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A cost-effective approach to the solution of 2D Navier–Stokes equations for incompressible fluid flow problems is presented.
The aim is to reach a good compromise between numerical properties and computational efficiency. In order to achieve the
set goal, the nonlinear convective terms are approximated by means of characteristics and spatial approximations of equal
order are performed by polynomials of degree two. In this way, the computational kernels are reduced to elliptic ones for
which solution very efficient techniques are available. The time-advancing is afforded by a fractional step method combined
with a stabilization technique suitably simplified, so that the inf-sup condition is easily overcome. The algebraic systems
generated by the new technique are solved by an iterative solver (Bi-CGSTAB), preconditioned by means of a suitable
Schwarz additive scalable preconditioner. The properties of the new method have been confirmed from the comparison
among the results obtained by it, and those obtained from other methods in the solution of some well known test problems.
The obtained results, both in terms of accuracy and computational efficiency, make realistic the possibility to extend the
method to 3D problems and to develop a multidomain approach.
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1. Introduction
Nowadays in fluid dynamics, the transient incompress-
ible Navier–Stokes equations are widely accepted as a
mathematical model for the description of incompressible
viscous flows. Their application to the solution of real
problems, both 2D and 3D, is more and more widespread
and requires a great computing effort, see for example
(Cavazzutti, Corticelli, Masina, & Saponelli, 2013; Kumar,
Kumar, & Kumar Das, 2009; Stickland, Fabre, Scanlon,
Oldroyd, Mickelson, & Astrup, 2013). The system of
equations is made up of the momentum equations and
the incompressibility relation, and it is well known that
the main difficulties in its solution reside in the approx-
imation of the convective term and in the calculation of
the pressure. A large amount of numerical methods have
been developed particularly in the framework of finite ele-
ments (FE) (Baker, Dougalis, & Karakashian, 1982; Choi,
Choi, & Yoo, 1997; Codina & Soto, 2004; Plana Fattori,
Chantoiseau, Doursat, & Flick, 2013; Sun, Zhang, & Ren,
2012), of cell-centred finite volumes (Deponti, Pennati, &
De Biase, 2006; Deponti, & Pennati, et al., 2006; Fer-
audi & Pennati, 1997; Kim & Moin, 1985; Pai, Prakash, &
Patnaik, 2013) or cell-vertex finite volumes (Hookey &
Baliga, 1998; Malan, Lewis, & Nithiarasu, 2002; Trit-
thart & Gutknecht, 2007; Vrahliotis, Pappou, & Tsangaris,
2012) and finite differences (Ali, Fieldhouse, & Tal-
bot, 2011; Kumar, Dass, & Dewan, 2010; Shih & Tan,
1989). In the finite difference (FD) and finite volume (FV)
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schemes some methods for time-advancing are based on
the so-called SIMPLE method, and its developments (for
example, SIMPLER, SIMPLEC, SIMPLEX, PISO, etc.).
The SIMPLE method (Patankar, 1980) can be regarded
as quite a rough (but simple) preconditioner obtained by
an approximation of the upper triangular matrix U (usu-
ally the principal diagonal) of the LU factorization of the
global system matrix. Two important drawbacks are inher-
ent the SIMPLE preconditioner, namely: the low rate of
convergence and the global approach to the solution of the
system of equations (particularly computationally heavy in
3D problems) (Acharya & Moukallad, 1989; Van Doormal
& Raithby, 1984). In order to improve the computational
efficiency of the solvers used in FD and FV approxima-
tions, a huge literature has been developed regarding the
multigrid methods. These can be very efficiently formu-
lated if based on structured grids (the so called geometric
multigrids), because the spectral analysis of the stiffness
matrices allow us to choose optimal smoothers (Donatelli,
Molteni, Pennati, & Serra Capizzano, In press). A poten-
tial drawback of the geometric multigrid solvers is their
difficulty to solve problems defined in general domains, in
fact, in this case a transformation from the physical space
to the computational one has to be performed (Kumar
et al., 2010). Another important point involved in the time-
advancing is the approximation of the convective term. It
is nonlinear, and for its approximation several techniques
have been developed, for example, the implicit one (based

© 2015 The Author(s). Published by Taylor & Francis.
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on a Newton cycle requiring at every iteration the solu-
tion of a linear system), the semi implicit one (in which the
nonlinear term is approximated explicitly) and the Picard
approximation (in which the transferring term is “frozen”
at time n and the gradient of velocity at time n + 1). The
first approximation is of second order but very heavy with
respect to the computing time, the second one requires a
severe restriction on �t in order to guarantee the stabil-
ity, the third one is only first order in time. In transient
problems, besides the schemes commonly used for advanc-
ing in time, there is another approach called the fractional
steps; it is based on the splitting of the differential opera-
tor in the sum of two suitable differential operators. This
last technique combined with a Lagrangian approximation
of the convective term is the base of our time-marching
scheme.

In this paper, a numerical approach for the solution of
2D incompressible Navier–Stokes equations is presented
with the aim of obtaining an accurate solution while main-
taining a low computational effort. This choice is very
important because we are interested in generalizing the pre-
sented method to problems with moving boundaries (in
particular to 3D problems). The new method can be con-
sidered optimal in the sense that its formulation attempts
to obtain a good compromise between numerical proper-
ties (accuracy and stability) and computational efficiency.
The main features of the method are: using a triangular
(curved edges) FE spatial approximation with polynomials
of degree two for velocity and pressure (and temperature);
time-advancing by a fractional step approach in which the
nonlinear convective term is approximated by character-
istics and the pressure correction is calculated by solving
a Poisson equation (Codina & Badia, 2006; Gervasio &
Saleri, 2006; Han, Zhou, & Tu, 2013; Shirokoff & Ros-
ales, 2011); addition of a suitable stabilization technique
in order to overcome the instabilities inherent in the equal-
order choice. A well-known technique of stabilization is
the one based on the definition of subscale velocities for-
mulated by Codina and Soto (2004). Unfortunately, this
technique depends on a weight parameter τ whose estima-
tion generally is not easy. In section 4, a very simple rule
for calculating the τ value is suggested and its efficiency
verified by solving several numerical tests. In the new
technique the most expensive computational kernels are
reduced to elliptic ones so that, in order to reduce as much
as possible the computational effort, an iterative method
(Bi-CGSTAB) preconditioned by an additive Schwarz pre-
conditioner is used. Such preconditioners are endowed
with very interesting properties, in particular the scalability
and the computational flexibility. The latter is dependent on
the number of subdomains in which the domain is divided,
and on the level of fill-in chosen for the incomplete LU
factorization of the local stiffness matrix. The multido-
main approach, besides being a necessary tool for creating
an efficient Schwarz preconditioner, could be also consid-
ered a convenient starting point for developing distributed

memory parallel computing algorithms (Corti & Pennati,
1997).

