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ABSTRACT
This paper explores for the first time the contents, structure and 
relationships across institutions and disciplines of a global Big Earth 
Data cyber-infrastructure: the Global Earth Observation System of 
System (GEOSS). The analysis builds on 1.8 million metadata records 
harvested in GEOSS. Because this set includes almost all the major 
large data collections in GEOSS, the analysis represents more than 
80% of all the data made available through this global system. We 
explore two major aspects: the collaborative networks and the 
thematic coverage in GEOSS. The first connects the contributing 
organisations through the more than 200,000 keywords used in 
the systems, and then explores who is citing whom, a proxy for of 
institutional thickness. The thematic coverage is analysed through 
neural network algorithms, first on the keywords, and then on the 
corpus of 653 million lemmatised lower case words built from the titles 
and abstracts of all 1.8 million metadata records. The findings not only 
give a good overview of the GEOSS data universe, but offer immediate 
priorities on how to increase the usability of GEOSS through improved 
data management, and the opportunity to augment the metadata 
with high level concept that synthetise well the contents of the data-
set.

1. Introduction

This paper explores for the first time the contents, structure and relationships across insti-
tutions and disciplines of a global Big Earth Data cyber-infrastructure: the Global Earth 
Observation System of System (GEOSS). GEOSS has developed over the last 12 years under 
the aegis of the Group on Earth Observations, a voluntary partnership of more than 100 
national governments and 100 Participating Organisations to achieve comprehensive, coor-
dinated and sustained observations of the Earth and improve monitoring and prediction of 
the state of the planet (Group on Earth Observation, 2017)
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22   M. CRAGLIA ET AL.

From the beginning GEOSS was conceived as a “system of systems”, that is a loose con-
federation of existing and future Earth observation and data management systems. Because 
of the voluntary nature of GEO, the development of its system of systems has happened 
largely from the bottom up exploiting opportunities and the willingness of the partnering 
organisations to contribute to this global endeavour. GEOSS has had a remarkable success 
and now includes thousands of data providers and hundreds of millions of data resources, 
mostly available on a full and open access basis (Nativi et al., 2015). This wealth of resources 
is increasingly looked upon to support key international initiatives such as the Sustainable 
Development Goals (United Nations, 2015), the Paris agreement on climate change (United 
Nations, 2016) and the Sendai framework on disaster risk reduction (United Nations Office 
for Disaster Risk Reduction, 2015). This more strategic, top-down demand challenges the 
bottom-up organic growth model followed thus far. There is a need therefore to manage 
the GEOSS more effectively, linking it better to user needs and strategic priorities.

The first step to manage is to understand better structure, content and characteristics of 
this emergent cyber-ecosystem. The techniques developed for this project undertaken by 
the European Commission Joint Research Centre (JRC), and the Italian National Research 
Council (CNR), make extensive use of deep neural networks and big data analytics. The 
innovative nature of the paper come from the richness of information extracted through 
these techniques in such a vast and complex environment such as GEOSS. The paper is 
organised as follows: after this first introduction, Sections 2 and 3 provide the background 
on GEO and GEOSS, respectively, Section 4 introduces the research questions, Section 5 
explains the characteristics of the data used for the project, Section 6 presents the key find-
ings, Section 7 discusses the importance of the work in the context of Big Earth Data analytics 
and Section 8 concludes with an indication of the next stages of the research.

2. Background on GEOSS

The development of GEOSS is framed by the Plan of Implementation of the 2002 UN World 
Summit on Sustainable Development, which commits to “Promote the development and 
wider use of earth observation technologies, including satellite remote sensing, global map-
ping and geographic information systems, to collect quality data on environmental impacts, 
land use and land-use changes, including through urgent actions at all levels” (United 
Nations, 2002, para. 132).

The leaders of the G8 group of industrialised countries committed to the development 
of GEOSS in their 2005 meeting at Gleneagles, stating that:

The G8 made a commitment at Evian to strengthen international cooperation on global Earth 
observations. We will continue to exercise leadership in this area, and welcome the adoption 
of the 10-year implementation plan for development of the Global Earth Observation System 
of Systems (GEOSS) at the Third Earth Observations Summit which took place in Brussels in 
February this year. We will:

(a) move forward in the national implementation of GEOSS in our member states;

(b) support efforts to help developing countries and regions obtain full benefit from GEOSS, 
… (G8, 2005, para. 34).

With this in mind, GEOSS was launched in 2005 with a 10-year Implementation Plan (Group 
on Earth Observation, 2005). Its purpose was to achieve comprehensive, coordinated and 
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sustained observations of the Earth to improve monitoring and prediction of the state of 
the planet. The initial plan focused on nine societal benefit areas:

•  Supporting sustainable agriculture and combating desertification (agriculture).
•  Understanding, monitoring and conserving biodiversity.
•  Understanding, assessing, predicting, mitigating and adapting to climate variability 

and change.
•  Reducing loss of life and property from natural and human-induced disasters.
•  Improving the management and protection of terrestrial, coastal and marine ecosystems.
•  Improving the management of energy resources.
•  Understanding environmental factors affecting human health and well-being.
•  Improving water resource management through better understanding of the water 

cycle.
•  Improving weather information, forecasting and warning.

The achievements of the first 10 years and the continued political commitment at ministerial 
level have set the basis for a new 10-year implementation plan (2016–25), which reaffirms 
the vision of GEO to strive for a future wherein decisions and actions for the benefit of 
humankind are informed by coordinated, comprehensive and sustained Earth observa-
tions. Central to achieving this vision is the continued development of GEOSS, which is also 
fully in line with other recent international efforts to promote more coordinated geospatial 
data management at the global level by the UN Committee of Experts on Global Geospatial 
Information Management (UN-GGIM http://ggim.un.org/), and improved data sharing such 
as the G8 adoption of the Open Data Charter in 2013 and the G20 anti-corruption open data 
principles in 2015 (http://opendatacharter.net/).

