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Hyperactivation of the insulin-like growth factor I re-
ceptor (IGF-IR) contributes to primary breast cancer
development, but the role of the IGF-IR in tumor metas-
tasis is unclear. Here we studied the effects of the
IGF-IR on intercellular connections mediated by the
major epithelial adhesion protein, E-cadherin (E-cad).
We found that IGF-IR overexpression markedly stimu-
lated aggregation in E-cad-positive MCF-7 breast cancer
cells, but not in E-cad-negative MDA-MB-231 cells. How-
ever, when the IGF-IR and E-cad were co-expressed in
MDA-MB-231 cells, cell-cell adhesion was substantially
increased. The IGF-IR-dependent cell-cell adhesion of
MCF-7 cells was not related to altered expression of
E-cad or �-, �-, or �-catenins but coincided with the
up-regulation of another element of the E-cad complex,
zonula occludens-1 (ZO-1). ZO-1 expression (mRNA and
protein) was induced by IGF-I and was blocked in MCF-7
cells with a tyrosine kinase-defective IGF-IR mutant. By
co-immunoprecipitation, we found that ZO-1 associates
with the E-cad complex and the IGF-IR. High levels of
ZO-1 coincided with an increased IGF-IR/�-catenin/ZO-
1-binding and improved ZO-1/actin association, whereas
down-regulation of ZO-1 by the expression of an anti-
ZO-1 RNA inhibited IGF-IR-dependent cell-cell adhe-
sion. The results suggested that one of the mechanisms
by which the activated IGF-IR regulates E-cad-mediated
cell-cell adhesion is overexpression of ZO-1 and the re-
sulting stronger connections between the E-cad com-
plex and the actin cytoskeleton. We hypothesize that in
E-cad-positive cells, the IGF-IR may produce antimeta-
static effects.

The insulin-like growth factor I (IGF-I)1 receptor (IGF-IR) is
a ubiquitous tyrosine kinase capable of regulating different
growth-related and -unrelated processes (1–3). Recent evidence
indicates that the IGF-IR may be involved in breast cancer

development. The IGF-IR is significantly (10–14-fold) overex-
pressed in estrogen receptor-positive primary breast tumors
compared with normal mammary epithelium or benign tumors
(1, 4). Moreover, the intrinsic ligand-independent tyrosine ki-
nase activity of the IGF-IR has been found to be substantially
up-regulated (�2–4-fold) in breast cancer cells (4). It has been
suggested that the increased receptor function coupled with
enhanced receptor expression amounts to a 40-fold elevation in
IGF-IR activity in estrogen receptor-positive breast tumors (4).
Recent clinical and experimental data indicate that up-regula-
tion of IGF-IR signaling in estrogen receptor-positive breast
cancer cells is associated with autonomous cell proliferation,
estrogen-independence, and increased resistance to various an-
titumor treatments (1). Consequently, it is believed that hyper-
activation of the IGF-IR may induce and sustain the growth of
primary breast tumors (1).

The role of the IGF-IR in breast cancer metastasis, however,
is unclear. The experimental data suggest that the IGF-IR has
a function in cell spreading by effectively stimulating the mo-
tility of different metastatic breast cancer cell lines lacking the
expression of a major adhesion protein, E-cadherin (E-cad) (1,
5, 6). On the other hand, we and others have shown that in
more differentiated E-cad-positive cells, IGF-I treatment or
IGF-IR overexpression up-regulates cell-cell adhesion, which
correlates with increased cell survival in three-dimensional
culture and with reduced cell migration in vitro and in organ
culture (1, 7–10).

The mechanism of IGF-I-dependent intercellular adhesion
and the clinical consequences of this phenomenon have not
been fully elucidated. Previously, we demonstrated that in
MCF-7 human breast cancer cells, the IGF-IR co-localizes and
co-precipitates with the E-cad complex and that IGF-induced
aggregation is blocked with an anti-E-cad antibody (7). In this
study we assessed the effects of the IGF-IR on the elements of
the E-cad adhesion complex, i.e. E-cad; �-, �-, and �-catenins;
and �-catenin-associated proteins (see Fig. 6). The initial re-
sults prompted us to focus on an �-catenin-binding element,
the junction protein zonula occludens-1 (ZO-1).