The content of the paper is organized as follows.
Section 2 introduces the governing equations completed
by the energy equation. Section 3 describes the time-
advancing to be used. In Section 4, the issue of the
approximation of the 2D Navier–Stokes equations with sta-
bilization is considered. The main result of this section
consists of the fractional step scheme (58)–(63) that has
been implemented in our in-house code. Finally, in Section
5 the flexibility and the efficiency of the method are illus-
trated by four examples: the two dimensional unsteady
flow of decaying vortices, two lid-driven problems: the
first one with analytical solution and the second one with
constant boundary condition and, finally, some thermal
convection problems in a square cavity. The last section
is devoted to some concluding remarks.

2. Governing equations
Let � be a bounded domain of R

2 occupied by the fluid,
with Lipschitz boundary ∂� and [0, T] the time interval of
analysis. The 2D Navier–Stokes problem for incompress-
ible flows consists in finding a velocity u, a pressure p, and
a temperature T such that:

∂u
∂t

+ u · ∇u − ν�u + ∇p = f in �, t ε (0, T) (1)

∇ · u = 0 in �, t ε (0, T) (2)

u = 0 on ∂�, t ε (0, T) (3)

u|t=0 = u0 in � (4)

∂T
∂t

+ u · ∇T − ��T = S in �, t ε (0, T) (5)

T = 0 on ∂�, t ε (0, T) (6)

T|t=0 = T0 in � (7)

where f denotes a volumetric body force such as grav-
itation, v the kinematic viscosity, u0 and T0 the initial
velocity and temperature respectively. We have considered
homogeneous Dirichlet boundary conditions (3) and (6) for
simplicity. We need to introduce some useful notations,
e.g., to denote by H1(�) the Sobolev space of functions
whose first derivatives belong to L2 (�), and by H1

0 (�) the
subspace of H1 (�) of functions with zero trace on ∂�.

3. Time-advancing scheme
As the nonlinear convective term of the momentum
equation (1) needs to be treated with care, and as we would
like to reduce the computational effort significantly, we use
the second-order characteristics scheme (Pironneau, 1982)
that computes the values of the variable of interest at the
foot of the trajectory. In fact, assume for instance we have
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68 A.C. Kengni Jotsa and V.A. Pennati

the equation:
DQ
Dt

= 	 (8)

where DQ
Dt represents the total derivative, that is ∂Q

∂t + u ·
∇Q = 	 with u known velocity.

If the total derivative is approximated with a backward
Euler scheme:

DQ
Dt

∼=
Qn+1(x)− Qn

ft

�t
(9)

then an implicit semi-Lagrangian scheme for (8) is:

Qn+1(x)− Qn
ft

�t
= 	n+1(x) (10)

Knowing the velocity field u, the foot of trajectory can
be calculated by:

x̃ft = x − �tun+1(x ) (11)

The index ft shows that the relevant variable is calcu-
lated (at instant tn) at the foot of a trajectory associated to
the velocity field u. Being given x ∈ � and λ∈ [0, T ], the
trajectories are the functions X̃ (t; λ, x) such that:

dX̃ (t; λ, x)
dt

= u(t; X̃ (t; λ, x)) (12)

X̃ (λ; λ, x) = x (13)

The application of a similar approach to a convective-
diffusive equation gives:

Tn+1(x)− Tn (x̃ft)

�t
− ��Tn+1(x) = Sn+1(x) (14)

where � is the diffusion parameter and S a source term. Of
course, also a second-order approximation in time could be
used for equation (14), but in order to reduce the computa-
tional effort we decided to use a first-order approximation.
The interpolation of Tn is easily calculated after having
located the element to which the foot x̃ft belongs.The
generalization of the above technique to the momentum
equation is direct and reads (vectorially):

un+1 − �tν�un+1 = un(x̃ft)+ �t (−∇pn + f n+1)

(15)
In (15) it can be seen that the gradient of pressure is

evaluated at the instant n, therefore considering instead
of un+1 a provisional velocity ũn+ 1

2 , applying to it the
divergence operator and considering the incompressibility
relation, we can write a Poisson equation for the pressure
correction p̃n+1:

−�p̃n+1 = − 1
�t

∇ · ũn+ 1
2 (16)

Finally the adjourned values of velocity and pressure
are given by:

un+1 = ũn+ 1
2 − �t�p̃n+1 (17)

pn+1 = pn + p̃n+1 (18)

The following important remarks can be made:

a) the difficulties inherent in the nonlinearity of the
convective term are overcome, infact, the stability
is granted under mild conditions (characteristics are
unconditionally stable for linear problems);

b) the incompressibility is granted by construction;
c) the most expensive computational kernels stem

from elliptic problems.

4. Approximation of the 2D Navier–Stokes equations
with stabilization

In order to obtain a weak formulation of problem (1) − (4),
we formally multiply (1) by a suitable function j and by
integration in � we obtain:

∫
�

∂u
∂t

· j d�+ ∫
�

[(u · ∇)u] · j d�− ν ∫
�

�u · j d�

+ ∫
�

∇p · j d� = ∫
�

f · j d� (19)

Using the Green formula we have:

− ν ∫
�

�u · j d� = ν ∫
�

∇u · ∇jd�− ν ∫
∂�

∂u
∂n

.jdγ

(20)

∫
�

∇p · j d� = −∫
�

p∇ · j d�+ ∫
∂�

pj · n dγ

(21)

Keeping into account the homogeneous boundary con-
ditions, and by substitution of the last two relations in the
momentum equation, we obtain:

∫
�

∂u
∂t

· j d�+ ∫
�

[(u · ∇)u] · j d�+ ν ∫
�

∇u · ∇j d�−

∫
�

p ∇ · j d� =

= ∫
�

f · j d�+ ∫
∂�

(
ν
∂u
∂n

− pn
)

· j dγ ∀ jεV

(22)

By multiplying (2) by a suitable test function ϕ ∈ Q,
we obtain:

∫
�

ϕ ∇ · u d� = 0 ∀ ϕ ε Q (23)

The spaces V and Q can be chosen V : = [H1
0(�)]2 and

Q : = L2 (�), respectively.
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Equations (22) and (23) are the weak vectorial forms of
the equations that we are interested in solving. Rewriting
the fractional step (15)–(18) with respect to each compo-
nent of the velocity field u = (u, v) and applying the
weak formulation to the velocity correction, the problem
becomes:

to find un+1 = (un+1, vn+1) ∈ L2 (R+; [H1 (�)]2) ∩
C0(R+ ; [L2 (�)]2) and pn+1 ∈ L2 (R+; H1 (�)) such that:
1
�t

∫
�

ũn+ 1
2ψ1d� + ν ∫

�

∇ũn+ 1
2 · ∇ψ1d�

= −∫
�

∂pn

∂x
ψ1d�+ ∫

�

f n+1
u ψ1 d�+ 1

�t
∫
�

un(x̃ft)ψ1 d�

∀ ψ1 ε V1 (24)