Whilst for the purpose of this paper, we will focus in particular on the achievements and 
challenges of developing GEOSS as an information system of systems, it is important to 
recognise two other issues: the first, is that GEO is more than information and technologies, 
it is above all an open and voluntary partnership among most of the countries in the world 
to support a better husbandry of the planet. Two of the three strategic objectives for the 
period 2016–25 are essentially social: Advocate the importance of Earth observations, and 
Engage with stakeholder communities to address global and regional challenges. Only the 
third, to Deliver data information and knowledge has a stronger technological underpinning. 
The second important issue, is that one of the most important achievements of GEOSS has 
been to find an agreement at the global level on the GEOSS Data Sharing Principles:

•  Data, metadata and products will be shared as open data by default, by making them 
available as part of the GEOSS Data Collection of Open Resources for Everyone (Data-
CORE) without charge or restrictions on reuse, subject to the conditions of registration 
and attribution when the data are reused.

•  Where international instruments, national policies or legislation preclude the sharing 
of data as open data, data should be made available with minimal restrictions on use, 
and at no more than the cost of reproduction and distribution.

•  All shared data, products and metadata will be made available with minimum time 
delay (Group on Earth Observation, 2015a).
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24   M. CRAGLIA ET AL.

These principles are now widely applied to the data available through GEOSS, and have also 
help inform data policy worldwide, including that adopted by the European Union for the 
Copernicus programme, the data of which is available on a full and open access basis.

The adoption of Data Management Principles (DMP) and related guidelines (GEO, 2015b) 
is another important milestone because the full exploitation of the data and services made 
available through GEOSS can only take place if these are reliably well maintained and curated. 
The DMP address metadata for discovery, online access, data encoding, documentation, 
traceability, preservation, verification, review and reprocessing and persistent and resolvable 
identifiers. As indicated in Section 6, there is still a significant road ahead to ensure that these 
principles are widely implemented by all the organisations contribution to GEOSS. The impor-
tance of the research presented in this paper is that only by analysing the content, structure 
and relationships in the data ecosystem of GEOSS, it is possible to identify strategic issues 
and priorities with respect to the management of the system of system and of the data.

3. The development of the system of systems

The development of GEOSS has been at the centre of achieving the vision of GEO from the 
very beginning, and therefore featured prominently in the initial 10-year implementation 
plan (2005–10). As indicated in Section 1, GEO is a voluntary initiative, and the building of 
GEOSS is based on a multitude of individual earth observing systems from space, air, land 
and sea, each continuing to operate independently with their own governance structure. 
The task of making these independent systems operate as one in the eyes of the users was 
entrusted to the GEOSS Architecture and Data Committee in 2006, chaired by the US Federal 
Geographic Data Committee (FGDC).

The initial reference architecture for this SoS was that of the National Spatial Data 
Infrastructure of the US, which had become the model for many similar initiatives across the 
world (Masser, 2005; Rajabifard, Feeney, Williamson, & Masser, 2003). It therefore included 
as central components (which became known as the GEOSS Common Infrastructure, or GCI), 
a Clearinghouse containing the metadata description of the data, services and products 
available in the individual systems participating in GEOSS, a web-portal for user interaction, 
and a series of registries of GEOSS components, services, standards and special interopera-
bility arrangements among systems (See Figure 1).

After an initial period of testing with three different portals and three clearinghouses 
provided by different organisations, the GCI entered in the operational phase in 2010 with 
one clearinghouse managed by the US FGDC, and a geoportal managed by the European 
Space Agency (ESA), whilst other registries where managed by IEEE. Whilst a positive result 
from the architectural standpoint, the offering of the GCI was limited to a few hundred data-
sets and services. This was largely because the reference model adopted was based on 
standards familiar to the geographic data community (and in particular ISO 19115 for 
Metadata) but no so widely used by the many other disciplinary communities participating 
in GEOSS. Moreover, given the voluntary nature of the initiative, there was little evidence of 
an appetite to change established practices and adopt new standards for not visible 
benefit.

A major conceptual breakthrough was adopted by the GEO Plenary in 2011 in the form 
of a brokering layer developed by the Italian National Research Council (CNR) and partners 
in a European Funded R&D project called EuroGEOSS (www.eurogeoss.eu) (Nativi, Craglia, 
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BIG EARTH DATA   25

& Pearlman, 2012, 2013; Vaccari, Craglia, Fugazza, Nativi, & Santoro, 2012). The starting point 
of this innovation, was the recognition and acceptance of the diversity of protocols, standards 
and professional practices of all the communities participating in GEOSS. From this point, 
the possibilities are essentially four to achieve interoperability: (1) the producers publish 
their data and services in all possible formats required by the users, or (2) the users learn to 
handle all the diverse format created by the producers. Either way a heavy burden for one 
side. Option, (3) is that both users and producers agree to a single set of standards, or fed-
erating service bus (see Figure 2). This was implied by the initial set up of GEOSS, and is the 
solution adopted in Europe by the INSPIRE Directive (EC, 2007) which, however, has the 
strength of legal enforcement and substantial funding from the EU Member States to support 

Figure 1. gEOSS components.
Source: group on Earth Observation (2007).

Figure 2. Federation of multidisciplinary infrastructures via a common service bus.
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26   M. CRAGLIA ET AL.

implementation. In the context of GEOSS, which is voluntary and with funding largely in 
kind or through R&D projects, this was not a viable solution.

The solution adopted was instead to introduce a brokering middleware which mediates 
across the different infrastructures and disciplines by “translating” the metadata and data 
formats to a minimum common denominator thus enabling communication across the 
infrastructure for discovery and access – as showed in Figure 3.

The success of adopting this solution became immediately evident (see Figure 4) because 
brokering allowed all the contributing infrastructure to stay the same without major change 
or investment. They just have to declare what standards (either Community or international 
ones) and protocols they support, then all the effort for mediation is taken on by the medi-
ation services, implemented by a new GCI component called GEO Discovery and Access 
Broker (GEO DAB) (Nativi et al., 2015). As a result, in the space of little more than 1 year, the 
number of available resources jumped from a few hundred in 2010, to several millions in 
2011.