ZO-1 is a �220-kDa scaffolding protein containing various
domains (an SH3 domain, three PDZ domains, a proline-rich
region, and a guanylate kinase domain) that allow its interac-
tion with specialized sites of plasma membrane as well as with
other proteins (11, 12). ZO-1 is a characteristic element of tight
junctions, but recently its presence has also been demonstrated
in E-cad adherens junctions (13–15). The role of ZO-1 in ad-
herens junctions is yet unclear, but it is assumed that it may
functionally link E-cad with the actin cytoskeleton because it
associates with �-catenin and actin through its N and C termi-
nus, respectively (Ref. 13, see Fig. 6). In addition, as a member
of the membrane-associated guanylate kinase homologue
(MAGUK) family of putative signaling proteins, ZO-1 may be
involved in signal transduction. Indeed, ZO-1 has been found to
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bind a target of Ras, AF6 (16). Deletions or mutations in the
ZO-1 gene produced overgrowth, suggesting that ZO-1 may act
as a tumor suppressor (11). In breast cancer, ZO-1 is usually
co-expressed with E-cad and is a strong independent marker of
a more differentiated phenotype (17).

At present, very little is known about the regulation of ZO-1
by growth factors. However, some recent studies demonstrated
that epidermal growth factor and vascular endothelial growth
factor are able to increase ZO-1 tyrosine phosphorylation, mod-
ulate its subcellular localization, and consequently produce
increased permeability (18–20). Here, we present the first ev-
idence that in MCF-7 breast cancer cells 1) the IGF-IR up-
regulates ZO-1 expression, 2) elevated levels of ZO-1 coincide
with enhanced IGF-IR/E-cad-mediated cell-cell adhesion, and
3) ZO-1 expression is required for IGF-IR-increased cell aggre-
gation in E-cad-positive MCF-7 cells.

MATERIALS AND METHODS

Expression Plasmids

E-cad Expression Plasmid—The pBAT-EM2 plasmid is a derivative
of pBR322 and contains the mouse E-cad cDNA cloned under the
�-actin promoter in pBR322 (21). As demonstrated previously, trans-
fection of MDA-MB-231 cells with pBAT-EM2 results in E-cad overex-
pression, improved cell aggregation, and reduced metastatic potential
of the cells (21, 22).

Antisense ZO-1 RNA Vector—The pcDNA3/anti-ZO-1 plasmid encod-
ing the anti-ZO-1 antisense RNA contains a 959-base pair BamHI
fragment of the human ZO-1 cDNA (nucleotides 4205–5164) inserted
(in the 3�-5� orientation) into the pcDNA3.1/hygro plasmid (Invitrogen).
pcDNA3/sense-ZO-1 is the control vector in which the above 959-base
pair ZO-1 cDNA fragment was cloned in the 5�-3� orientation.

Cell Lines and Cell Culture Conditions

MCF-7/IGF-IR clones 12, 15, and 17 are MCF-7-derived clones over-
expressing the IGF-IR at the levels 5 � 105, 3 � 106, and 1 � 106

receptors/cell, respectively (7). To avoid clonal variation, in several
experiments we used a population of mixed clones 12, 15, and 17. The
mixed population is referred to as MCF-7/IGF-IR cells and expresses
�0.9 � 106 IGF-IR receptors/cell (which represents �18-fold overex-
pression over the levels in normal cells) (1). MCF-7/IGF-IR/Y3F express
an IGF-IR (�3 � 106 receptors/cell) with inactivating mutations in the
tyrosine kinase domain (Tyr-1131, Tyr-1135, and Tyr-1136 replaced
with Phe) (23). MCF-7/IGF-IR/Y3F cells were derived from MCF-7 cells
by stable transfection with the pcDNA3/IGF-IR/KR plasmid and sub-
sequent selection in 2 mg/ml G418. The results obtained with the
MCF-7/IGF-IR/Y3F clone were verified using a population of MCF-7
cells transiently transfected with the IGF-IR/Y3F vector (see below).
MCF-7/IGF-IR/anti-ZO-1 and MCF-7/IGF-IR/sense ZO-1 cells were de-
rived from MCF-7/IGF-IR clone 15 by stable transfection with the
antisense and sense ZO-1 vectors, respectively and subsequent selec-
tion in 500 �g/ml hygromycin B.