1
�t

∫
�

ṽn+ 1
2ψ2d�+ ν ∫

�

∇ ṽn+ 1
2 · ∇ψ2d�

= −∫
�

∂pn

∂y
ψ2 d�+ ∫

�

f n+1
v ψ2 d�+ 1

�t
∫
�

vn(x̃ft)ψ2d�

∀ψ2ε V2 (25)

∫
�

∇p̃n+1 · ∇ϕd� = − 1
�t

∫
�

(
∂ ũn+ 1

2

∂x
+ ∂ṽn+ 1

2

∂y

)
ϕ d�

∀ ϕ ε Q (26)

pn+1 = pn + p̃n+1 (27)

∫
�

un+1ϕ d� = ∫
�

ũn+ 1
2 ϕ d�−�t ∫

�

∂ p̃n+1

∂x
ϕ d�

∀ ϕ ε Q (28)

∫
�

vn+1ϕ d� = ∫
�

ṽn+ 1
2 ϕ d�−�t ∫

�

∂ p̃n+1

∂y
ϕ d�

∀ ϕ ε Q (29)

Let Th = {K} be a suitable triangulation of the domain
�. By using equal-order velocity-pressure approximation
(i.e., ψ1 = ψ2 = ϕ ∈ X2

h) the system of equations (24)–
(29) can be rewritten as follow:∑

K

[
1
�t

∑
i

ũ
n+ 1

2
i ∫

K
ϕiϕj dK + ν

∑
i

ũ
n+ 1

2
i ∫

K
∇ϕi · ∇ϕj dK

]

=
∑

K

[
−
∑

i

pn
i ∫

K

∂ϕi

∂x
ϕj dK +

∑
i

(f n+1
i )u ∫

K
ϕiϕj dK

+ 1
�t

∑
i

un
i (x̃ft) ∫

K
ϕiϕj dK

]
(30)

∑
K

[
1
�t

∑
i

ṽ
n+ 1

2
i ∫

K
ϕiϕj dK + ν

∑
i

ṽ
n+ 1

2
i ∫

K
∇ϕi · ∇ϕj dK

]

=
∑

K

[
−
∑

i

pn
i ∫

K

∂ϕi

∂y
ϕj dK +

∑
i

(f n+1
i )

v
∫
K
ϕiϕj dK

+ 1
�t

∑
i

vn
i (x̃ft) ∫

K
ϕiϕj dK

]
(31)

∑
K

[∑
i

p̃n+1
i ∫

K
∇ϕi ∇ϕj dK

]

= − 1
�t

∑
K

[∑
i

ũn
i
+ 1

2 ∫
K

∂ϕi

∂x
ϕj dK

+
∑

i

ṽn
i
+ 1

2 ∫
K

∂ϕi

∂y
ϕj dK

]
(32)

pn+1
i = pn

i + p̃n+1
i (33)∑

K

[∑
i

ui
n+1 ∫

K
ϕiϕj dK

]

=
∑

K

[∑
i

ũ
n+ 1

2
i ∫

K
ϕiϕj dK −�t

∑
i

p̃n+1
i ∫

K

∂ϕi

∂x
ϕj dK

]
(34)∑

K

[∑
i

vi
n+1 ∫

K
ϕiϕj dK

]

=
∑

K

[∑
i

ṽ
n+ 1

2
i ∫

K
ϕiϕj dK −�t

∑
i

p̃n+1
i ∫

K

∂ϕi

∂y
ϕj dK

]
(35)

The algebraic form of equations (30)–(35) is:

1
�t

Mũn+1
2 + νAũn+1

2 = − BTpn+ Mf n+1
u + 1

�t
Mun(x̃ft)

(36)

1
�t

Mṽn+ 1
2 + νAṽn+ 1

2 =−CTpn+ Mf n+1
v + 1

�t
Mvn(x̃ft)

(37)

Ap̃n+1 = − 1
�t

[
BTũn+ 1

2 + CT ṽn+ 1
2

]
(38)

pn+1 = pn + p̃n+1 (39)

Mun+1 = Mũn+ 1
2 − �t BTp̃n+1 (40)

Mvn+1 = Mṽn+ 1
2 − �t CTp̃n+1 (41)

where A = ∑
K ∫K ∇ϕi · ∇ϕjdK is the stiffness matrix,

M = ∑
K ∫K ϕiϕj dK is the mass matrix, B = ∑

K ∫K
∂ϕi
∂x ϕj dK is the matrix of the x-component of the gradient
operator and C =∑K ∫K

∂ϕi
∂y ϕj dK is the matrix of the y-

component of the gradient operator.
Remark 1. It is easy to see that all the algebraic sys-

tems of (36)–(41) are reduced to elliptic-like ones so that
they are optimal from a computational point of view, in
particular the solutions can be calculated by an iterative
method preconditioned by a Schwarz scalable additive
preconditioner.

Remark 2. If the domain � does not change during
the transient, the matrices to be built (just once) are M, A,
B, C.
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70 A.C. Kengni Jotsa and V.A. Pennati

Figure 1. Example of overlapping subdivision with two subdo-
mains.

Remark 3. In order to apply the Projection Method,
the variables ũn+ 1

2 , ṽn+ 1
2 and p̃ n+1 have to belong to the

spaces:

ũn+ 1
2 , ṽn+ 1

2 ε H0, div

= {un+1ε[L2(�)]
2

: ∇ · un+1 = 0, un+1 · n = 0 on ∂�}
(42)

and p̃n+1 ε H1(�)

4.1. Schwarz scalable additive preconditioner
We give a brief description of the Schwarz preconditioner
for elliptic problems introduced in Quarteroni and Valli
(1999) and adopted in this paper. We consider, for example,
the domain � as decomposed in two overlapping subdo-
mains �1 and �2, see Figure 1, and we wish to solve the
Poisson problem with homogeneous boundary conditions:

−�u = f in � (43)

u = 0 on ∂� (44)

Let ∂�, ∂�1, ∂�2 be the boundaries of �, �1 , �2
respectively, and �1 , �2 the internal boundaries of �1
and �2 respectively. Let uk

i denote the approximate solu-
tion, after k iterations, on �̄i = �i∪ ∂�i with i = 1
and 2, and uk

1|�2 (respectively uk
2|�1) the restriction of uk

I
(respectively uk

2) on �2 (respectively �1). Let u0 an initial
function defined in � and vanishing on ∂� and set u0

2 =
u0|�2.Therefore, the Schwarz approach consists of defin-
ing two sequences uk+1

1 and uk+1
2 with k ≥ 0 and solving

iteratively the two boundary-value problems for uk+1
1 and

uk+1
2 :

−�uk+1
1 = f in �1 (45)

uk+1
1 = uk

2 on �1 (46)

uk+1
1 = 0 on ∂�1 ∪ ∂� (47)

and

−�uk+1
2 = f in �2 (48)

uk+1
2 = uk

1 on �2 (49)

uk+1
2 = 0 on ∂�2 ∪ ∂� (50)

In order to define the variational formulation of the
Schwarz problem at the discrete level, we set V : = H1

