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Neural progenitor cells orchestrate microglia
migration and positioning into the developing
cortex
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Microglia are observed in the early developing forebrain and contribute to the regulation of

neurogenesis through still unravelled mechanisms. In the developing cerebral cortex,

microglia cluster in the ventricular/subventricular zone (VZ/SVZ), a region containing

Cxcl12-expressing basal progenitors (BPs). Here we show that the ablation of BP as well as

genetic loss of Cxcl12 affect microglia recruitment into the SVZ. Ectopic Cxcl12 expression or

pharmacological blockage of CxcR4 further supports that Cxcl12/CxcR4 signalling is involved

in microglial recruitment during cortical development. Furthermore, we found that cell death

in the developing forebrain triggers microglial proliferation and that this is mediated by the

release of macrophage migration inhibitory factor (MIF). Finally, we show that the depletion

of microglia in mice lacking receptor for colony-stimulating factor–1 (Csf-1R) reduces BPs into

the cerebral cortex.
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T
he germinal niche of the developing cerebral cortex
consists of two distinct mitotically active populations of
cells: radial glial cells (RGs) of the ventricular zone (VZ)

and basal progenitors (BP) of the Subventricular zone (SVZ)1.
BPs originate from asymmetric cell divisions of RG and are fated
to differentiate into cortical plate excitatory neurons2,3 and to
regulate inhibitory neurons’ migration through the release of the
chemokine Cxcl12. The downregulation of the transcription
factor Tbr2 impairs BP generation and induces a significant
reduction of Cxcl12 into the SVZ4 that, in turn, affects inhibitory
neurons migration5,6. Accordingly, inhibitory neurons lacking
CxcR4—that is one of the two Cxcl12 receptors7,8—are impaired
in their homing into the cerebral cortex9, while CxcR7 is involved
in the regulation of CxcR4 protein levels10. Microglia are
immune-relevant cells of the central nervous system that are
generated within the yolk sac at embryonic day (E) 8 and colonize
the forebrain just before the onset of neurogenesis11,12. Once
seeded into the cerebral cortex, microglia first accumulate at the
pail surface and into the choroid plexus and then penetrate the
cortical wall, clustering into a restricted laminar band that
overlaps the cortical VZ/SVZ13–15. To date, little is known about
mechanisms regulating microglia migration, recruitment and
positioning into the developing cortex. However, since the ability
of microglia to colonize cortical VZ/SVZ is conserved among
species (that is, rodents, monkeys and humans)14, it is reasonable
to hypothesize that also the molecular mechanism/s controlling
their recruitment and function are well conserved along
evolution.

Using conditional and no conditional transgenic mice and in
uteri electro oration techniques, here we show that BP, through
the secretion of Cxcl12, drive CxcR4- and CxcR7-expressing
microglia to cluster into the VZ/SVZ of the developing cerebral
cortex. A finding supported by the fact that we found a profound
alteration of microglia cell number and positioning within the
developing cortex in transgenic mice in which neurogenesis was
defective and the number of BP was consistently reduced.
A further confirmation of this bidirectional axis is that the lack of
the receptor for colony-stimulating factor-1 (Csf-1R), impairing
microglia development, causes a significant depletion of BP into
the cerebral cortex. We also found that microglia heavily
proliferate in the presence of massive neural progenitor cell
death—as that occurring in mice electro orated with the suicide
gene thymidine kinase—in order to efficiently phagocytose dead
cells. This process is molecularly orchestrated by macrophage
migration inhibitory factor (MIF) released into the VZ/SVZ by
RG cells. Altogether, our data indicate the presence of a
bidirectional cross-talk between neural precursors (both BP and
RG) and microglia in the developing cortex. This cross talk—
sustained by a chemokine–chemokine receptor axis—is necessary
to regulate neurogenesis in order to protect the developing cortex
from unexpected and unfavourable damage.