MDA-MB-231 is a metastatic breast cancer cell line lacking E-cad

and expressing �7 � 103 IGF-IR receptors/cell (24).2 MDA-MB-231/
IGF-IR clone 31 was derived from MDA-MB-231 cells by stable trans-
fection with the pcDNA3/IGF-IR plasmid. MDA-MB-231/IGF-IR cells
express �250,000 IGF-IR/cell.2

All cell lines were grown in Dulbecco’s modified Eagle’s medium/F12
(1:1) containing 5% calf serum. MCF-7- and MDA-MB-231-derived clones
transfected with the wild-type or mutant IGF-IR were maintained in
growth medium with 100 �g/ml G418. MCF-7/IGF-IR/anti-ZO-1 and
MCF-7/IGF-IR/sense ZO-1 cells were cultured in growth medium with 50
�g/ml hygromycin B. In the experiments requiring serum-free conditions,
the cells were cultured in phenol red-free Dulbecco’s modified Eagle’s
medium containing 0.5 mg/ml bovine serum albumin, 1 �M FeSO4, and 2
mM L-glutamine (referred to as SFM).

Transient Transfection

MDA-MB-231 and MDA-MB-231/IGF-IR cells were transiently
transfected using LipofectAMINE 2000 (Life Technologies, Inc.) (rea-
gent/DNA ratio, 5 �l/1 �g). The transfection was carried out in growth
medium for 24 h, and then the cells were lysed and processed for E-cad
Western blotting (WB). To evaluate the extent of cell-cell adhesion in
the transfected MDA-MB-231 and MDA-MB-231/IGF-IR cells, the cells
were trypsinized upon transfection, counted, and placed in three-di-
mensional suspension culture as described below. MCF-7 cells were
transfected for 6 h in growth medium using Fugene 6 (Roche Molecular
Biochemicals) (reagent/DNA ratio, 3 �l/1 �g). To study IGF-I signaling,
the transfected MCF-7 cells were shifted to SFM for 36 h and stimu-
lated with IGF-I for 15 min. The efficiency of transfection (transfected
cells/total cell number) was at least 70% for all cell types and was
estimated by scoring fluorescent cells in cultures transfected with the
plasmid pCMS (encoding green fluorescent protein) (Invitrogen).

Three-dimensional Spheroid Culture

The cells were grown to 70–80% confluence, trypsinized, and plated
in single-cell suspension in 2%-agar-coated plates containing either
normal growth medium or SFM. 2 � 106 cells were plated per 100 mm
culture dish. To generate three-dimensional spheroids, the plates were
rotated for 4 h at 37 °C. The spheroids started to assemble at �1 h after
plating and were completely organized after 3–4 h of culture in sus-
pension. The three-dimensional cultures were photographed using a
phase-contrast microscope (Nikon or Olympus). The extent of aggrega-
tion was scored by measuring the spheroids with an ocular micrometer.
For each cell type, the spheroids between 25 and 50, 50 and 100, and
�100 �m (in the smallest cross-section) were counted in 10 different
fields under � 10 magnification.

IGF Stimulation

70% confluent cell cultures were synchronized in SFM for 36 h and
then stimulated with 20 ng/ml IGF-I for 0–72 h.

Immunoprecipitation and Western Blotting

The expression of different elements of the adhesion complex was
assessed in 500 �g of protein lysate by immunoprecipitation and WB

2 Bartucci, M., Morelli, C., Mauro, L., Ando’, S., and Surmacz, E.
(2001) Cancer Res. 61, 6747–6754.

TABLE I
Effects of IGF-IR and ZO-1 expression on cell aggregation in E-cad-positive and -negative breast cancer cells

The stable cell lines (MCF-7, MCF-7/IGF-IR, MCF-7/IGF-IR/anti-ZO-1, MCF-7/Y3F, MDA-MB-231, and MDA-MB-231/IGF-IR) and transiently
transfected populations (MDA-MB-231/E-cad, MDA-MB-231/vector, MDA-MB-231/IGF-IR/E-cad, and MDA-MB-231/IGF-IR/vector) were cultured
as three-dimensional spheroids in normal growth medium. The number of spheroids of different sizes was established as described under
“Materials and Methods.” The values represent a sum of spheroids in 10 optical fields under � 10 magnification. The results are mean � S.E. from
at least three experiments. Representative three-dimensional cultures are shown in Figs. 1 and 7.