0
(�),V0

i : = H1
0(�i). We define the finite element space:

Vh : = {v ∈ V : v|K ∈ Pr (K) , ∀K ∈ Th} ⊂ V = H1
0(�)

where Pr are polynomials of degree ≤ r. We know that a
FE approximation to the original Poisson problem (43–44)
consists in finding uh ∈ Vh ⊂ V such that:

ah(uh , vh) = (f , vh), ∀ vh ∈ Vh (51)

where ah(·,) is the bilinear form given by:
ah(uh , vh) =∫� ∇uh . ∇vh d� and (f , vh) the linear

form defined as (f, vh) =∫� f vhd�. Then, the Schwarz
method at the discrete level consists of assigning u0 ∈ Vh
and solving for each k ≥ 0:

wk
1.hεV0

1,h : a1(wk
1.h, v1.h) = (f , v1,h)�1 − a1 (uk

h, v1,h)

∀v1,h ε V0
1,h (52)

wk
2.hεV0

2,h : a2(wk
2.h, v2.h) = (f , v2.h)�2 − a2 (uk

h, v2,h)

∀v2,h ε V0
2,h (53)

uk+1
h = uk+1

h + w̃k
1,h + w̃k

2,h (54)

Where w̃k
i,h is the function that extends wk

i.h by zeros in
�\�i, ai (·,·) denotes the restriction of ah(·,·) to �i and
V0

i,h ⊂ V0
i .

For the algebraic formulation of the Schwarz method
we can think that the domain � is subdivided by M sub-
domains �i with i = 1, ..., M. Let V∗

i = {v ∈ V : v = 0 in
�\�i} and V∗

i,h be a finite dimensional subset of V∗
i . We

define the prolongation operator RT
i : V∗

i,h → Vh, which
extends by zeros the degree of freedom outside �i. The
restriction operator Ri is defined as the transposition of
RT

i . By denoting Ah and Ai the stiffness matrices with
respect to the global and local bilinear forms ah (·, ·) and
ai (·, ·) and defining the operator Qi like the matrix Qi =
RT

i A−1
i Ri , then after some algebraic manipulations the one

level additive Schwarz iterative method reads for M ≥ 2
subdomains:

uk+1
h = uk

h +
(

M∑
i=1

Qi

)
(bh − Ahuk

h), k ≥ 0 (55)

where k ≥ 0 is the index of iteration. Regarding (55)
as a fixed-point relation, we can define the Schwarz
method simply as a Richardson iterative method with pre-
conditioner Pas =

[∑M
i=1 Qi

]
−1. Unfortunately, the conver-

gence of the one level Schwarz method deteriorates when
the number M of subdomains becomes larger because
of the lack of information between subdomains �i. In
order to overcome this drawback, we have introduced a
global coarse mesh as a particular subdomain �0, so that
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communications among all the subdomains are guaran-
teed. Therefore, the final form of the preconditioner is
P−1

asc =
(∑M

i=0 RT
i A−1

i Ri

)
. Since the final algebraic system

(51) is Ahuh = bh, the preconditioned two level additive
Schwarz system is written:

P−1
ascAh uh =

(
M∑

i=0

RT
i A−1

i Ri

)
Ahuh =

(
M∑

i=0

RT
i A−1

i Ri

)
bh

(56)
A well-known theorem (Dryja & Widlund, 1989),

under suitable conditions, provides a limit for the condition
number K(P−1

ascAh) of the Schwarz preconditioned matrix.
Called h and H the diameters of the elements of the fine
and coarse triangulations respectively, then we have:

K (P−1
ascAh) ≤ c

[
1 + H

h

]2

(57)

where c is a positive constant independent of H and h.
Thus the presence of the coarse partition makes the con-
vergence rate independent of both h and H. This property
(scalability) is very desirable especially when the method is
implemented on massively parallel architectures, and when
the number of subdomains is big. We recall that the com-
putational kernels of (36–41) are of elliptic kind so that a
scalable Schwarz additive overlapping multidomains pre-
conditioner is worthwhile to be adopted. The algorithm of
the implementation of the Schwarz additive preconditioner
can be seen in Kengni Jotsa (2012).

Remark 4. The number M of the subdomains in which
� is divided, decides the efficiency of the Schwarz pre-
conditioner. In fact, the number of nodes belonging to
each subdomain depends on M and, of course, also on the
subdomain form; both the choices should be as shrewd
as possible in order to reach a good balance among the
dimension of the local stiffness matrices Ai and the optimal
computational time. Another choice influences the effi-
ciency of the Pas and Pasc preconditioners, namely the
level of fill-in allowed in the process of LU factorization
to calculate the A−1

i matrices, the so-called Incomplete LU
factorization (ILU) process.

4.2. The inf-sup condition and a stabilization
In a study (Guermond & Quartapelle, 1998) it is affirmed
that the fractional step method based on the Poisson
equation for pressure overcomes the inf-sup condition
under a suitable limitation for �t and for P1 /P1 linear
approximation; without respecting the temporal limitation
or for equal-order P2 /P2 approximation, the numerical
solution is unstable. Since we are using equal-order P2
/P2 approximation, stabilization techniques needed in order
to complete the formulation (36–41). Among the wide
spread stabilized methods, we can quote the Galerkin least
square technique (Franca & Hughes, 1993; Franca & Sten-
berg, 1991; Hughes, Franca, & Balestra, 1986), the least

square method for first-order system such as (Bochev, Cai,
Manteuffel, & McCormick, 1998) and the least square
method for second-order scheme (Fortin & Boivin, 1990;
Silvester & Kechkar, 1990) and other methods (Brezzi &
Douglas, 1988; Douglas & Wang, 1989). Codina (2001;
Codina & Soto (2004)) built a stabilization technique
based on the definition of the “subscale velocities” that are
responsible for the instability due to violation of the inf-sup
condition. The algebraic terms able to govern the effects of
the subscale velocities (SSV) are obtained by:

(i) imposing that the SSV satisfy a momentum-like
equation to which is added a suitable function;

(ii) orthogonalizing the space for the approximation of
the SSV to the space Vh in which the physical velocity uh
has to be approximated.

This technique allows us in particular to deal with
convection dominated flows and to use equal-order veloc-
ity pressure interpolations. We apply this technique to
complete the formulation (36 − 41).