To date, the GCI includes the GEOSS Portal and the GEO DAB, which has replaced the 
Clearinghouse as discovery and access mechanism, in addition to a set of registries of con-
tributing organisations and components. GEOSS is then composed of this central infrastruc-
ture which brokers more than 150 large scale facilities (Figure 5) giving potential access to 
more than 400 million data resources (e.g. just CEOS, the Committee on Earth Observation 
Satellites, has more than 280 million images of the Earth among its partners).

In spite of the progress made in developing GEOSS and the GCI in the first decade, there 
is a recognised gap between the work done by the data providers, technologists and engi-
neers developing the GCI, and the scientific community working on the more thematic tasks 
in GEO aligned to the application areas. As a result, too little use is made of the resources 
made available through the GCI. This problem is compounded by the sheer scale and 

Figure 3. Brokered infrastructure.
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BIG EARTH DATA   27

diversity of these resources which makes discovery possible but access and use of the data 
much more difficult.

With these considerations in mind, the GEO Strategic Plan (2016–25) sets the priorities 
for the further evolution of GEOSS:

To continue leveraging these successes through 2025, GEO will evolve GEOSS and its infrastruc-
ture to meet current and emerging needs by:

Figure 4. impact of brokering in gEOSS.

Figure 5. the gEOSS structure.
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28   M. CRAGLIA ET AL.

•  extending the user audience to decision-makers and the general public;
•  placing additional focus on the accessibility and usability of Earth observation resources 

to improve our scientific understanding of the Earth processes, and enhance our pre-
dictive capabilities that underpin sound decision-making;

•  providing a service framework to engage partners and user communities in evolving 
the current infrastructure to enable collaborative tools for co-creation of products and 
services suitable for effective exploitation by user communities; and

•  evolving the current system of systems component-based architecture with an open 
systems platform that is flexible, sustainable and reliable for data access, integration 
and use and the delivery of knowledge-based products and services (Group on Earth 
Observation, 2015a, pg. 10).

Within the GEO Work Programme 2017–19, there is a dedicated initiative (GEOSS EVOLVE 
https://www.earthobservations.org/activity.php?id=120) co-chaired by the European 
Commission Joint research Centre (JRC) and the US FGDC to guide the evolution of GEOSS 
and respond to the priorities above.

4. The research questions

As part of the activities in GEOSS EVOLVE, the JRC and the CNR have launched this study to 
analyse the contents structure and relationships in the GEOSSS ecosystems. The study builds 
on earlier work by one of the co-authors on the INSPIRE infrastructure, in which he analysed 
the evolution of the infrastructure over time, and the relationships between institutional 
organisation in the physical world of public administration and in the cyberspace projections 
of that world via INSPIRE (Hradec, Lima, Tomas, & Fullerton, 2017).

Building on this experience, this analysis of the GEOSS ecosystem after 10 years of devel-
opment, asks questions that may seem ordinary but have never been asked before, and 
where answers are not entirely obvious considering the extent of the GEO System of Systems 
and the volume of resources shared. They include:

•  Who is contributing to GEOSS: which organisations, what is their geographical 
distribution?

•  What are the relationships among the organisations and the data they provide if at all 
evident in the ecosystem?

•  Which thematic areas are covered/ can we detect any significant gap?

Section 6.1 combines the first and second question looking at the collaborative networks 
in GEOSS, and Section 6.2 focuses on the thematic coverage through the analysis of keywords 
and abstracts.

5. The data used

5.1. Data sources

As indicated earlier the interaction between the enterprise systems contributing to GEOSS 
is mediated by the GEO-DAB. The brokering is implemented through three possible belonging 
options:
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(a)  Harvesting: GEO DAB harvests the whole metadata content of the enterprise system.
(b)  Query forwarding: GEO DAB distributes (i.e. forwards) all the queries submitted by 

GEOSS Users on-the-fly – only mediation tasks are performed by the DAB.
(c)  Hybrid: a mix of the previous two approaches. GEO DAB harvests the high-level 

metadata collections (to finalise the so-called first-level queries) and distributes the 
requests dealing with the data “inside” a given collection – the second-level queries.

For a new enterprise system, the brokering strategy depends on both political (e.g. the 
provider’s policy about harvesting) and technological aspects (e.g. the service and protocol 
types utilised by the system).

It is important to distinguish the meaning of “first” and “second” level of query in the 
Hybrid option: the first targets data collections (e.g. spatial or temporal data series, mission 
or campaign data collections, instrument data series), whilst the second one deals with the 
single data contained in a data collection (in GEOSS, these data are called data granules). It 
is possible that a data granule does not belong to any data collection, but it is not possible 
that a data collection does not contain any data granules. Typical data organised through 
collections and granules are satellite data, mapping and cadastral data series.

A data granule that does not belong to any data collection is called siblingless data granule. 
This is often the case of in situ or research data made available by public administrations, 
universities, or large research data archives like Pangaea. In GEOSS, a first-level query 
addresses both data collections and siblingless data granules. Second-level queries target all 
data granules. In August 2017, GEOSS managed about 44.5 millions data collections and 
siblingless data for a total of more than 400 million discoverable data granules.

This research has utilised the GEOSS harvested metadata records, only. Therefore, only 
those enterprise systems implementing the Harvesting and the Hybrid belonging approaches 
were considered. Out of the about 44.5 million records (i.e. data collections and siblingless 
data granules), the harvested records at first-level query are around 1.8 million – i.e. around 
4%. However, as many of these records are large data collections (and hence they represent 
their data granules, as well), the utilised sample actually represents the 89% of the total 
GEOSS data granules. This assumption is acceptable for this analysis study because it mainly 
focused on a set of metadata elements that data collections usually summarise well for the 
granules they contained, such as organisations, keywords, title and abstract. The largest 
collections considered are provided by CEOS and FedEO systems. The number of their data 
granules is about 280 and 82 million, respectively.