Results
Cxcl12 mediates microglia recruitment into the VZ/SVZ. We
analysed cortical microglia at different time points during
embryonic development (E10.5, E14.5, E16.5 and E18.5) in wild-
type (WT) C57Bl/6 and in Cx3cR1-GFP (green fluorescent pro-
tein) transgenic mice16, in which microglia are fluorescent. We
found that virtually all Cx3cR1-GFPþ or F4/80þ cells scored at
E15.5 and E18.5 co-expressed Iba1 (Supplementary Fig. 1a,b),
suggesting that these markers can be used interchangeably to
label microglia. While at E10.5 the vast majority of Iba1þ cells
were located within the meninges (Fig. 1a,b), at E14.5, E16.5 and
E18.5 such cells were preferentially clustered into the VZ/SVZ of
the cerebral cortex (Supplementary Fig. 1a–c)15. Because

microglia cell number significantly increased along neurogenesis
in cortical and subcortical areas (Fig. 1c,d), we hypothesized the
existence of a functional relationship between neurogenesis and
microglia accumulation into the developing cerebral cortex. We
focused on Tbr2þ BP cells, a population of intermediate
neuronal progenitor cells preferentially positioned in the SVZ—
the area where microglia accumulates during brain
development—and known to express the chemoattractant
molecule Cxcl12 (Fig. 1e–g)17,18. We found that microglia were
greatly enriched in regions, such as the cortical–striatal notch and
the dentate gyrus of the forebrain, where we concomitantly found
that Cxcl12 was highly expressed (Fig. 1h). Similar results were
obtained in the human developing forebrain, as we observed
IBA1þ microglia preferentially confined in regions where both
CXCL12 and TBR2 were expressed in 7- and 20-week-old human
fetal brains (Supplementary Fig. 2a–f).

To determine whether Cxcl12 might contribute to Iba1þ cell
recruitment into the VZ/SVZ, we examined the expression of the
Cxcl12 receptors CxcR4 and CxcR7 on microglia19,20. Ex vivo
CD45low/Cd11bþ -sorted cells from E15.5 brains, as well as
primary microglia cell cultures generated from P2 brains,
expressed both receptors at robust levels (Fig. 1i). Flow
cytometry-mediated analysis of CD45þ /Cd11bþ /Ly6C� cells
from E15.5 cortices showed that B13% of them were also positive
for CxcR4 (Fig. 1j). Accordingly, Iba1þ /CxcR4þ double-positive
cells were found in the SVZ at E14.5 (Fig. 1k).

To verify whether Cxcl12þ BPs influence microglia number
and positioning into the VZ/SVZ, we unilaterally electroporated
in utero plasmids coding for Cxcl12 and GFP at E14.5 (Fig. 2a–c).
The overexpression of GFP and Cxcl12 in RG (Blbpþ cells) and
BP (Tbr2þ cells) of the VZ and SVZ did not affect cell
morphology, while efficiently increased Cxcl12 levels (Fig 2a–e).
Further, increased levels of Cxcl12 in the VZ/SVZ did not affect
cell survival of RG and BP (Fig 2f,g) but increased the number of
Calbindinþ (CaB) interneurons in the SVZ (Supplementary
Fig. 3a,b)5, and, above all, the number (Fig 2h–j)—but not the
proliferation (Fig. 2k)—of microglia in the VZ/SVZ. Accordingly,
we showed that in vitro primary microglia were capable of
responding to Cxcl12-mediated chemotactic signal. This response
was completely abolished by administering the antagonist of
CxcR4, AMD3100 (ref. 21; Fig. 2l). We did exclude that our
results could be biased by any procedure related to nonspecific
inflammatory reaction by assessing the absence of pro-
inflammatory cytokine transcripts (IL-1b (interleukin-1b), TNF-
a (tumour-necrosis factor-a) and IFN-g (interferon-g)) in the brain
of embryos receiving GFP and Cxcl12 plasmids (Supplementary
Fig. 4). To further confirm the chemoattractant properties of
Cxcl12, we injected AMD3100 (1 ml, 12.6 mM) into the lateral
ventricle of E12.5 embryos. Twenty hours after the injection,
treated embryos showed a significant reduction in Iba1þ cells in
both cerebral cortex and basal ganglionic eminences (Fig. 2m–o).
A similar depletion of microglia number was also observed
in E14.5 CxcR4� /� cortices (Fig. 2p–r). Likewise, E16.5
GfapCreCxcl12flox/flox mice, while showing substantial down-
regulation of Cxcl12 in the SVZ (Supplementary Fig. 2c,d) also
displayed a significant reduction of microglia (Supplementary
Fig. 2e–g) and SVZ-confined CaBþ interneurons in the
developing cerebral cortex (Supplementary Fig. h,i). These
results indicate that the blockage of Cxcl12/CxcR4 interaction is
per se sufficient to inhibit microglia cell homing into the SVZ.