Final algebraic stabilized system including the
energy equation

Thus, in order to stabilize (36 − 41), we have added the
suitable algebraic terms to equations of the momentums
and the Poisson equation of the pressure, to get:

(M + ν�tA)ũn+ 1
2

= �t{−BTpn + Mf n+1
u − τ(A − BTM−1

L BT)pn}
+ Mun(x̃ft) (58)

(M + ν�tA)ṽn+ 1
2

= �t{−CTpn + Mf n+1
v − τ(A − CTM−1

L CT)pn}
+ Mvn(x̃ft) (59)

[(�t + τ)A − τ(BTM−1
L BT + CTM−1

L CT)]pn+1

= �tApn −
[
BTũn+ 1

2 + CTṽn+ 1
2

]
(60)

where τ is a weight parameter and ML is the lumped mass
matrix. We also have the equations for the correction of the
velocity fields, given by:

Mun+1 = Mũn+ 1
2 − �tBTp̃n+1 (61)

Mvn+1 = Mṽn+ 1
2 − �tCTp̃n+1 (62)

With the energy equation written in terms of the tem-
perature and its corresponding boundary conditions (5)–(7)
to the final algebraic stabilized formulation (58)–(62) of
the problem (1)–(7), we can add the equation:

(M + ��tA)Tn+1 = �tMSn+1 + MTn(x̃ft) (63)

Remark 5. We recall that in our stabilization process we
do not have to include the convective terms.
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72 A.C. Kengni Jotsa and V.A. Pennati

4.3. Choice of the weight parameter τ
According to Codina and Soto (2004), a scheme is sug-
gested that expresses τ in terms of the kinematic viscosity
v, the modulus of the velocity u* (which is the sum of the
computed velocity uh and of the subscale velocity) and a
characteristic length h. The formula of the weight τ is:

τ =
(

c1
ν

h2 + c2
|u∗|

h

)−1

(64)

where c1 and c2 are suitable constants; it can be simplified
as:

τ = c3
h2

ν + |u∗|h (65)

The characteristic length h can be estimated as the ratio
between the modulus of two vectors h and k, and repre-
sents the modulus of the Jacobian of the transformation of
the generic element of the partition into the reference ele-
ment, multiplied for a suitable constant c4 (for triangular
elements c4 = 0.7). In order to simplify the procedure we
choose for vector k the hypotenuse of the reference trian-
gle, and for vector h the corresponding edge of the generic
element. In this case c4 = 0.5. Another simplification of
the estimation of h could be by choosing the smallest edge
of the elements of the partition and multiplying its length
by 0.5. In the section relevant to the numerical tests a
sensitivity analysis of τ is carried out.

4.4. Numerical procedure
In summary, the fractional step works following these
steps:

i) the velocity, pressure and temperature fields are
given at time t = tn;

ii) compute the intermediate velocity field from Equa-
tions (58) and (59);

iii) compute the pressure field at time t = tn+1 from
Equation (60);

iv) correct the intermediate velocity field from Equa-
tions (61) and (62);

v) compute the temperature field at time t = tn+1

from Equation (63);
vi) go to step (i) and repeat the above procedure until

the desired solution is obtained.

5. Test cases
5.1. Two dimensional time-dependent problem
We have used an analytical solution of the Navier–Stokes
equations similar to that of Zang, Street, and Koseff (1994)
as benchmark to our approach (and also to check the
performance of our in-house code). The following is the
solution to the two dimensional unsteady flow of decaying
vortices:

u = − cos(πx) sin(πy)exp(−2t) (66)

v = sin(πx) cos(πy) exp(−2t) (67)

Figure 2. Problem 5.1: mesh with 1569 nodes and nine subdo-
mains for the Schwarz preconditioner.

Table 1. Problem 5.1, L∞-error norm for τ = 1.000E − 5,
�t = 5.000E − 3, N TS = 200, umax = 1.353E − 1, vmax =
1.353E − 1, pmax = 9.157E − 3 and various Re.

Re 1.000 E + 2 4.000 E + 2 1.000 E + 3 5.000 E + 3

eu 9.407 E-4 2.374 E-3 3.811 E-3 7.217 E-3
ev 7.098 E-4 1.538 E-3 3.845 E-3 6.354 E-3
ep 7.964 E-3 6.452 E-3 5.403 E-3 4.921 E-3

p = −1
4

[cos(2πx)+ cos(2πy)] exp(−4t) (68)

fu = 2(1 − νπ2) cos(πx) sin(πy) exp(−2t) (69)

fv = 2(−1 + νπ2) sin(πx) cos(πy) exp(−2t) (70)

where fu and fv are the source terms. The initial and bound-
ary conditions are obtained from the analytical solution.
Instead of � = [0, π ]2, we have chosen the domain �
= [0, 1]2 and the computational mesh used has 1569
nodes, as represented in the Figure 2. We have taken the
viscosity v = 1

Re where Re is the Reynolds number and var-
ious Reynolds numbers have been used (Re = 100, 400,
1000 and 5000). The length of the smallest edge is l =
4.600E − 2 so that the estimation of characteristic length
h, based on the second rule, is h = 2.300E − 2; the time
increment used is �t = 5.000E − 3and we used 200 time
steps to reach the final time t = 1. This problem has also
been used by previous researchers such as Feraudi and Pen-
nati (1997), Kim and Moin (1985), Patankar (1980), to test
the accuracy of their numerical methods. By denoting eu,
ev and ep the L∞–error norms of the two components of
the velocity and of the pressure respectively, umax, vmax
and pmax the maximum of the analytical velocity and pres-
sure, NTS the total number of time increments, we present
in Table 1 the accuracy obtained at the final time t = 1.
Figure 3 shows the streamlines and Figure 4 depicts the
directions of the flow inside the domain, while Figure 5
illustrates the pressure contours (both for analytical and
numerical solutions at time t = 1 for Re = 5000). Table 2
shows the performance of the Schwarz preconditioner for
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(a) (b)

Figure 3. Problem 5.1 Re = 5000: streamlines of the analytical (a) and numerical (b) solutions.

(a) (b)

Figure 4. Problem 5.1 Re = 5000: velocity vectors of the analytical (a) and numerical (b) solutions.

the case resolved. In all the four tests, in order to simplify
the calculations, we chose τ = 1.000E − 5. This value was
not calculated by the formula in (65), but by choosing in
an heuristic way a suitable value for c3. Nevertheless we
should keep in mind that in the formula (64) there are the
two constants c1 and c2 and that the good results obtained
for all the numerical tests with the same value of τ , show
the great flexibility in the choice of τ . In the next problem a
broader analysis about the influence of τon the results will
be given.
Remark 6. In all the tests solved (both in this problem
as in the others problems) the Schwarz preconditioner was
used with, substantially, the same reduction of the iteration
number.

5.2. Lid-driven cavity problem with analytical solution
This problem has been used by Shih and Tan (1989) and
it represents the isothermal recirculation flow in a square
cavity generated by the uniform translation of the upper
surface (lid) of a cavity whose exact solution is given by:

u = 8f (x)g′(y) = 8(x4 − 2x3 + x2)(4y3 − 2y) (71)

v = −8f ′(x)g(y)− 8(4x3 − 6x2 + 2x)(y4 − y2) (72)

p = 8
Re

[F(x)g′′(y)+ f ′(x)g′(y)] + 64F1(x){g(y)g′′(y)

− [g′(y)]2} (73)
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74 A.C. Kengni Jotsa and V.A. Pennati

(a) (b)

Figure 5. Problem 5.1 Re = 5000: pressure contours of the analytical (a) and numerical (b) solutions.