Cells
Spheroids

25 � 50 �m 50 � 100 �m �100 �m

MCF-7 21.0 � 1.9 96.0 � 6.7 2.7 � 0.9
MCF-7/IGF-IR 1.7 � 0.7 22.3 � 1.4 86.5 � 3.9
MCF-7/IGF-IR/anti-ZO-1 75.0 � 3.5 40.7 � 2.1 0.0 � 0.0
MCF-7/Y3F 45.0 � 2.9 39.8 � 4.6 0.0 � 0.0
MDA-MB-231 7.0 � 0.6 0.5 � 0.2 0.0 � 0.0
MDA-MB-231/IGF-IR 12.5 � 0.8 0.5 � 0.1 0.0 � 0.0
MDA-MB-231/E-cad 39.8 � 3.6 15.2 � 1.1 0.0 � 0.0
MDA-MB-231/vector 10.0 � 1.4 0.6 � 0.4 0.0 � 0.0
MDA-MB-231/IGF-IR/E-cad 27.0 � 2.2 68.3 � 7.2 8.0 � 1.5
MDA-MB-231/IGF-IR/vector 18.6 � 2.2 0.9 � 0.3 0.0 � 0.0
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with appropriate antibodies. The expression of ERK1/ERK2 was tested
in 50 �g of total cell lysate. The cell lysis buffer contained 50 mM

HEPES, pH 7.5, 150 mM NaCl, 1% Triton X-100, 1.5 mM MgCl2, 1 mM

CaCl2, 100 mM NaF, 0.2 mM Na3VO4, 1% phenylmethylsulfonyl fluo-
ride, and 1% aprotinin as described before (25). The following antibodies
were used: anti-ZO-1 polyclonal antibody (pAb) (Zymed Laboratories
Inc.) for ZO-1 immunoprecipitation (5 �g/ml) and WB (2 �g/ml); anti-
E-cad monoclonal antibody (mAB), clone 36 (Transduction Laborato-
ries) for E-cadherin immunoprecipitation (2 �g/ml) and WB (0.1 �g/ml);
anti-�-catenin pAb (Sigma or Zymed Laboratories Inc.) for �-catenin
immunoprecipitation (4 �g/ml) and WB (anti-serum dilution 1:4000);
anti-�-catenin mAb (Transduction Laboratories) for �-catenin immuno-
precipitation (4 �g/ml) and WB (0.5 �g/ml); anti-� catenin pAb (Sigma)
for �-catenin WB (1 �g/ml); anti-actin mAb clone AC-40 (Sigma) for
actin WB (0.4 �g/ml); anti-IGF-IR mAb, clone �IR-3 (Calbiochem) for
IGF-IR immunoprecipitation (3 �g/ml), and anti-IGF-IR pAb C-20 (San-
ta Cruz Biotechnology) for IGF-IR WB (0.2 �g/ml); anti-p85 pAb (Up-
state Biotechnology, Inc.) for the p85 subunit of the phosphatidylinosi-
tol 3-kinase WB (0.25 �g/ml); anti-phospho-MAPK mAb (New England
Biolabs, Inc.) for active ERK1/ERK2 WB (0.5 �g/ml); and anti-MAPK
pAb (New England Biolabs) for total ERK1/ERK2 WB (1 �g/ml). Tyro-
sine phosphorylation of immunoprecipitated proteins was measured by
WB with anti-phosphotyrosine mAb (Transduction Laboratories) (0.03
�g/ml). Western blots were developed using an ECL chemiluminescence
kit (Amersham Pharmacia Biotech). The intensity of bands represent-
ing relevant proteins was measured by laser densitometry scanning.

RESULTS

IGF-IR Overexpression Stimulates Cell-Cell Adhesion
through an E-cad-dependent Mechanism—First, we demon-
strated that under three-dimensional culture conditions, over-
expression of the IGF-IR stimulated cell-cell adhesion in E-cad-
positive MCF-7 breast cancer cells but not in E-cad-negative
MDA-MB-231 cells (Fig. 1, A and B) (Table I). However, co-
expression of the IGF-IR and E-cad resulted in robust cell-cell
adhesion of MDA-MB-231 cells, whereas the expression of E-
cad alone was less efficient in inducing intercellular contacts
(Fig. 1, C and D) (Table I). These results, together with our
previous data showing that IGF-IR-mediated aggregation in
MCF-7 cells is blocked with an anti-E-cad antibody (7), indi-
cated that IGF-IR adhesion signals are transmitted through
the E-cad complex.