BPs expressing Cxcl12 drive the positioning of microglia
within the developing brain. Since the genetic ablation of Tbr2
greatly reduces Cxcl12 levels into the VZ/SVZ5, we generated
GfapCre/Tbr2flox/flox mice in order to eliminate Tbr2 expression in
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the cerebral cortex and to assess microglia cell positioning and
number (Fig. 3a,b). In agreement with previous data5, Cxcl12 was
greatly reduced in E16.5 GfapCre/Tbr2flox/flox mice (Fig. 3c,d).
This reduction was associated with a significant decrease in
cortical microglia (Fig. 3e–g). Since the overexpression of Tbr2 in
RG increases BP number and Cxcl12 expression4, we next
assessed whether the overexpression of Tbr2 might trigger
microglia accumulation into the VZ/SVZ. We electroporated
plasmids encoding Tbr2 and GFP at E14.5, and brains were
probed for Cxcl12 2 days later, at E16.5. While the overexpression
of Tbr2 significantly augmented Cxcl12 levels in the VZ/SVZ, the
overexpression of the GFP control plasmid did not alter these
levels (Fig. 3h). In Tbr2 overexpressing mice we found an overall
increase of microglia in the VZ/SVZ (Fig. 3i–k); however, we did
not find any difference in the number of the Iba1/EdUþ

proliferating cells (Fig. 3l).
On the whole, our results indicate that Cxcl12-expressing BPs

play a relevant role in directing microglia into the SVZ. Since it
has been previously shown that the inhibition of the canonical
Notch signalling in the developing forebrain might cause the
premature differentiation of RG into neurons22–25, we then asked
whether the blockage of Delta/Notch signalling into the
developing cortex could lead to an overproduction of BP that,
in turn, might alter microglia number and/or positioning within
the cerebral cortex. Thus, to induce blockage of Notch signalling

in cortical RG, we electroporated E14.5 forebrains with a plasmid
carrying the dominant-negative form of Mastermind-like 1 gene
(dnMAMl)26.

The overexpression of dnMAMl plasmids induced an increase
in the number of GFPþ cells into the SVZ, the region in which
BPs are normally residing, and a decrease in GFPþ cells into
the VZ, where RGs are normally located (Fig. 4a,b,g,h).
Accordingly, dnMAMl electroporation increased the relative
number of GFPþTbr2þ BP in the cortex, as shown in
constructed laminar bins encompassing germinal niches
(Fig. 4a–d). Coherently, the number of phospho-histone H3þ

(pH3) mitoses into the SVZ was significantly increased in mice
receiving the dnMAMl plasmid (Fig. 4e). The overexpression of
dnMAMl dramatically increased Cxcl12 levels into the SVZ
(Fig. 4f) and the number (Fig. 4g–i)—but not the proliferation
(Fig. 4j)—of microglia in the same areas. Of note, dnMAML
plasmids injected into E14.5 GfapCreCxcl12flox/flox brains did not
increase the number of Iba1þ cells, further confirming that
Cxcl12 is necessary to drive microglia accumulation in the SVZ
(Fig. 4k,l). Interestingly, the overexpression of dnMAMl also
increased the number of Iba1þ cells floating into the ventricular
cavity of the forebrain (Supplementary Fig. 5a,b); these latter cell
population exhibited round cell morphology and were often
organized in clusters around the Transthyretin (Ttr)þ choroid
plexus cells (Supplementary Fig. 5d,e)27. Accumulation of Iba1þ
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Figure 1 | Microglia distribution into the cerebral cortex overlaps Cxcl12þ cortical domains. (a) Low magnification of the cerebral cortex at E10.5.

