporting (see above) the 
imaginary part of ɛ−1(ω), i.e. the loss function. While results seem to be quite 
insensitive to the exchange-correlation potential used for the GS property 
calculations (DFT level), the inclusion of local field effects plays undoubtedly 
a major role in reproducing the experimental result. Including them, indeed, 
has the effect of splitting the main EELS peak, feature not detected experi
mentally and here ascribed to the presence of semicore states in antimonium, 
an effect previously reported for other systems[218]. A clear linear (parabolic) 
dispersion is observed for the low (high)-energy bulk plasmon that, agreeing 
with results for other T.I.s (i.e. Bi2Se3)[219], seems to be fingerprint not only 
of Sb2Te3, but of the entire class of 3D layered T.I.

Non-metal plasmonic structures

For the most commonly used metallic nanoparticles, such as gold and silver 
NPs, the range of realized plasmon resonance frequencies is limited by their 
electron density, and they typically show an LSPR resonance in the visible 
region. For applications, including applications in solar cells, where reso
nances in other parts of the spectrum are desired, one may have to go 
beyond metallic systems. Besides, non-metal materials have attracted some 
attention for their high abundance and low cost compared to noble metals. 
In particular, doped semiconductors offer a convenient way to control the 
free electron density and thereby shift the resonance to the infrared. With 
semiconductors, one can control the free electron density by either the 
dopant concentration using conventional n-doping or by injecting the 
electrons in the conduction band. The latter approach has the advantage 
of allowing dynamic control of electron concentration during device opera
tion. Doping by surface species is also possible. The concentration of free 
injected electrons for the case of a near-spherical nanoparticle, which can be 
expressed as 

n ¼
3

4π
Ne

R3 (2:5:1) 

where R is the effective radius, directly modifies the plasma frequency and 
therefore the plasmon resonance peak position as per Eqs. (2.1.1–2).
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Della Sala et al. [123] studied with LR TD-DFT externally doped hydro
genated silicon clusters of different sizes up to Si281H172 with different free 
electron densities and computed absorption spectra and GPI, using the 
jellium model approximation. They showed that LSPR peak energy and 
GPI increase with the number of electrons. Tight-binding calculations in the 
random-phase approximation were performed in Ref. [124] to compute 
LSPR of silicon nanocrystals of 1.8 to 4 nm doped with large concentrations 
of phosphorus atoms[124]. The computed plasmon energy was higher than 
that predicted with the Drude model (converging to it for clusters of 4 nm), 
and increase in LSPR peak excitation energy with doping (free electron) 
concentration was clearly demonstrated. Hydrogen-terminated Si clusters 
of different sizes were studied with the GW approach by Matsko [79].

Another prominent example of non-metallic plasmonic materials with 
great potential, besides doped semiconductors, are two-dimensional mate
rials like graphene due to remarkable confinement and light absorption 
properties, but due to severe energy loss in plasmonic excitations, practical 
applications are not yet achieved. To understand and then control energy 
dissipative decays of plasmonic excitations, different decay channels that 
can be proper to them by, for instance, electron dephasing, hot carrier 
mobility and phonon assisted dissipation and their underlying mechanisms 
must be revealed. Kuda-Singappulige et al. performed non-adiabatic ab 
initio Ehrenfest [220] molecular dynamic simulations and RT TD-DFT on 
a naphthalene molecule, a building block of graphene, to elucidate the 
dynamics of plasmon-like excitations and its dependence on vibrational 
modes [221]. In contrast to adiabatic molecular dynamics simulations 
based on the Born-Oppenheimer approximation [222], the non-adiabatic 
simulations allow non-ground state potentials to govern the nuclear motion 
(that is described in the classical mean-field approximation) and to include 
transitions between excited states [223,224]. This combination of computa
tional techniques allowed analyzing the effects and interaction of different 
mechanisms through analyzing the time evolution of dipole moments, 
charge density differences and vibrational modes. Interestingly, plasmon- 
like excitations that could couple to dark electronic states (i.e. dipole 
forbidden) had much faster decay rates (through higher order effects).

Machine learning for modeling of surface plasmons

Machine learning (ML) has been actively penetrating many areas of materi
als modeling [225,226], and is only now starting to get used for the modeling 
of plasmonics. ML is also making inroads into experimental plasmonics 
[227–229]. Several methods such as neural networks (NN) [230,231], linear 
regression methods of various flavors[232], and K-nearest neighbors [233] 
have been employed to model the optical properties of plasmonic systems.
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Nelson and Di Vece used a NN to find the core-shells configurations of 
Ag NPs with optimal optical absorption spectra for use in perovskite solar 
cell[231]. The NN was trained on FDTD simulations of a limited number of 
configurations and used to predict spectra of other configurations. Malkiel 
et al. [234] used multilayer (with up to 8 layers and hundreds of neurons in 
each layer) NNs with large numbers of neurons to map on one hand the 
nanostructure geometry (which was of a complex shape) to the spectrum 
and on the other hand (by separate NNs) the optical spectra (under light of 
different polarizations) and other material properties (such as permittivity) 
to the geometry. In this way, they machine-learned not only the direct 
design problem of predicting the optical response in both polarizations of 
a nanostructure based on its geometry, but also the important inverse design 
problem of finding geometries capable of providing required optical proper
ties. The NNs were trained to finite-element based solutions of the Maxwell 
equations. He et al. [235] fitted a multilayer NN (with hundreds of neurons 
per layer) to finite-difference time domain (FDTD) solutions of the Maxell’s 
equations for nanospheres and nanorods and their dimers and also achieved 
both the forward prediction of the optical properties and the inverse pre
diction of dimensional parameters of NPs. Arzola-Flores and González 
[236] compared ridge regression (Tikhonov-regularized linear regression), 
a multilayer perceptron neural network, and K-nearest neighbors when 
machined-learning the wavelength of the dipole surface plasmon resonance 
(SPR) of gold concave nanocubes as a function of geometries features (edge 
lengths and depth radius) to data computed with discrete dipole approx
imation (DDA) [237], which is a simple model employing dipoles arranged 
in a cubic lattice that yield the response to an applied electric field. The best 
approach in this case was found to be the NN (with two hidden layers) with 
an accuracy of 94% (which was defined as the R2 value between the pre
dicted and exact values of the peak wavelength), which is roughly in line 
with Pearson coefficients obtained by He et al. [235] A large NN was also 
used by Li et al. [238] to map the geometry of a nanostructure to the 
spectrum by training on FDTD data.