IGF-IR Overexpression Up-regulates ZO-1—We tested
whether high levels of the IGF-IR affect the expression of the
proteins within the E-cad complex and found that in MCF-7
and MCF-7/IGF-IR cells cultured as three-dimensional sphe-
roids, the levels of E-cad and �-, �-, and �-catenin were similar.
However, the abundance of ZO-1 was significantly increased in
MCF-7/IGF-IR cells (Fig. 2). The tyrosine phosphorylation of
all these adhesion proteins was undetectable in spheroids and
was not influenced by IGF-IR overexpression (Fig. 5 and data
not shown).

To investigate whether the increased expression of ZO-1 in
MCF-7/IGF-IR cells depends on IGF-IR tyrosine kinase activ-
ity, we generated by stable or transient transfection MCF-7/
IGF-IR/Y3F cells expressing high levels of a kinase-defective
IGF-IR mutant (IGF-IR/Y3F). The overexpression of the IGF-
IR/Y3F mutant resulted in impaired IGF-I response, which was
reflected by markedly reduced IGF-IR and IRS-1 tyrosine phos-
phorylation, decreased IRS-1/p85 binding, and diminished
ERK1/ERK2 stimulation (Fig. 3). The basal expression of ZO-1
in MCF-7/IGF-IR/Y3F cells was significantly reduced com-
pared with that in MCF-7/IGF-IR cells, indicating that tyrosine
kinase activity of the IGF-IR is required for the up-regulation
of ZO-1 (Fig. 3). Interestingly, the inhibition of IGF-I response
did not affect E-cad expression, suggesting a selective action of
the IGF-IR toward ZO-1 (Fig. 3). The blockade of the IGF-IR
signal in MCF-7/IGF-IR/Y3F cells coincided with reduced cell-
cell adhesion (Table 1).

ZO-1 mRNA and Protein Expression Is Regulated by IGF-
I—To establish whether the activation of the IGF-IR by IGF

produces a similar effect on ZO-1 as that seen with IGF-IR
overexpression, we studied ZO-1 mRNA and protein in MCF-7
and MCF-7/IGF-IR cells treated with 20 ng/ml IGF-I for 1–72 h
(Fig. 4). In MCF-7 cells cultured in SFM, the basal levels of
ZO-1 mRNA were low and were markedly increased between 4
and 36 h of IGF-I treatment (Fig. 4A). In contrast, the abun-
dance of ZO-1 mRNA was always elevated in MCF-7/IGF-IR
cells and was only moderately improved by IGF-I (4–72 h) (Fig.

FIG. 1. IGF-IR overexpression stimulates cell-cell adhesion in
E-cad-positive but not in E-cad-negative breast cancer cells. A,
E-cad-positive MCF-7 and MCF-7/IGF-IR cells and E-cad-negative
MDA-MB-231 and MDA-MB-231/IGF-IR cells were cultured in normal
growth medium as three-dimensional spheroids for 24 h as described
under “Materials and Methods” and then photographed under phase
contrast microscopy. a, MCF-7 cells expressing �6 � 104 IGF-IR/cell
(7); b, MCF-7/IGF-IR, clone 12 expressing �5 � 105 IGF-IGF-IR/cell (7);
c, MDA-MB-231 cells with �7 � 103 IGF-IGF-IR/cell (24), and d, MDA-
MB-231/IGF-IR, clone 31 with �3 � 105 IGF-IR/cell.2 The bar in a
equals 50 �m. B, IGF-IR levels in cells pictured in Fig. 1A, a–d were
assessed by WB in 50 �g of cell lysate as described under “Materials and
Methods.” C, MDA-MB-231 and MDA-MB-231/IGF-IR cells were tran-
siently transfected with the E-cad expression plasmid (b and d) or a
vector alone (a and c) and then cultured in suspension as three-dimen-
sional spheroids. The bar in a equals 100 �m. D, E-cad levels in cells
pictured in Fig. 1C, a–d were determined by WB in 50 �g of cell lysate,
as described under “Materials and Methods.”
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4A). ZO-1 protein levels in IGF-I-treated cells generally re-
flected the expression of ZO-1 mRNA (Fig. 4B).