High magnification (arrow) is shown in b (n¼ 3). Labelling for Iba1 and CD45 in the cortical wall shows double-positive cells in the cortex and in the

meninges (arrows indicate Iba1/CD45þ cells). (c,d) Absolute numbers and cell densities of Iba1þ cells were calculated by stereology at E14.5 and E18.5,

and means±s.e.m. (pallium indicates the cerebral cortex and the hippocampus, while the sub pallium indicates basal ganglionic eminences and the

septum, n¼6 for each group). (e) Representative E16.5 cortical section probed for Cxcl12, boxed area indicates the VZ/SVZ of the lateral cerebral cortex.

(f,g) High magnification sections labelled for Tbr2 and Iba1 (n¼ 5). (h) Cxcl12þ and Iba1þ cell distribution at the corticostriatal boundary and into the

Dentate Gyrus at E16.5 (n¼ 5). (i) Representative RT–PCR for CxcR7, CxcR4 and the housekeeping gene H3 performed on P2 brain-derived primary

microglia cell culture (primary MG) and on E15.5-sorted CD45low/CD11bþ cells (sorted MG; n¼ 3 independent experiments). (j) Representative plot of

CxcR4þ cells, gated on CD45þCD11bþ Ly6c� cells from E15.5 brains (n¼ 3 independent experiments). (k) Double labelling for Iba1 and CxcR4 in the

cortical wall of E15.5 brain. Scale bar represents 100mm. A two-tailed t-test was used to assess statistical significance: **Po0.01, ***Po0.001.
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cells into the ventricular cavity was also seen in embryos receiving
the overexpression of Cxcl12, but not in embryos receiving GFP
plasmids (Supplementary Fig. 5a,b). We also confirmed that

cortices electroporated with dnMAMl did not express pro-
inflammatory cytokines (Supplementary Fig. 4) or CD206—
a receptor mediating the phagocytosis of intracellular
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pathogens28 (Supplementary Fig. 6)—thus ruling out possible
adverse effects related to embryo manipulation and injection
procedures.

Neurogenesis promotes microglia recruitment during cerebral
cortex development. To functionally validate the close relation-
ship between BP generation and microglia recruitment into the
VZ/SVZ, we next assessed whether defective neurogenesis might
influence Iba1þ cell recruitment or positioning into the cerebral
cortex. We first analysed GfapCre/b-CateninEx3 mice owing to
their propensity to express a stabilized and constitutive active
form of b-catenin in cortical RG leading to a dramatic impair-
ment of Tbr2þ cell generation29,30. At E14.5 the expression of
Cxcl12 was almost completely abolished in the cortical SVZ of
GfapCre/b-CateninEx3 mice (Fig. 5a,b), while it was preserved at
the cortical–striatal notch and within meninges—which express
Cxcl12 at high levels9—two regions in which the CRE-mediated
recombination of b-CateninEx3 allele does not occur. At the same
time point, the number of microglia was significantly reduced in
the VZ/SVZ (Fig. 5c–e). To rule out the possibility that the
deletion of b-catenin might affect endothelial cells—in which
b-catenin is involved in controlling vascular remodelling31—that
might contribute to influence microglia migration, we analysed
CD31þ endothelial cells in GfapCre/b-CateninEx3 mice. CD31þ

cells were unaffected in the cortical wall of GfapCre/bCateninEx3

mice (Supplementary Fig. 7a,b).
Furthermore, in Pax6Sey mice we found, at E14.5, a significant

reduction of Tbr2þ cells in the cortical VZ/SVZ (Fig. 5f), as
expected in the absence of Cxcl12 transcripts in the SVZ
(Fig. 5g,h)6 and, above all, a significant reduction of microglia
in the cerebral cortex (Fig. 5i,j).