Some enterprise systems were not included because they are currently brokered by apply-
ing the Query forwarding belonging approach – i.e. Global Biodiversity Information Facility 
(GBIF), USGS Earthquake Events, National Institute for Space Research – Brazil (INPE), ArcGIS 
Online ESRI. The Hydrologic Information System (CUAHSI-HIS) was not included because it 
is still in the transition between the Query forwarding and the Harvesting belonging approach. 
The SeaDataNet system granules were not considered because they are not accessible and 
it is not possible to establish a reliable collection-granules metadata relationship. All the 
above systems represent about the 11% of the present GEOSS metadata content.

Metadata harvested by the GEO-DAB are stored in Big Data HStore database. Data were 
shared with JRC team through Amazon Web Services and replicated locally. The 1.8 million 
first-level metadata came in 171 zip files, 6 GB in size, unpacked to 1 828 997 files, 42 GB of 
text data all together.
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30   M. CRAGLIA ET AL.

5.2. Data preparation

All metadata records passed validation for adherence to ISO19139 metadata standard so 
the first step was to create a seamless database containing all the records for the thematic, 
spatial and temporal analysis of the GEOSS content. Parsing the metadata revealed several 
important deviations that can be described as ISO19139 flavours. OGC XMLs are difficult to 
parse due to their complexity and frequent interpretations of the standards made the con-
version rather more difficult. The final data conversion was thus more probabilistic than 
hoped for. On the bright side, all metadata records contained titles, abstracts and keywords 
which are the main focus of the analysis presented in this paper. Most records were in English, 
another plus, but we had to translate some 300,000 records from one of the other 35 lan-
guages present in GEOSS. We used for this task the European Commission Machine Translation 
service (EC-MT) which worked very well, and could be trained on translation pairs relevant 
to the domain knowledge covered by GEOSS. Therefore, we have received consistent trans-
lation even of many technical terms.

Out of many findings from the analysis, we present here the two most interesting: insti-
tutional collaborative networks and the GEOSS thematic coverage. All the analytics were 
performed in Python and visualisations finalised in Gephi (https://gephi.org/) or Tulip (http://
tulip.labri.fr/TulipDrupal/).

6. Findings

6.1. Collaborative networks

The first question we asked was: “who are the data providers in GEOSS”? Simple question 
but not so easy to answer because there are several fields in the metadata that offer relevant 
information such as originator, contact organisation, distributor and contributor, referring 
to either the data or the metadata record, and in a system of fully autonomous data systems 
with many different policies and practices, it is not immediately clear what the results of the 
enquiry mean. Just to give an example, there are more than 10,000 contact organisations 
in the metadata, but this cannot be used as the number of data providers because almost 
half a million records have no contact information, some contacts refer to data brokers or 
archives such as Pangaea (https://www.pangaea.de/), which appears as contact more than 
350,000 times, and several thousand contact organisations are in fact the URLs of jpeg images 
from aerial surveys.

We proceeded therefore in steps. The first was to design a graph network by connecting 
metadata field Contact Organisation (CI_ResponsibleParty) (cleaned of spurious entries) 
with the field Distributor (MD_Distributor). The graph is shown in Figure 6. What we see are 
data distribution centres linking the institutions for whom the centres are distributing data. 
The three sea urchin-like data distribution networks are centred around Arizona Geological 
Survey, FAO – UN AGL Documentation Center and NASA Global Change Master Directory. 
From the graph we realised that:

(1)  There are 10,303 nodes linked by 2650 connections. However, many institutions 
known to collaborate (e.g. all institutions publishing data through PANGAEA) have 
not shown up as connected here.
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(2)  There must be many institutions missing as some major data hubs appear to be 
almost or not connected at all (e.g. PANGAEA seems to be linked only to one other 
organisation).

(3)  Practically all providers and distributors are real institutions, communities and com-
panies because names of people or places do not show up in the graph.

The next step explored the good scientific practice when data providers cite their contrib-
utors. The inter-institutional network has been constructed by linking parties responsible 
for data to the contributors (metadata fields MD_Distributor, CI_ResponsibleParty, 
citedResponsibleParty).

The list of most frequently cited institutions is shown in Table 1 (numbers include all 
mentions) with a total of 12,427 names (7347 without hyperlinks).

Citation was the most difficult part to parse because every data hub uses citation struc-
turally differently and tagging styles differ even within the same provider. We decided there-
fore to link all the names from the fields distributor, contact organisation and citation (66,000 
nodes) through 350,000 identified edges. The network layout shown in Figure 7 demon-
strates several author clusters, ranging from “PANGAEA” cluster of nature science related 

Figure 6. graph of contact organisation and distributor.
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institutions, US or Australian geology, Arctic research, etc. Small clusters formed at the fringe 
of the large ones have been identified as project teams where authors are citing all team 
members.

The graph in Figure 7 is a useful step but does not help identify different institutions and 
groups. As the graph behaves like a social network, we could run the basic modularity 

Table 1. Most frequently cited institutions.

PANGAEA: 15874542, China Meteorological Administration: 1710623, IRIS Seismo Archive by Stations: 
1701836, Landesamt fuer Vermessung und Geoinformation Schleswig-Holstein: 1655059, US Fish and 
Wildlife Service, Department of the Interior: 896593, US NODC Collections: 817307, Geoscience Australia: 
699161, Arizona Geological Survey: 694492, ICIMOD: 663491, GISC Tokyo - Japan Meteorological Agency: 
609290, Instituto Geografico Militar: 519825, DOC/NOAA/NESDIS/NCEI > National Centers for 
Environmental Information, NESDIS, NOAA, U.S. Department of Commerce: 515330, Stanford University: 
453589, National Aeronautics and Space Administration: 437958, UK Met Office: 435377, Geophysical Data 
Centre - Centre de donnees geophysiques: 296119, GNS Science: 283678, Landesvermessung und 
Geobasisinformation Brandenburg (LGB): 257027, Oak Ridge National Laboratory Distributed Active 
Archive Center (ORNL DAAC\n\t\t\t\t\t-WCS): 246848, ORNL DAAC: 240004, Deutscher Wetterdienst: 224257, 
US Data Gov: 220922, Corporacion Nacional Forestal: 167272, Canadian Cryospheric Information Network: 
155585, SANSA Space Operations: 149872, SADCO: 149872, The Unified Access Framework (UAF): 127774, 
CMR: 125802, Ministerio de Obras Publicas: 116435, UK Data.Gov: 107532, etc.