Interactions of ZO-1 with the E-cad Complex in MCF-7/
IGF-IR Cells—It has been recently reported that ZO-1 is an
element of the E-cad complex (12–14). This complex also con-
tains the IGF-IR, as described in our previous work (7, 8). Here,
we analyzed tyrosine phosphorylation status of the IGF-IR,
E-cad, and ZO-1, and the interactions among these proteins in
MCF-7 and MCF-7/IGF-IR cells cultured as three-dimensional
spheroids (Fig. 5). The autophosphorylation of the IGF-IR was
elevated in MCF-7/IGF-IR cells, reflecting the increased re-
sponsiveness of the cells to IGF-IR ligands (IGF-I, IGF-II, and
insulin) present in serum. However, tyrosine phosphorylation
of E-cad and ZO-1 were unaffected by IGF-IR overexpression
(Fig. 5A). Similarly, high levels of the IGF-IR did not affect
tyrosine phosphorylation of �-, �-, or �-catenin (data not
shown). Next, we asked whether hyperactivation of the IGF-IR
and increased expression ZO-1 have consequences for the asso-
ciations among the proteins within the E-cad complex. Co-immu-
noprecipitation experiments demonstrated that IGF-IR overex-
pression resulted in an increased abundance of IGF-IR�E-cad and
IGF-IR�ZO-1 complexes (Fig. 5A). Also, the elevated levels of
ZO-1 in MCF-7/IGF-IR cells coincided with an increased associ-
ation of ZO-1 with either E-cad or the IGF-IR (Fig. 5A). Moreover,
the binding of �-catenin (a ZO-1-associated protein) to the IGF-IR
or ZO-1 but not to E-cad was greater in MCF-7/IGF-IR cells than
in MCF-7 cells (Fig. 5A). The presence of �-catenin in IGF-IR
immunoprecipitates was confirmed with cell lysates in which
�-catenin was first removed with a specific antibody. As ex-
pected, immunoprecipitation of such depleted lysates with either
anti-IGF-IR or anti-E-cad antibodies revealed reduced �-catenin/
E-cad and �-catenin/IGF-IR associations (Fig. 5B). Further ex-
periments with �-catenin immunoprecipitates indicated in-

creased abundance of �-catenin�actin and �-catenin�ZO-1
complexes in MCF-7/IGF-IR cells (Fig. 5C). A hypothetical model
of possible interactions between adhesion proteins and the
IGF-IR is shown in Fig. 6.

FIG. 2. Expression of adhesion proteins in MCF-7 and MCF-7/
IGF-IR cells. The expression of adhesion proteins and the IGF-IR was
studied in 50 �g of protein lysates obtained from cells cultured as three-
dimensional spheroids in normal growth medium. MCF-7/IGF-IR cells are
pooled MCF-7/IGF-IR clones 12, 15, and 17 (see “Materials and Meth-
ods”). A, the levels of the IGF-IR; E-cad; �-, �-, �-catenin (cat); and ZO-1
detected by WB using specific antibodies (see “Materials and Methods”).
B, the expression of ZO-1 in MCF-7 cells and in MCF-7/IGF-IR clones (cl.)
12, 17, and 15, expressing �5 � 105, 1 � 106, and 3 � 106 IGF-IR/cell,
respectively (7).

FIG. 3. ZO-1 expression is inhibited in MCF-7/IGF-IR/Y3F cells.
MCF-7/IGF-IR cells expressing the wild-type IGF-IR (WT) and MCF-7/
IGF-IR/Y3F cells stably transfected with a dominant-negative kinase-
defective IGF-IR mutant (Y3F) were synchronized in SFM for 36 h and
then stimulated for 15 min with 20 ng/ml IGF-I as described under
“Materials and Methods.” The expression and tyrosine phosphorylation
(PY) of the IGF-IR and IRS-1 in the cells were detected by immunopre-
cipitation and WB in 500 �g of protein lysates. The binding of the p85
subunit of the phosphatidylinositol 3-kinase to IRS-1 (IRS-1/p85) was
studied by WB in IRS-1 immunoprecipitates. The expression of active
ERK1/ERK2 (p-ERK1/2), total ERK1/2, ZO-1, and E-cad was evaluated
by WB in 50 �g of total protein lysates. The specific antibodies used are
listed under “Materials and Methods.” Similar results were obtained
with MCF-7 cells transiently transfected with the IGF-IR/Y3F expres-
sion vector.