Since Emx2 is a transcription factor involved in the
maintenance of RG self-renewal32,33, we then investigated
microglia in Emx2� /� mice that are characterized by a
significant perturbation of neurogenesis in the caudal
telencephalon33. Interestingly, the number of Tbr2þ cells
was significantly reduced in the posterior cerebral cortex of
Emx2� /� brains (Fig. 5k) and such reduction was paralleled by a
substantial reduction of Cxcl12 (Fig. 5l,m). Consistently, we
detected a significant depletion of microglia in same regions of
the brain (Fig. 5n–p); however, no alteration of CD31þ

endothelial cells was found (Supplementary Fig. 7c,d).

Cell death in the developing forebrain triggers microglia
proliferation. We next explored whether we could attribute the
above-mentioned results to the recently described capability
of microglia to regulate the number of neural precursor via
phagocytosis14,34. We, thus, assessed whether a functional
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derangement of RG might, in turn, influence microglia into the
VZ/SVZ. E14.5 embryos were electroporated with the suicide
gene Thymidine Kinase (TK) and treated with Ganciclovir (GCV)
at different time points thereafter, that is, at E14.7, E15.5 and
E16.2. Activated Caspase3þ cells (Casp3a) were significantly
increased in TK (þGCV) compared with GFP control mice
(Fig. 6a–c). Increased rate of cell death was paralleled by
increased number of microglia displaying a phagocytic cell
morphology (Fig. 6d,e). The absolute number of Iba1þ cells as
well as percentages of proliferating Iba1/EdUþ cells were
increased (Fig. 6f–i). Along the same lines, we explored
FoxG1� /� mice that show increased rates of neuronal cell
death during neurogenesis35. Although FoxG1� /� mice also
displayed several morphological defects, involving the loss of
basal ganglionic eminence specification36, and defective cortical
arealization37, we found that in these mice the number of Iba1þ

cells was substantially increased into the rudimental cerebral
cortex and, above all, they displayed cell morphology reminiscent
of phagocytic cells (Fig. 6h,i).

We next investigated the molecular mechanism underlying the
proliferation of microglia in TK (þGCV) embryos. We screen
several neuronal- and glial cell- (including RG) secreted
molecules that might have the potential to induce microglia

proliferation. Among them, we concentrated on MIF38,39, since it
has been consistently shown that this cytokine can modulate
myeloid cell proliferation by binding to the CD74 receptor40. By
in situ hybridization we detected MIF mRNA in germinal niches
of the developing cerebral cortex at E12.5, E14.5, E16.5 and E18.5.
Starting from E14.5, we also found scattered neurons, located
within the cortical plate, expressing MIF transcripts. Interestingly,
MIF was expressed in the cortical VZ along a medialhigh to
laterallow gradient (Fig. 7a). Real-time PCR on CD133þ and
CD45low/CD11bþ -sorted cells from E14.5 forebrains confirmed
that MIF was expressed by RG and also by microglia (Fig. 7b).
CD74 expression was confirmed in whole cortical extracts from
E14.5 brains and in CD45low/CD11bþ -sorted cells, but not in
CD133þ -sorted cells (Fig. 7c). We confirmed that MIF can
modulate microglia cell proliferation by electroporating vectors
encoding MIF at E14.5. (Fig. 7d). Iba1/XdUþ cells were
significantly increased in cortices receiving MIF, as compared
with untreated and GFP controls (Fig. 7e). We next blocked
MIF/CD74 interaction by injecting, into the ventricular cavity of
E14.5 embryos, the allosteric MIF inhibitor p425 (1 ml, 0.5 mM), a
molecule known to interfere with binding of MIF to the CD74
receptor41. Because p425 shows a brilliant blue tint in colour, we
efficiently monitored its brain penetration. Proliferating microglia
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were scored at E15.5 by labelling embryos with 5-ethynyl-20-
deoxyuridine (EdU) for 12 h. MIF blockade significantly reduced
percentages of Iba1/EdUþ cells, if compared with embryos
receiving vehicle only (sham: 25.7%±2; p425 12.5%±2, n¼ 3 for
each group, mean percentages±s.d., Po0.001, two-tailed t-test).
To analyse whether or not increased rates of microglia
proliferation in TK (þGCV) embryos was depending on MIF,
we first analyse MIF mRNA expression in embryos injected with
TK (þGCV). By in situ hybridization, we observed a substantial
increment of MIF mRNA levels in embryos receiving TK
(þGCV; Fig. 7h,i) compared with embryos receiving the GFP
plasmid only (Fig. 7f,g). We next performed MIF blockage in TK
(þGCV) brains by co-injecting p425 at the time of
electroporation. Interestingly, the numbers of dying cells in TK
(þGCV) mice was not altered by the treatment with p425
(Fig. 7j,k), while microglia proliferation was significantly reduced
in embryos receiving TK (þGCV) along with p425 (Fig. 7l–n).