Figure 7. Who cites who in gEOSS (by organisation).
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(Blondel, Guillaume, Lambiotte, & Lefebvre, 2008) community detection algorithm to try 
and provide greater clarity. The results are shown in Figure 8. Individual communities are 
shown with different colours and unconnected organisations are left in grey.

The next step was to try and use location as an element able to give us more insights into 
the different communities. Once we removed the names of individual authors/contributors, 
the 66,000 nodes reduced to 10,947 which we geocoded using the Google Places API. There 
were about 1300 institutions mentioned in the citation field that could not be geolocated 
though their identification resembled institution names. The four main reasons were change 
of name, mixed languages or badly translated names, abbreviations and typos. Several URLs 
also contained typos (“ww.”) and needed to be checked through URL retrieval, WHOIS service 
and domain owner address cross validation (2355 unique domains used). The final count of 
institutions correctly identified was 9887 connected by 2756 edges. Figure 9 shows the 
connectedness of the network at different levels of filtering: 2451 nodes that had at least 
one connection, 403 nodes had at least two links and 141 institutions had three or more 
links. There are 31 institutions with 10 or more connections to other institutions.

Using the geocoded institutors in Figure 9 as anchors, we included then all the individual 
authors cited in the metadata. Figure 10 shows an impressive collaborative network with 
less than 100 institutions not connected to anyone else. The largest cluster is around the 
USGS providing geological, mapping and satellite data such as Landsat. Drilling company 
reports feature quite prominently, as well as a strong geothermal community with prominent 
nodes around Stanford University, the Geo-Heat Center and World Geothermal Congress. 
Ocean research is the other large cluster, and we have highlighted in the Figure a prominent 
multi-domain international collaborative cluster. European networks are largely clusters 
around nature protection, with a clear group based in Germany. Pacific Ocean research 
highlights the contributions of Australia and New Zealand.

Figure 8. Who cites who in communities of organisations.

D
ow

nl
oa

de
d 

by
 [

Jo
ha

nn
 C

hr
is

tia
n 

Se
nc

ke
nb

er
g]

 a
t 0

3:
10

 1
1 

Ja
nu

ar
y 

20
18

 



34   M. CRAGLIA ET AL.

Fi
gu

re
 9

. C
on

ne
ct

ed
ne

ss
 o

f i
ns

tit
ut

io
ns

 b
y 

ci
ta

tio
n:

 fr
om

 le
ft

 to
 ri

gh
t: 

at
 le

as
t 1

 li
nk

, 2
 li

nk
s, 

3–
10

, m
or

e 
th

an
 1

0.

D
ow

nl
oa

de
d 

by
 [

Jo
ha

nn
 C

hr
is

tia
n 

Se
nc

ke
nb

er
g]

 a
t 0

3:
10

 1
1 

Ja
nu

ar
y 

20
18

 



BIG EARTH DATA   35

Compared with Figure 7 which displayed a strong European contribution around Pangaea, 
Figure 10 is striking for the predominance of North American academic and government 
institutions (the colour coding follows that of the bar chart at the bottom left corner). The 
stronger tradition of working together and citing each other’s contribution in the US com-
pared to Europe is evident from this graph. This Figure can therefore be read as a measure 
of institutional thickness, and should be a matter of reflection for European research based 
on EO.

6.2. Thematic coverage

We used different approaches to explore the thematic coverage of the data contained in 
GEOSS as the systems and disciplines participating in GEOSS are very heterogeneous, and 
there is no agreed list of keywords or mapping of thesauri used by everybody. We started 
from the text analysis of the abstracts. To improve the quality of information obtained from 
this method, we used the Python library Spacy to identify noun chunks (uninterrupted string 
of adjectives and nouns) with frequency higher than 1000. These noun chunks were used 
to replace words in the corpus (e.g. tree ring width - > tree_ring_width).

6.2.1. Latent Dirichlet allocation (LDA)
There are 1.8 M first-level (L1) metadata records in the catalogue with rich abstracts. One of 
the information retrieval tasks is a topic modelling, with a notable technique called LDA 

Figure 10. Labelled connectedness of institutions and authors by citation.

D
ow

nl
oa

de
d 

by
 [

Jo
ha

nn
 C

hr
is

tia
n 

Se
nc

ke
nb

er
g]

 a
t 0

3:
10

 1
1 

Ja
nu

ar
y 

20
18

 



36   M. CRAGLIA ET AL.

(Blei, Ng, & Jordan, 2003). LDA is a generative statistical model able of unsupervised analysis 
and clustering of topics by provision of the most relevant words to identified clusters. When 
LDA was run over the whole corpus of the L1 metadata to generate 50 topics, the following 
Table 2 was obtained (we show only 12 topics as example).

The words chosen by the LDA algorithm for describing the topics represent the most 
typical words, not the unique ones. There are many drawbacks in using this technique: for 
example, the topic description requires interpretation and domain knowledge, it is difficult 
to know a priori how many topics to look for, and the algorithm is rather CPU intensive. We 
trained a Polynomial Naïve Bayes classifier to identify the number of metadata records asso-
ciated to each topic. Though it performed better than other classifiers, we were getting false 
positives exceeding 20%, especially on fringe topics. Overall, we found that this approach 
provides a basic understanding of the contents covered by the first-level metadata (see 
Section 5.1), but is difficult to use to get the overall picture of the thematic coverage of 
GEOSS. We tried therefore other approaches as discussed below.