Table 2. Problem 5.1, Condition numbers K (Ah) and K (P−1
ascAh) of the not precondi-

tioned and of the preconditioned matrices, and iteration numbers �= Iters and �= Iters_p for
the solution of the non-preconditioned and preconditioned systems for various values of Re.

Re Ahof variables K (Ah) K (P−1
ascAh) �= Iters �= Iters _p

100 ũn+ 1
2 , ṽn+ 1

2 5.945E + 0 3.576E + 0 13 4
pn+1 5.687E + 8 4.011 E + 4 256 22

un+1, vn+1 6.238E + 0 3.623E + 0 16 5
400 ũn+ 1

2 , ṽn+ 1
2 5.667E + 0 3.599E + 0 16 5

pn+1 5.687E + 8 4.011E + 4 259 22
un+1, vn+1 6.238E + 0 3.623E + 0 16 5

1000 ũn+ 1
2 , ṽn+ 1

2 5.923E + 0 3.603E + 0 13 5
pn+1 5.687E + 8 4.011E + 4 258 22

un+1, vn+1 6.238E + 0 3.623E + 0 16 5
5000 ũn+ 1

2 , ṽn+ 1
2 6.150E + 0 3.606E + 0 13 5

pn+1 5.687E + 8 4.011E + 4 259 22
un+1, vn+1 6.238E + 0 3.623E + 0 16 5

where the source term with respect to u is:

fu = 64 f (x)f ′(x) [(g′(y))2 − g(y)g′′(y)]

− 8
Re
(f ′′(x)g′(y)+ f (x)g(3)(y))

− 8
Re

[F ′(x)g(3)(y)+ f ′′(x)g′(y)] − 64F ′
1(x)

{g(y)g′′(y)− [g′(y)]2} (74)

the source term with respect to v is:

fv = 64g(y)g′(y)[− f (x)f ′′(x)+ (f ′(x))2] (75)

+ 8
Re
(f (3)(x)g(y)+ f ′(x)g′′(y))

− 8
Re

[F(x)g(4)(y)+ f ′(x)g′′(y)]

− 64F1(x){g′(y)g′′(y)+ g(y)g(3)(y)− 2g′(y)g
′′
(y)}

Where: f (x) = x4 − 2x3 + x2, g(y) = y4 − y2,

F(x) = 0.2x5 − 0.5x4 + x3

3
,

F1(x) = 0.5[f (x)]2

and the primes of f(x) and g(y) denote the differentiation
with respect to x and y, respectively. In Figure 6 we present
the domain and the boundary conditions for the velocity,
at the pressure we assign homogeneous Neumann condi-
tions. We have chosen the domain � = [0,1]2 and the
viscosity v = 0.01.We solved the stationary problem by an
iterative process starting with the rest condition, advancing
along a fictitious transient and ending with a suitable stop-
ping criteria (in other words, was built an iterative cycle
with relaxing parameter �t = 0.05, and at every iteration
a fractional step scheme was applied so that the result-
ing algebraic systems were solved by the preconditioned
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Table 3. Problem 5.2 Re = 100: L∞-error norm for var-
ious τ . umax = 1.000E + 0, vmax = 3.838E − 1 and pmax
= 6.399E − 2.

τ 2.000 E-3 2.000 E-4 2.000 E-5 2.000 E-6

eu 2.823 E-2 2.491 E-2 2.605 E-2 2.614 E-2
ev 2.330 E-2 1.753 E-2 1.834 E-2 1.839 E-2
ep 2.615 E-1 2.119 E-1 2.849 E-2 2.808 E-2

iterative method Bi-CGSTAB). We have chosen to stop
the iterative process when the differences of the maximum
values of the velocities and pressure at time instant n and
n + 1 are less than a fixed value ε (e.g., ε = 10E − 6).
We have computed the L∞ − error norms of the numerical
solutions generated by the new method and have reported
them in the Table 3. We would point out that as the ana-
lytical solution is known, a strict control of the numerical
results is possible. Figure 2 shows the mesh of 1569 nodes
used, and Figures 7 and 8 present the streamlines and the
vectors of the analytical and numerical velocities respec-
tively. In Figure 9 the contours of pressure are shown. The
value calculated by the simple rule (65) for c3 = 1. is
τ = 1.500E − 2. It is interesting to note that the analyti-
cal velocity field is not directly influenced by the Reynolds
parameter, but the Reynolds value changes the expressions
of the pressure and the source term. Keeping this in mind,
the graphics of Figures 7, 8 and 9 seem regular and coher-
ent. From Table 3 we can deduce that the variation of
τ affects (like expected) the accuracy but not the stabil-
ity (at least for a quite large range of its values) of the
results and that the errors of the velocity components are
quite low.

Figure 6. Problem 5.2: boundary conditions.

5.3. Lid-driven problem with constant boundary
conditions

This problem has been used by Bruneau and Saad (2006)
and it is similar to problem 5.2 except for the boundary
condition of u on the top boundary where it takes the con-
stant value 1. The analytical solution of this problem is
unknown, however, it is a classical test for checking the
efficiency of new algorithms. In fact, the lid-driven cavity
problem is considered the prototypical recirculation flow
because the streamlines pattern exhibits a central primary
vortex and for high Reynolds number (Re ≥ 1000) the pos-
sible formation of counter-rotating secondary vortices at
the bottom corners of the cavity. In order to check the
accuracy and the computational efficiency of the proposed
method, we compare our results of problem 5.3 (with Re
= 1000) with those found in four recent papers (Han et al.,
2013; Kumar et al., 2010; Kumar et al., 2009; Pai et al.,

(a) (b)

Figure 7. Problem 5.2 τ = 2E-5: streamlines of the analytical (a) and numerical (b)solutions.
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76 A.C. Kengni Jotsa and V.A. Pennati

(a) (b)

Figure 8. Problem 5.2 τ = 2E-5: velocity vectors of the analytical (a) and numerical (b)solutions.

(a) (b)

Figure 9. Problem 5.2 τ = 2E-5: pressure contours of the analytical (a) and numerical (b)solutions.