In conclusion, our data support the notion that MIF is acting as
a mitogenic cue for microglia residing within the developing
cerebral cortex that upregulates when tissue damage occurs.

BP number is reduced in mice lacking Csf-1R. We explored
whether or not microglia might contribute to the proper gen-
eration of cortical BP by analysing embryos lacking Csf-1R, a

receptor known to be essential for microglia development
(Fig. 8d,e)11,42. At E13.5, the number of Tbr2þ cells was
slightly, but significantly, reduced in the inner SVZ from CMVCre

Csf-1R flox/flox mice (Fig. 8a–c). At E17.5, Tbr2þ cells were further
depleted in the SVZ of CMVCre Csf-1R flox/flox mice (Fig. 8d–h)
and such reduction was mirrored by a reduction of pH3þ

mitoses in the SVZ (Fig. 8i–k). The number of Casp3aþ cells,
however, did not increase in the cerebral cortex of CMVCre

Csf-1R flox/flox mice at E13.5 (WT: 1.6±0.4 cells per section;
knockout (KO): 2.0±0.8 cells per section; mean±s.d., P¼ 0.17,
two-tailed t-test) as well as at E17.5 (WT:1.9±0.4 cells
per section; KO: 2.6±0.8 cells per section; mean±s.d.,
P¼ 0.08, two-tailed t-test.), thus suggesting that the presence of
microglia into germinal niches of the brain is contributing to the
homeostasis/maintenance of an appropriate BP pool.

Discussion
Despite recent progress in elucidating the function of microglia in
the healthy and pathological central nervous system, still the
molecular mechanism controlling microglia recruitment into the
developing brain is largely unknown. Here we show, using several
in vivo functional approaches, that microglia recruitment into the
cortical VZ/SVZ is dependent on Cxcl12-expressing BP cells.
Indeed, we demonstrated that primary microglia cell cultures43
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and cortical microglia express both Cxcl12 receptors, a feature
necessary for BP expressing Cxcl12 (refs 6,44,45) to attract
microglia into the VZ/SVZ. Accordingly, the downregulation of
Cxcl12 in FoxG1Cre/Tbr2flox/flox mice reduced B40% the number
of CxcR4/CxcR7/CaBþ neurons migrating into the cortex5, and a
25% reduction of microglia into the cortex was observed in
GfapCre/Tbr2flox/flox mice. In line with these results, the ectopic

expression of either Tbr2 or Cxcl12 substantially increased the
number of microglia within the electroporated areas.
Furthermore, the injection of AMD3100—a blocker of Cxcl12/
CxcR4 interaction21—as well as the constitutive inactivation
of CxcR4 and the conditional inactivation of Cxcl12
(GfapCreCxcl12flox/flox) caused a significant reduction of cortical
microglia cells. To further sustain the finding that BPs are
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involved in the recruitment of microglia at the VZ/SVZ, we
examined transgenic mice in which the proper generation of BP
within the developing cerebral cortex is impaired. In mice
carrying a constitutive active form of b-Catenin46 in RG—a
genetic alteration that prevents RG to acquire the BP phenotype
and to differentiate into Tbr2þ cells29,30,47—the reduction of BP
affected Cxcl12 expression in the SVZ and the number of
microglia was reduced to B60%. In Pax6Sey/Sey mice, carrying a
null allele for the transcription factor Pax6, Tbr2þ cells were
greatly reduced, Cxcl12 expression was suppressed into the SVZ6