6.2.2. Keyword clusters
Clustering the keywords is often meaningful and it was interesting to see how the clusters 
will behave within such a large set of keywords. We knew that the keywords do not follow 
any dictionary/thesaurus and sometimes feels like they are meant to represent the content 
in detail (e.g. “Palynology on sediment profile Tso Kar in Ladakh” contains 666 keywords). 
This complexity was used in creation of a graph linking institutions and the keywords they 
use. In total, we found 198,767 unique keywords in all metadata records. In Figure 11, one 
can easily identify thematic clusters, as similar institutions tend to use similar keywords if 
they come from similar linguistic background or use English.

As we can see from Figure 11, even the very basic graph based on co-occurrence of terms 
in one record can show us a lot on the contents of the whole infrastructure. The colours are 
coded blue-green-yellow with highly connected nodes in yellow. Size of nodes is given by 
the number of occurrences in the whole catalogue. Yet, the clusters are too large and difficult 
to navigate. Since the graph behaves like a social network, we can use community detection 
functions to help us better understand highly connected clusters as shown in Figure 12.

There were 1268 k-clusters identified with modularity: 0.771, k = 1. Lowering k would 
yield more clusters. The figure indicates the most prominent clusters as referring to ocean 
temperature and drilling, climate and meteo, earth sciences, minerals and hydrology.

Table 2. topic modelling over the gEOSS metadata.

sample, historical, object, tree_ring_
width, abie, specie, precipitation, 
quercus, ultra, measurement_station

high, integrate, acquisition, project, 
test, plant, heat, phase, thermal, 
design

channel, operate, station_site, 
network, ci, bhz_channel_bhz, 
lhe_channel_lhe, lce, lcq, dop40rgb

data, information, product, refer, grib, 
general, wmo, international_code, 
wmo_manual_code_definition, fm

sh, dop20rgb, orthophoto, take, 
place, calculate, schleswig_hol-
stein, befliegung, dgm10, issue

e, http, gov, northern, www, district, 
output, california, berkeley_digital_ 
seismograph_network, china

bulletin, gmd, online, format, md, cm, 
digitaltransferoption, correspond, 
detail, available

log, channel, experiment, upper, la, 
mountain, network, operate, 
station_site, mantle

channel, usa_network, array, 
earthscope, nsf, operate, 
transportable, usarray, ta, station_
site

climate, study, data, source, weather, w, 
list, maximum, set, effect 

model, global, resolution, spectral, 
area, re, level, element, forecast, 
wind 

network, sea, tide, coastal, level, 
gauge, station, global, seismograph, 
usgs
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6.2.3. Abstract and title word embedding
From practical experience, we know that the titles and abstracts are the richest elements of 
a metadata record, as keywords are often used rather randomly. There is much higher con-
sistency in concepts obtained from the analysis of data abstracts than from the metadata 
keywords.

Neural network’s biggest advantage is its ability to learn patterns in very complex envi-
ronments. We have trained neural network on English translated corpus of titles and abstract 
fields from all metadata records. In the CBOW model, the network learns to predict output 
word from it context, in skipgram to predict the context from the word given, therefore the 
name word embedding (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013).

Our corpus consisted of 1.8 million documents, 653 million lemmatised lower case words 
without numbers and punctuation in 357 MB of plain cleaned text. The words were replaced 
with their bigrams when the count exceeded 10.000. The final model used CBOW in a 300 
dimensional space with seven word negative sampling and down sampling the 100 most 
frequent words. Only words with frequency higher than 10 were used which resulted in 
vocabulary of 133 000 words. We utilised the Python library Genism (https://radimrehurek.

Figure 11. Keyword clustering.
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com/gensim/about.html). The training for 50 iterations takes two hours on Intel Xeon CPU 
E5-2630 or practically the same time on Intel i7-6820HQ with 64 GB + RAM.

Keywords in GEOSS catalogue are using every possible synonym of any know research 
concept. What we wanted to learn were the real concepts. The word vectors calculated by 
the neural network have ability to push semantically similar words together due to similarities 
in the context as shown on the CBOW figure. Our text does not often come in sentences, yet 
the words show structural patterns. To explore this ability, we searched for the most similar 
words, as shown in Table 3.

We can see that despite the relatively small corpus with highly varied dictionary, the 
results are quite encouraging especially for the high frequency words. One word cannot 
replace the whole concept so networks of word similarities were created. To explore semantic 
context, we have created small networks of word similarities to better understand how the 
concepts interlink in the GEOSS corpus. We have picked themes of our interest and had the 
CBOW-based network analyse the hierarchical similarities at three levels. All levels included 
links to words in the upper hierarchy maximising the capability of the neural network to find 
a word for given context.

Figure 12. Keyword clustering by community.
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The most interesting finding was that this neural word embedding can not only extract 
the semantic meaning of the word but also perception of themes by data providers. We 
wanted to understand roles first. Please notice in Figure 13 how government gets close to 
academia with more than half most similar words overlapping, concepts business and citizen 
meet in employee, administrator and applicants; government and business meet in investments; 
and research/academia/governments/citizen share the join keywords projects and program/
programs/programme. Very interesting was to discover that research and citizen meet in 
words advice, specialist and discussions.

Figure 14 shows the content interactions. Society meets economy dominantly in interests, 
competitiveness, citizens and professionals. Citizen, economy and nature meet in words regu-
latory and weakly also in the word federal hinting on German origin of data. Soils and nature 
shares landscape, habitats and also share areas with water. Climate has most links with nature 
in variability, environmental, ecological, urbanisation and ecology. Climate meets water in 
temperate, warmer, floods. Climate meets atmosphere in precipitation, rain, reconstruction, 

Table 3. Similarity of concept emerging from the use of the CBOW model.