2013). In these papers the problem 5.3 (and other prob-
lems) was solved by using different numerical techniques,
with different meshes or grids. A short presentation of the
tests developed in the papers is as follows. In the first paper
(Kumar et al., 2009) the spatial discretization was real-
ized with colocated grids and by cell-centred FV where the
convective flux was approximated by the QUICK scheme
and the diffusion flux by the central second-order FD for-
mula. To solve the coupled system, a SIMPLEC algorithm
was applied and in order to reduce the computing time
and obtain a grid independent convergence rates, a multi-
grid method with full approximation scheme and four grid

levels was adopted. In order to see the secondary vor-
tices a uniform grid of 513 × 513 volumes (263,000 grid
points) was necessary, because the solution obtained by a
grid of 129 × 129 volumes (16,641 grid points) did not
show the secondary vortices. The computational effort of
the multigrid V-cycle was of 32 work units, and the num-
ber of iterations (for the grid of 129 × 129 volumes)
required to reach the grid convergence with a fixed toler-
ance ε = 10E − 8, was 1500 (without multigrid 14,500
iterations were necessary to reach the convergence). In the
second paper (Kumar et al., 2010) the target to save com-
puting time while maintaining a high accuracy, was sought
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by using nonuniform staggered grids in the physical space
and clustering the grid points in the regions of large gradi-
ents. Since the spatial approximation was carried out by FD
formulas, a transformation into a computational space with
uniform grids was made. Unfortunately the transformed
equations show a greater number of terms than the prim-
itive equations. The time-advancing was obtained via a
second-order non incremental fractional-step method. To
improve the computational efficiency, the pressure Pois-
son equation (that is the most expensive computational
kernel) was solved at every time step by a multi grid tech-
nique. The V-cycle of four level grids, with a computational
effort of 36 work units, produced a good time-wise gain for
the lid-driven problem at Re = 3200, discretized with a
129 × 129 grid. In the study of the lid-driven problem at
Re = 1000, the 129 × 129 grid and �t = 0.001 were
used. In some figures the time evolutions of the stream-
line patterns, until the steady state, are shown. Through
them we can deduce that at time t = 5 two recircula-
tion zones start to be present, at t = 10 two secondary
vortices arise at the bottom corners, at t = 40 the two
secondary vortices are almost completely shaped. In the
third paper (Han et al., 2013), the authors solved the 2D
Navier–Stokes equations in primitive variables by means
of a FE approach in which the elements are nine-node
quadrilaterals both for velocities and pressure. The con-
vective term was approximated by a semi-implicit form of
three steps Taylor-characteristic-based-split scheme, while
the diffusive term by the usual FE technique (namely by
the stiffness matrix). The time-advancing is declared to be
an incremental fractional-step method (even if from the
equations (26) and (27) it can be deduced that is of non-
incremental kind). The domain of the lid-driven test was
partitioned with 20 × 20 elements in a structured adaptive
way; for the marching temporal discretization �t = 0.005
was chosen and the computations were stopped when the
L2-norm error was lower than 10E − 5. For the case Re =
1000, the streamlines velocity figure is not given, while
the vertical and horizontal profiles of the velocities at the
cavity center at the final state of the transient are shown.
No information about the solution of the algebraic systems
is reported. In the fourth paper (Pai et al., 2013), the lid-
driven cavity problem was used like a precursor model
for studying mixer designs. The 2D Navier–Stokes equa-
tions were solved by the commercial code FLUENT which
employs FV for the discretization in space and the SIM-
PLE algorithm for time-advancing. The nonuniform grid
used was finest near the no-slip wall boundary and it had
100 grid-points along walls for a total number of 17,730
volumes. The value of�t, considered good enough to cap-
ture the physics of the problem, was �t = 0.001. We
solved, by the same approach as followed in the previous
problem, the case with Re = 1000. The mesh used is rep-
resented in Figure 10, it was created by the TRIANGLE
package (Joe, 1991) respecting an adaptive criteria, that is,
using elements with smaller diameter in the regions where

Figure 10. Problem 5.3: mesh with 3009 nodes.

higher gradients are expected. It has 3009 nodes, with hmin
= 2.1E − 2, hmax = 7.9E − 2. The other parameters
used were τ = 2.0E − 5, �t = 0.05 and ε = 10E −
8. In Figure 11 are represented the velocity vectors at t =
80 and in it is possible to single out the central primary
vortex and, at the bottom corners, the well-known sec-
ondary vortices. The zooms of the secondary vortices are
represented in Figure 12. In Figure 13 are plotted the pro-
files of the u and v velocity components along the vertical
and horizontal centerlines. The comparison of the graphics
shown in Figures 12 and 13 and those in some of the above
papers (Han et al., 2013; Kumar et al., 2010; Pai et al.,
2013) point out some differences; in particular the veloc-
ity profiles appear to be affected by viscous effects. All that
should not be surprising because the graphics are built by
the interpolation of the nodal values calculated by means of
a quite coarse mesh (it has only 3009 nodes). In the numer-
ical simulations the maximum values of Courant number
was C = 2.5 and of Peclet number was Pe = 79. The
computational efficiency is confirmed by the particularly
low number of iterations of the Schwarz preconditioned
Bi-CGSTAB iterative solver used to solve the momentum
equations, the pressure equation and the velocity and pres-
sure correction equations (5 and 5, 21, 5 and 5 iterations,
respectively). The CPU time corresponding to each of the
above iterations was 0.024s for the momentum equation,
1.005s for the pressure equation and 0.020s for the velocity
and pressure correction equations, on a Sony VAIO Series
EA46FMW personal computer.

Some comments regarding our results are appropriate.
The use of an adaptive mesh (not requiring any transfor-
mation) and the numerical schemes used in our approach
make possible to capture the physics of the problem (in
particular the presence of secondary vortices at Re = 1000)
also with a small number of nodes. The approximation of
the convective terms by characteristics allows to obtain
good results even in presence of very high Peclet and
Courant numbers; moreover, the solution of the algebraic
systems calculated by means of preconditioned iterative
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Figure 11. Problem 5.3: velocity vectors at t = 80.

(a) (b)

Figure 12. Problem 5.3: zoom of the secondary vortices, left (a) and right (b) corner.

solvers allows to compare the computational efficiency of
our approach with that of the multigrid solvers.

5.4. Thermal convection in a square cavity
In this section, we consider a benchmark flow problem
where no analytic solution is known, but considered very
important by the researchers. The aim is to compare our
results to some of well-established schemes present in

the literature for a natural convection in a square cav-
ity problem. In particular in De Vahl Davis (1983) is
reported the definition and the results of a large num-
ber of tests along with some significant reference values.
In the problem, is examined the flow of a fluid inside
a square cavity for which the top and the bottom walls
are kept to be adiabatic and the vertical walls are kept to
be isothermal at temperatures Tc = − 0.5 and Th = 0.5
respectively (see Figure 15). Initially the fluid is assumed
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(a) (b)

Figure 13. Problem 5.3: profiles of u and v velocity components along the vertical (a)and horizontal (b) centerlines.

Figure 14. Problem 5.4: mesh with 1761 nodes.