and a significant reduction of microglia was observed. In mice
lacking Emx2—a transcription factor promoting RG proliferation
in the occipital cortex48—the number of Tbr2þ cells was reduced
to 30% and the expression of Cxcl12 was greatly impaired. In the
same mice, the reduction of Cxcl12 was paralleled by a 30%
reduction of microglia in the occipital cortex. On the other hand,
the inhibition of Notch signalling in RG increased both BP cells
and the expression of Cxcl12 in the developing cortex, a finding
accompanied by a threefold increase in the microglia number.

Nonetheless, we observed that microglia cells were not
completely eliminated in all the above-mentioned mutant mice.
This might suggest the existence of additional, still unknown,
factors that might contribute to microglia positioning/recruit-
ment in the developing forebrain. Some hypotheses can be put
forward. Embryonic leptomeninx—that express Cxcl12 (ref. 9) to
promote the development of Cajal–Retzius cells49—are not
affected in our mutant mice, thus suggesting that they might
per se contribute to attract circulating microglia. Owing to the fact
that B20% of the mid-end gestational cortical microglia is
actively proliferating15, we cannot exclude that cell proliferation
represents a rescue mechanism aimed at balancing microglia
depletion occurring as a consequence of Cxcl12 reduction. Apart
from the existence of additional sources of Cxcl12 in the
developing brain, we cannot rule out the possibility of the
existence in the developing brain of microglia progenitors, able to
proliferate in order to replenish the microglia cell pool as occurs
in pathological conditions determining microglia depletion in the
adult brain50. Interestingly, we observed a Cxcl12-independent
increased rate of microglia proliferation in embryos receiving the
TK suicide gene along with GCV treatment; as such, we found

an increased number of microglia in areas harbouring cells
undergoing apoptosis. Thus, we might speculate that the ability of
microglia to regulate neural precursor homeostasis by removing
dying cells during forebrain development might be also retained
in the adult brain as a rescue mechanism under pathological
conditions.

How about mitotic cues promoting microglia proliferation? We
found that MIF, expressed by CD133þ RG, can stimulate
microglia proliferation by acting on CD74. Remarkably, increased
levels of MIF have been found in microglia-driven inflammatory
reactions occurring in neurodegenerative diseases (that is,
multiple sclerosis, stroke and Parkinson’ disease)51 and in
microglia cells associated to gliomas52. All together, these data
further support the emerging concept that chemokines and
cytokines may play not only detrimental but also protective roles.
This appears to be much more depending on target cells as well as
environmental features53.

A growing number of studies have suggested that activated
microglia modulates adult neurogenesis54–56, even under
pathological conditions such as in multiple sclerosis57 and
stroke58. On one hand, in the embryonic SVZ, microglia seems
to be able to limit the number of BP14: pharmacological
manipulations increasing the number of microglia showing an
M1 phenotype causes a substantial reduction of Tbr2þ cells,
while a decrease in microglia or skewing microglia towards the
M2 phenotype leads to an increase in the number of Tbr2þ