ESa cci, envisat, ers-1, ccrs, dataproduct, cne, asar, aatsr, radarsat, gosat
Ocean marine, atlantic, ecosystem, circulation, support, observe, sea, response, process, carbon
Buoy moor, moored, mooring, drift, deploy, ndbc, ship, oceanographic, glider, drogue
Monitoring monitor, assessment, program, objective, community, goal, research, strategy, ecosystem, environmen-

tal
atmosphere atmospheric, co2, surface, flux, radiative, couple, cloud, dynamic, nasa, convection
Email phone, password, https, mail, pub, login, uspto, telephone, www2, cookcountyil
gEOSS goos, gcmd, s2 k, 3dimg, gcos, getdif, hennickendorf, hassler, dickson, abal

Figure 13. Different stakeholders as emerging for the neural network analysis.
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emissions and thermohaline. Water–climate interactions are advection, wind-driven, under-
current and crust. Also very interesting is the interaction of water–climate–nature in words 
communities, environments, regions, sites and areas.

These models obviously work really well on word level and we could start exploring the 
real tasks on document similarity. The problem with all methods used so far was represent-
ativeness. Even when we used total keyword count as the keyword node size, still it said too 
little about the keyword distribution among data-sets and we got thematic clusters instead 
of metadata-by-theme clusters. LDA was trying to choose document topics considering 
cluster sizes but number of clusters was picked by guessing and topics alone require deep 
thematic knowledge to interpret. Organisation-keyword clusters were a nice workaround 
but were not working well for detailed view.

Therefore, we reused the word vectors calculated for the pictures above for highly rep-
resentative clustering. By running simple mean on 300-dimensional vectors of all words 
present in metadata titles and abstracts, we were able to calculate document vectors (again, 
300 dimensional) and thus summarise the document content. Consequently, we have 

Figure 14. Different thematic areas as emerging for the neural network analysis.
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attempted to cluster the documents using H/DBSCAN and spectral clustering but the matrix 
of 1,800,000 × 300 floats was too big for the algorithms. t-SNE 2D reduced picture shown 
that guessing game with the number of clusters and KMeans, Ward or agglomerative clus-
tering had dubious results. Consequently, we have employed network analysis. For every 
document, we have calculated three most similar neighbours so the contents are fully 
reflected. Finally cluster detection was computed through network modality. We believe the 
resulting picture (Figure 15) is the best representation of GEOSS to date with respect to both 
the content domains and how these domains are represented by the contributors to GEOSS.

7. Discussion: why this is a good case study of big data analytics

Big Data not only revolutionised the data management infrastructures but also required a 
profound change of those tools traditionally used for predictive analytics and the way of 
thinking about knowledge extraction and interpretation (NGDATA, 2013). For example, tra-
ditional statistical solutions typically focus on static analytics that is limited to the analysis 

Figure 15. gEOSS domains as extracted from titles and abstracts.
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42   M. CRAGLIA ET AL.

of samples fixed in time. This is not a reliable approach for Big Data as the range of potential 
correlations and relationships between very diverse and large data sources is too complex 
and dynamic to be fully handled – i.e. modelled, tested and assessed. For these reasons, Big 
Data analysts have looked at machine learning systems as a valuable instrument for Big Data 
analytics (Harper, 2015; SKYTREE, 2017).

Machine learning deals with algorithms that improve automatically through experience 
in time (Jordan & Mitchell, 2015). They can learn from data with a limited (or nil) human 
supervision. In the last decade, the use of machine learning has spread rapidly throughout 
computer science and beyond (Domingos, 2012). Machine learning techniques have been 
successfully utilised in a variety of applications – e.g. natural language processing, spam 
filter, medical diagnosis. In the “Big Data” era, the use of machine learning models to develop 
solutions to the problem of obtaining useful insights, predictions and decisions from the 
vast amount of diverse data have become more and more popular (Jordan & Mitchell, 2015).

Since machine learning techniques are data driven and run at machine scale, the more 
data fed into a machine learning model, the more this can learn and apply the results to 
better discover and display the patterns buried in the data. In the case of GEOSS, the amount 
of data fed into the model was significant. However, considering the content heterogeneity 
of GEOSS data, an important challenge was the definition of the machine learning model 
– see Section 6.

In the scientific literature, four main categories of machine learning algorithms are rec-
ognised: (1) supervised, (2) unsupervised, (3) semi-supervised and (4) reinforcement learning. 
In supervised algorithms the training data (aka labelled data) is a sequence of (x, y) pairs – 
where x is the input and y is its associated output. The aim of supervised algorithm is to 
deduce from training data a functional relationship (i.e. equations and numerical coefficients 
or weights) that “link” x to y. (Wang & Summers, 2012). Unsupervised learning, generally, 
involves the analysis of unlabelled data (i.e. training data are just a collection of x values) 
under assumptions about structural properties of the data (e.g. algebraic, combinatorial or 
probabilistic) (Jordan & Mitchell, 2015). The main purpose is to discover relationships 
between the samples or reveal the latent variables behind the observations (Wang & 
Summers, 2012). Dimension reduction and clustering are examples of unsupervised learning. 
In semi-supervised learning, training data are composed of both labelled and unlabelled 
data. This technique is usually applied to augment labelled data in a supervised learning 
context (Jordan & Mitchell, 2015) – e.g. because data labelling is expensive or impossible in 
some applications (Wang & Summers, 2012). In reinforcement learning, training data are 
in-between the supervised and unsupervised cases. Instead of training examples that indi-
cate the correct output for a given input, the training data in reinforcement learning are 
assumed to provide only an indication as to whether an output is correct or not. However, 
if an output is incorrect, there remains the problem of finding the correct output (Jordan & 
Mitchell, 2015). This research developed a semi-supervised learning algorithm as the GEOSS 
data ingested are noisy in terms of imprecise and hidden/latent values.

This sophisticated model is a significant example of Big Earth Data machine learning 
algorithm for a Global and multidisciplinary System-of-Systems (SoS) in the domain of Global 
Changes and Sustainable Development. Considering the worldwide spread of data systems 
contributing to GEOSS, the extreme diversity of shared data and the profound multi-organ-
isational nature of contributions, the developed machine learning model is the first one (at 
the best of our knowledge) for such a complex Big Earth Data domain. Other global Big Earth 
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Data SoS could be interested in using that for analysing the patterns and gaps of their supply 
chain.