It is expected that the application of more powerful ML techniques to 
datasets computed with more accurate methods, such the ab initio methods 
described above, will significantly enhance the modeling of plasmonics 
going forward. As ab initio methods are much costlier (than the rather 
simplistic DDA model as well as than the classical electrodynamics-based 
models) and therefore training datasets need to being relatively small, more 
powerful ML approaches such as Gaussian process regression [239] (the 
only method shown to outperform NN in controlled comparisons [240]) 
and ML methods specifically developed for working with sparse data 
[241,242] are expected to be helpful. A key value of ML is precisely in 
cutting the calculation cost which would have been incurred with more 
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accurate but more expensive methods and be able to determine optical 
properties of NPs within a very large design space from a small number of 
reference calculations.

Conclusions

Modeling of plasmonic phenomena, and in particular of plasmonic features 
in the absorption spectra of nanoparticles and their arrays is important for 
rational design of plasmonic materials for applications in plasmonic solar 
cells and beyond. As most widely used plasmonic particles are metallic or 
heavily doped semiconductors, modeling their spectral features faces spe
cific challenges not necessarily present in the modeling of organic materials 
and (weakly doped) inorganic semiconductors. While classics-based and 
TD-DFT approaches were previously reviewed [82–84], new applications as 
well as new methodologic developments surged in recent years. We there
fore specifically highlighted, besides these well-known methods, emerging 
approaches which have the potential to significantly enhance modeling 
capabilities for plasmonics in the coming years, in particular, by allowing 
modeling at realistic length scales. These methods include time-dependent 
orbital-free DFT [85,86], linear response and real-time time-dependent 
density functional tight binding [87–90] and machine learning based 
approaches, as well as modeling beyond the single-particle based (DFT) 
picture with many-body perturbation theory [78–81].

The Casida TD-DFT formalism has been and continues to be used for the 
modeling of plasmonics but has not been the most popular approach to 
model the spectra of plasmonic NPs, in particular, because of the necessity 
of inclusion of a very large number of unoccupied orbitals and associated 
cost, as well as accuracy, issues. Recent progress in TD-DFTB partially 
alleviates the cost issue, making possible to include routinely tens of thou
sands of excited states even on a desktop workstation and more with 
appropriate HPC resources. Real-time approaches such as RT TD-DFT 
and more recently TD-DFTB found most use in plasmonics as they in 
principle alleviate some of the issues associated with the Casida formalism 
application in plasmonics. KS-DFT-based RT-DFT calculations remain, 
however, costly and difficult to apply to systems of realistic size. RT TD- 
DFTB allows routine modeling of larger (more realistic) systems and is 
likely to enjoy increased use especially as new DFTB parameterizations, 
including those tailored to plasmonics, are produced.

While DFTB allows achieving a three orders of magnitude computational 
cost saving vs DFT, its scaling is still non-linear with system size and the 
DFTB approximation imposes its own limits on accuracy. Another area 
which has the potential to revolutionize the modeling of plasmonics is time- 
dependent orbital-free DFT which brings orders of magnitude advantage in 
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cost vs. KS-DFT-based modeling and, most importantly, in principle allows 
for near-linear scaling opening the way for routine simulations will millions 
of atoms. For some classes of materials, OFDFT is already quantitatively 
accurate and first results with RT TD-OFDFT suggest that it is a viable route 
for the modeling of plasmonic NPs of sizes too large for KS TD-DFT. As 
more reliable kinetic energy functionals become available, TD-OFDFT is 
deemed to rapidly grow in importance.

Besides advances in first principles computational method development 
such as TD-OF DFT and TD-DFTB that can help to bridge the lengths scales 
of nanoparticles between classical and TD-DFT calculations, new 
approaches combining computational efficiency and accuracy in robust 
multiscale implementations for plasmonic simulations will be essential to 
fully understand and reproduce experimental findings. Machine learning is 
only recently getting applied to the modeling of plasmonic properties, with 
very scarce literature to date. ML for plasmonics has the potential to 
experience rapid growth in the coming years, in particular in the area of 
rational design and accelerated discovery of plasmonic materials with 
desired properties.

While approaches such as TD-DFTB and TD-OFDFT have the potential 
to facilitate routine modeling of larger systems, the continued improve
ments in computing power also allows wider use of many-body approaches 
such as GW which palliate the critical deficiency of DFT-based approaches 
(i.e. their single-electron ansatz).
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