FIG. 4. ZO-1 mRNA and protein are regulated by IGF-I. A,
MCF-7 cells and MCF-7/IGF-IR were synchronized in SFM (time 0) and
then stimulated with 20 ng/ml IGF-I for different times (1–72 h). The
expression of 7.8-kilobase ZO-1 mRNA in MCF-7 and MCF-7/IGF-IR
cells was studied by Northern blotting in 20 �g of total RNA using a
[32P]dCTP-labeled ZO-1 probe (described under “Materials and Meth-
ods”). 28 and 18 S rRNA are shown as a control of RNA loading. B, the
expression of ZO-1 protein in IGF-I-treated cells was detected by WB as
described under Fig. 3.
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Down-regulation of ZO-1 Results in Decreased Cell-Cell Ad-
hesion in MCF-7/IGF-IR Cells—Because the results suggested
that ZO-1 may be an important intermediate in IGF-IR-stim-
ulated cell-cell adhesion, we set out to confirm this notion using
MCF-7/IGF-IR cells in which ZO-1 levels were down-regulated
by the expression of an anti-ZO-1 RNA (MCF-7/IGF-IR/anti-
ZO-1 cells) (Fig. 7). The clones with the best ZO-1 reduction and
an intact E-cad and IGF-IR expression were analyzed in three-
dimensional culture. The cell-cell adhesion of MCF-7/IGF-IR/
anti-ZO-1 cells was greatly inhibited compared with that in the
parental MCF-7/IGF-IR cells (Fig. 7 and Table 1). The expres-
sion of the anti-ZO-1 plasmid in the parental MCF-7 cells was
toxic, and no viable clones were obtained. The transfection of
the sense-ZO-1 vector had no effect on cell-cell adhesion (data
not shown).

DISCUSSION

Cell-cell adhesion is a known factor modulating the motility
of tumor cells and consequently impacting tumor metastasis
(26). The regulation of this process by exogenous growth factors
is still not well understood. In E-cad-positive breast cancer
cells, the overexpression or activation of the IGF-IR has been
shown to stimulate cell-cell adhesion and reduce cell spreading
in vitro or in organ culture (7–10). The IGF-IR has also been
found co-localized and co-precipitated with the E-cad adhesion
complex (7, 8). The mechanism of IGF-IR-stimulated E-cad-de-
pendent cell-cell adhesion is unknown and has been investi-
gated in this work. We discovered the following observations. 1)
IGF-IR overexpression increased aggregation in E-cad-positive
cells but not in E-cad-negative cells. 2) High expression of both
IGF-IR and E-cad markedly improved cell aggregation in E-
cad-negative cells. 3) IGF-IR-dependent cell-cell adhesion in
E-cad-positive cells did not affect the expression of E-cad or �-,
�-, or �-catenins but coincided with up-regulation of ZO-1. 4)
ZO-1 expression was induced by IGF-I and required IGF-IR
tyrosine kinase activity, and 5) high levels of ZO-1 coincided
with an increased IGF-IR/�-catenin/ZO-1 binding and im-
proved ZO-1/actin association, whereas down-regulation of
ZO-1 by the expression of an anti-ZO-1 RNA inhibited IGF-IR-
dependent cell-cell adhesion. We hypothesize that the mecha-
nism or one of the mechanisms by which the activated IGF-IR
stimulates cell-cell adhesion is overexpression of ZO-1 and the
resultant stronger connections between the E-cad complex and
the actin cytoskeleton.

Very little is known about the regulation of ZO-1 by growth

IGF-IR and E-cad compared with that seen in A. C, 500 �g of protein
lysates were precipitated with anti-�-catenin antibody and probed by
WB for �-catenin, actin, and ZO-1. The blots presented in A, B, and C
were identically developed with film exposure time 10 s.