The machine learning model utilised for this study demonstrated to be extremely useful 
to make sense of the volume of data that GEOSS have been collecting in the last decade by 
brokering a vast collection of sources that share very diverse content. The algorithm devel-
oped provided a valuable tool to explore and analyse the mine of (implicit) information 
presently stored in GEOSS and recognised important patterns and relationships as shown 
in Section 6.

8. Conclusions

This paper has provided the first ever view of the GEOSS data universe. As indicated in Section 
5, although we have used only the 1.8 million metadata records harvested by the GEO-DAB, 
we have covered more than 80% of the all data in GEOSS, as the vast majority of the large 
data collections are included in our work. This is Big Earth Data in terms of size, variety and 
dynamics. It is also very rich data, and in this first part of our work we have just started 
scratching the surface of this data universe, characterising the collaborative networks 
(Section 6.1) and the thematic coverage (Section 6.2). The network analysis has linked organ-
isations by keyword and citation. The former already highlights disciplinary bundles to some 
degree as contributors from similar disciplines tend to use similar keywords. The huge range 
of keywords used in GEOSS however, almost 200,000, shows that there is much room for 
improvement in data management, for example by providing some hierarchical structure 
to the keywords, linking together the higher level concepts and reaching some agreement 
among providers to use at least 1 or 2 terms from these higher concepts to label the data, 
in addition to the keywords currently used. This would already be very helpful to help users 
navigate the system and find data of relevance to them – the GEO initiatives for defining a 
set of Essential Variables can valuably contribute to that.

The analysis of links by citation among organisations first, and then all contributors, includ-
ing individuals, has yielded two interesting insights. First of all, the use of filtering in the 
degree of connectivity (Figure 9) has identified clearly those nodes in the network that are 
the most connected. They then become priority targets for measure to improve the usability 
of the system: if convinced to adopt better data management practices (e.g. with respect to 
the use of keywords, licencing terms and conditions, unique identifiers and so on), they can 
have a very high impact because they are so well connected to others in the network. We 
will follow this up in the GEO context with the relevant groups responsible for the operations 
of the GEOSS Common Infrastructure, data sharing, data management and the evolution of 
the GEOSS architecture (i.e. the GEOSS EVOLVE initiative). The second insights came from 
the analysis of all citation connections. Here the predominance of North American institu-
tions in the graph (Figure 10) became very visible compared to previous illustrations of the 
GEOSS network (e.g. Figure 7). We have referred to this as “institutional thickness”, i.e. a 
measure of established collaborations between, in this case, government agencies and aca-
demia that is obviously much more established, at least in the area of Earth Observation, in 
North America than in Europe or Asia. This should be a matter of reflection for organisations 
in charge of research policy, and we will follow this up with colleagues in Europe.

Section 6.2 has focused on the use of neural networks to extract information from unstruc-
tured content – i.e. the Abstract in the metadata characterising each data element. The text 
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in the Abstracts is unstructured because it is not characterised by any predefined data model 
or not organised in a predefined manner, and can contain dates, numbers and facts – in 
some cases extremely useful for the scope of GEOSS. Usually, this information is called implicit 
to distinguish it from the explicit one, encoded using structured (e.g. DB fields) or semi-struc-
tured (e.g. HTML/XML/RDF elements) data. For historical and economic reasons, it is quite 
common to find valuable metadata information hidden in the Abstract – e.g. temporal acqui-
sition, spatial and temporal resolutions, provenance elements.

As shown, the algorithms developed have been extremely useful to characterise the 
relationships between stakeholders (government, academia, business, individual contribu-
tors) and topic areas and more generally when reapplied to the entire corpus to characterise 
the main semantic/thematic structure of the GEOSS universe. This information can be used 
by GEOSS to augment the officially recorded metadata elements by stating extra metadata 
elements. The Brokering layer (i.e. the GEO DAB) might take care of this task, in keeping with 
its scope. Such augmentation would significantly improve GEOSS discoverability function-
alities providing more evidences for a correct use of discovered data – i.e. supporting a better 
fit-for-purpose selection criterion. Naturally, GEOSS would also consider feeding the data 
providers back with the extracted information, as a valuable service and for an 
assessment.

Metadata augmentation is getting more and more present in large SoS, where metadata 
maturity and completeness is not always homogeneous across the diverse contributing 
systems. For example, the National Science Digital Library (NSDL) is exploring options for 
augmenting harvested metadata and re-exposing the augmented metadata to downstream 
users with detailed information on how it was created and by whom (Hillmann, Dushay, & 
Phipps, 2004). Through the work presented in this paper there is an opportunity for GEOSS 
to follow this line to enrich user experience.

The next stages of the research will develop over three main strands: the first is to follow 
up on the findings of the work presented here with respect to data management and 
research policy issues. The second is to dig deeper into the GEOSS universe shown in Figure 
15, and start picking out individual “constellation”. As an example, from a European perspec-
tive, it will be interesting to identify the Copernicus “constellation”, i.e. all the organisations 
that connect to Copernicus, either as a keyword or in the Abstract, and then follow over time 
the evolution of this constellation as new initiative to increase access and use of Copernicus 
data are implemented. More generally, we can do longitudinal studies of the evolution of 
the GEOSS using the methodology presented in this paper to measure the impact of meas-
ures taken to improve the contents and organisations of the data in GEOSS. Last but by no 
means least, we plan to complement these studies that focus on the supply side of GEOSS, 
with work on the demand side, i.e. apply these methods to the large volumes of queries 
made to the GEOSS portals to identify who is searching for what, what is it they find and 
then try and connect better both demand and supply. The overall goal is to evolve this global 
system of systems to support more effectively the scientific and policy objectives the inter-
national community represented in GEO.

Data availability statement

The data referred to in this paper is not publicly available at the current time.
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