Figure 15. Problem 5.4: boundary conditions.

to be at rest at temperature T = 0; then the tempera-
ture at the vertical walls begins to change and the fluid
is subjected to a phenomenon of convection due to the
thermal gradient. We assumed that the fluid is incompress-
ible such that the Boussinesq approximation holds, that is
f = ρgα (T − Tr). By this benchmark problem, we want
to check the behavior of the solution taking into account
the estimation of τ in different situations both with respect
to the physical and the computational situations. Therefore,
for the mesh of Figure 14 with 1761 nodes, the length of the
smallest edge is l = 3.600E − 2 so that h = 1.800E − 2,
for the mesh of Figure 10 with 3009 nodes, the length of
the smallest edge is l = 2.1E − 2 so h = 1.05E − 2. The
results obtained after 200 steps with �t = 5.000E − 3 for
various values of Rayleigh (Ra), Reynolds (Re) and Prandtl
(Pr) numbers on the meshes of Figures 10 and 14 are
reported in Tables 4 and 5. In Figures 16 and 17 are plotted
the velocity vectors and the temperature contours for the
case with Ra = 3.5E + 5. Through them it can be seen
that both the distributions are very close to those expected.
The results presented in Table 4 show that the solutions of
problem 5.4 are strongly dependent on the physical param-
eters (besides, obviously, the mesh rates), for example one
can see that for Ra = 10E + 4 and Pr = 7.1E − 1 the
velocity components double their values with respect to
the case with Pr = 7.1E − 2. Moreover, it can be seen
that the dependence from the physical parameters becomes
more and more important for increasing Ra values, a clear
example of this fact is the variation of the velocity val-
ues for the cases Ra = 10E + 5, Pr = 7.1E − 1 that give
Re = 1.260E + 2, and Ra = 3.510E + 5, Pr = 4.0E − 2 that
give Re = 1.755E + 3.
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Table 4. Problem 5.4: umax and vmax for various Ra, Re, Pr,τ c is the computed value of τ from
formula (65) with c3 = 1. and τ u the used value of τ .

Mesh 10 Mesh 14

τ u 1.100 E-4 1.100 E-4 2.500 E-4 1.000 E-5 3.500 E-5 3.300 E-5
τ c 2.400 E-4 9.900 E-5 2.500 E-4 2.700 E-4 3.300 E-4 3.200 E-4

Pr 5.000 E-2 7.100 E-1 4.000 E-2 7.100 E-1 7.100 E-2 5.000 E-2
v 5.000 E-2 7.100 E-1 4.000 E-2 7.100 E-1 7.100 E-2 5.000 E-2

umax 3.234 E + 1 4.897 E + 1 3.738 E + 2 1.624 E + 1 3.004 E + 1 3.112 E + 1
vmax 4.344 E + 1 7.591 E + 1 5.936 E + 2 1.923 E + 1 4.067 E + 1 4.294 E + 1

Re 1.083 E + 3 1.270 E + 2 1.755 E + 3 3.500 E + 1 7.120 E + 2 1.060 E + 3
Ra 10 E + 4 10 E + 5 3.5 E + 5 10 E + 4 10 E + 4 10 E + 4

Table 5. Problem 5.4: comparison with available benchmark solutions.

Solutions Results Ra = 10E + 4 Ra = 10E + 5 Ra = 3.5E + 5

Proposed umax 1.624E + 1 4.897E + 1 3.738E + 2
vmax 1.923E + 1 7.591E + 1 5.936E + 2
Re 3.500E + 1 1.270E + 2 1.755E + 3
Pr 7.100 E-1 7.100 E-1 4.000 E-2

(De Valh Davis, 1983) umax 1.617E + 1 3.473E + 1
vmax 1.961E + 1 6.859E + 1
Re 3.500E + 1 1.082E + 3

(Hookey & Baliga, 1998) umax 1.620E + 1 3.493E + 1
vmax 1.947E + 1 6.912E + 1
Re 3.500E + 1 1.090E + 3

(Malan et al., 2002) umax 1.617E + 1 3.495E + 1
vmax 1.980E + 1 6.866E + 1
Re 3.600E + 1 1.085E + 3

Figure 16. Problem 5.4 Ra = 3.5E + 5 and Re = 1755: velocity
vectors at t = 1.

6. Concluding remarks
In this paper, a cost-effective approach for the solution
of 2D incompressible Navier–Stokes equations has been
addressed. The new method obtains an optimal compro-
mise between numerical properties (stability and accuracy)
and computational efficiency (simplicity and flexibility).
The most important features of the new model are: using

Figure 17. Problem 5.4 Ra = 3.5E + 5 and Re = 1755: temper-
ature contours.

polynomials of degree two (both for velocities and pres-
sure) in an FE spatial approximation; time-advancing by a
fractional step approach in which the nonlinear convective
term is approximated by characteristics; adding a suitable
stabilization technique in order to overcome the instabil-
ities inherent in the equal-order choice. In this way the
computational kernels are reduced to elliptic-like ones for
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whose solution very efficient solution techniques are avail-
able. In fact the algebraic systems are solved by iterative
solvers preconditioned with Schwarz additive scalable pre-
conditioners. The new model has been tested, by solving
several well-known problems, some with analytical solu-
tion. This allowed us to check both the accuracy of the
results and the effectiveness of the simple rule used for
the estimation of the weight τ involved in the stabilization
technique. The several numerical experiments carried out
prompt one to conclude that the rule is robust, in fact in our
test the value of τ was constant during the transient and in
every point of the domain, even when anisotropic meshes
were used. The formal comparison (i.e., number of itera-
tions used in the solution of the algebraic systems of the
test problem 5.3) among the numerical techniques adopted
in the presented model and the ones adopted in other sim-
ilar models, allow us to conclude that the objective of the
work has been reached.

Some improvements and generalizations could be
developed; for example the spatial approximation based
on polynomials of degree two could be substituted with
polynomials of degree three, obtaining a better accu-
racy both for the convective and diffusive terms, or the
temporal approximation could be improved by a Crank-
Nicolson scheme. Both these choices should not exces-
sively increase the computational time. Moreover, being
the computational kernels of elliptic kind, the feasibility
to apply well-established h-adaptive techniques could be
advantageously adopted (Naga & Zhang, 2004).

Furthermore, the presented method could be suitably
generalized to the solution of moving boundary CFD prob-
lems. In particular, the time approximation based on the
marching scheme and the fractional step method, the spa-
tial approximation based on the characteristics and (proba-
bly) on FE with serendipity third-degree polynomial basis,
and the Schwarz preconditioned iterative solvers of the
algebraic systems, make promising the extension of the
presented method to 3D problems (e.g., 3D Navier–Stokes
equations). The multidomain approach, formally used for
the construction of the Schwarz preconditioner, could be
considered like a starting point for developing distributed
memory parallel computing algorithms, similarly to what
made for the solution of 2D shallow water problems
(Corti & Pennati, 1997).

A drawback of the presented method is the lack of
local conservativity (drawback common to almost every
FE approximation); this handicap could become particu-
larly severe for 3D problems. In order to guarantee local
conservation in the FE context, an approximation by cell-
vertex FV is generally adopted, this choice requires the
definition of a dual mesh leading to a high increase of the
computational effort (particularly significant for 3D high-
order FV). An option for the cell-vertex FV approximation
could consist in the construction of conservative finite
element methods; the development of such methods has
already started (Kengni Jotsa, 2010; Kengni Jotsa, 2012;

Kengni Jotsa & Pennati, 2013) and work is in progress
along these directions.
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