FIG. 5. Interactions of ZO-1 with the IGF-IR in the E-cad com-
plex. A, the IGF-IR, E-cad, and ZO-1 were immunoprecipitated from
500 �g of total protein lysates obtained from MCF-7 and MCF-7/IGF-IR
cells cultured as three-dimensional spheroids in normal growth me-
dium. The immunoprecipitates (IP) were then probed by Western blot-
ting (WB) for phosphotyrosine (PY), the IGF-IR (�97 kDa), ZO-1 (�220
kDa), E-cad (�120 kDa), and �-catenin (�102 kDa). B, to confirm
�-catenin presence in IGF-IR immunoprecipitates, the lysates were
first treated with anti-�-catenin antibodies (Zymed Laboratories Inc.)
overnight to deplete �-catenin and then immunoprecipitated with ei-
ther anti-E-cad or anti-IGF-IR antibodies. The E-cad and IGF-IR im-
munoprecipitates were then probed with another anti-�-catenin anti-
body (Sigma). Note significantly reduced �-catenin associations with

FIG. 6. Possible interactions between ZO-1 and the IGF-IR
within the E-cad complex. The well established connections between
E-cad, catenins, and actin are shown as solid lines. The proposed
connections between the IGF-IR, �-catenin, ZO-1, and actin are drawn
as broken lines. At present, it is not known whether the IGF-IR inter-
acts with �-catenin directly or if other intermediate proteins are
involved.
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factors. Several growth factors (e.g. epidermal growth factor
and vascular endothelial growth factor) have been demon-
strated to increase tyrosine phosphorylation of ZO-1 in differ-
ent cellular model systems (18, 19). Hyperphosphorylation of
ZO-1 usually coincides with its departure from tight junctions
into the cytoplasm and with increased permeability (18, 19). In
addition, v-Src-increased ZO-1 tyrosine phosphorylation has
been linked to decreased cell-cell adhesion (27). IGF-I, on the
other hand, has been shown to stabilize ZO-1 in tight junctions
and to preserve the epithelial barrier in embryonic kidney cells
and in pig thyrocytes (28, 29). However, the effects of IGF-I on
ZO-1 expression and function in breast cancer cells have never
been explored. Our findings provide the first evidence that the
activation of the IGF-IR up-regulates ZO-1 mRNA and protein
levels without affecting ZO-1 tyrosine phosphorylation. Con-
sistent with the results obtained in other models, we noted
increased adhesion in cells overexpressing ZO-1 and reduced
aggregation in cells with down-regulated ZO-1 levels.

IGF-IR tyrosine phosphorylation was required for the stim-
ulation of ZO-1 expression, inasmuch as the basal levels of
ZO-1 were not increased in MCF-7/IGF-IR/Y3F cells expressing
a dominant-negative, kinase-defective mutant of the IGF-IR.
However, the putative IGF-I signaling pathways leading to
ZO-1 expression have yet to be characterized. Our preliminary
data with MCF-7/IRS-1 cells, in which the major IGF-IR/IRS-
1/phosphatidylinositol 3-kinase growth/survival pathway is hy-
peractivated (1), suggested that this pathway is not involved in
ZO-1 regulation (data not shown).

The clinical implications of IGF-induced and ZO-1-mediated
cell-cell adhesion on tumor development and progression are
unknown. Until now, the data from our and other laboratories
suggest that in E-cad-positive breast cancer cells IGF-IR im-
proves cell-cell adhesion and cell survival in three-dimensional
culture but at the same time reduces cell spreading (1). Thus,
one consequence of IGF-IR overexpression in breast cancer

could be increased growth and survival of the primary tumor
but reduced cell metastasis. This hypothesis is consistent with
the observation that the IGF-IR is a good prognostic indicator
for breast cancer, as tumors with good prognosis express much
higher levels of the IGF-IR than tumors with bad prognosis (1,
30, 31). Notably, an independent study has shown that in
breast tumors, E-cad and ZO-1 are co-expressed and are mark-
ers of a more differentiated phenotype (17). A formal analysis of
the correlations between ZO-1 and the IGF-IR is underway in
our laboratory and should help in clarifying the role of the
IGF-IR in breast cancer progression.
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FIG. 7. Reduced cell-cell adhesion in MCF-7/IGF-IR/anti-ZO-1
cells. MCF-7/IGF-IR/anti-ZO-1 clones were obtained by stable trans-
fection of MCF-7/IGF-IR cells with an anti-ZO-1 RNA expression plas-
mid (see “Materials and Methods”). The levels of ZO-1, IGF-IR, and
E-cad in the parental MCF-7/IGF-IR cells (A) and in the clones (B and
C) were studied by WB in 50 �g of protein lysate. The aggregation of
cells was studied in three-dimensional culture as described under “Ma-
terials and Methods.” The bar in B represents 50 �m.
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