cells14. On the other hand, recent evidence suggests that cytokines
released by activated microglia might enhance both neurogenesis
and oligodendrogenesis in the early postnatal SVZ34. To better
understand the reason of these controversial results, we thus
measured BP in Csf-1R null mice that are microglia-free. The
constitutive inactivation of Csf-1R causes significant alterations of
brain morphology at postnatal stages, such as: a reduction in
cortical thickness, the underdevelopment of olfactory bulbs42, a
distortion of the hippocampus and a reactive astrogliosis.
However, such alterations are not affecting the forebrain during
embryonic development. A finding attributable to the fact that
Csf-1R is expressed in the adult brain not only by myeloid cells
but also by few cortical and hippocampal neurons59, while it is
expressed only by microglia during brain development60.
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Consistently with this hypothesis, we found that Tbr2þ BPs were
slightly, but significantly, reduced in Csf-1R null mice at E13.5
and at E17.5. This observation suggests that in the developing
brain microglia can certainly contribute to removing progenitor
cells—as previously shown by in ref. 14 and confirmed by our
results in TK-electroporated mice—but its primary role is to
support neurogenesis. Nevertheless, we cannot exclude the
possibility that depending on the state of activation, different
microglia subpopulations might exert still unrevealed different
functional roles on proliferating progenitors.

In conclusion, we demonstrated that microglia clustering into
germinal niches of the developing cortex is largely dependent on
BP expressing Cxcl12 and that the mutual bidirectional relation-
ship between these two cell types is vital to protect the developing
cerebral cortex from unexpected damage impairing the proper
proliferation and cortical positioning of neural precursors.

Methods
Animals. Mice were maintained under pathogen-free conditions at San Raffaele
Hospital mouse facility (Milan, Italy). All efforts were made to minimize animal
suffering and to reduce the number of mice used in accordance with the European
Communities Council Directive of 24 November 1986 (86/609/EEC). All animal
experimental protocols were approved by the Ethics Review Committee for Animal
Experimentation of the Italian Ministry of Health. Procedures were performed
according to the guidelines of the Institutional Animal Care and Use Committee of
the San Raffaele Scientific Institute (protocol number 727/2011). Cx3Cr1-GFP
mice16 were provided by Dr Verderio (University of Milan, Italy); Tbr2flox/flox

conditional mice61 were provided by Dr Broccoli (San Raffaele Scientific Institute,
Italy); GfapCre mice62 were obtained from Jackson Laboratories; b-CateninEx3

mice46 were provided by Dr Taketo (Kyoto University, Japan); Emx2� /� and
Pax6Sey mice63,64 were provided by Dr Nicolis (University of Bicocca, Italy);
FoxG1� /� mice65 were provided by Dr McConnel (Stanford University, USA);
CMVCre and Csf-1Rflox/flox (ref. 66) were purchased from the Jackson Laboratory;
CxcR4� /� (ref. 67) mice were provided by Dr Bianchi (San Raffaele Scientific
Institute); and Cxcl12flox/flox conditional mice68 were purchased from the Jackson
Laboratory. Transgenic mice were backcrossed on C57Bl/6 (Charles River) mice
and were genotyped as previously described4,29,48,65. In utero electroporation was
carried out on C57Bl/6 mice. At noon the vaginal plug date was day 0.5 in timed
pregnancies. S-phase labelling was carried out as previously described69.
Depending on the protocol of administration, pregnant dams received single or
multiple injections of S-phase tracers—that is, 5-bromodeoxyuridine (BrdU), 5-
Iododeoxyuridine (IdU) (Sigma, St. Louis, MO, USA) and EdU (Invitrogen,
Carlsbad, CA, USA) at the concentration of 100 mg kg� 1. Pregnant females were
killed by cervical dislocation at appropriate time points and brains were collected in
ice-cold PBS as previously described69. Brains were fixed in 4% Paraformaldehyde
(Sigma) in PBS, pH 7.2 for 12 h at þ 4 �C, cryoprotected in PBS-30% Sucrose
(Sigma) and then embeded in OCT inclusion media. Samples were stored at
� 80 �C before processing. Human fetal tissues were collected from patients who
requested pregnancy termination and autopsy diagnostic procedures. All
procedures were approved by the local research ethical committees and Research
services division of the University of Cambridge and Addenbrooke’s Hospital in
Cambridge and by Ethics Committee of San Paolo Hospital (Milan).

Immunofluorescence and in situ hybridization. Briefly, the sections (12 mm) were
washed three times, 5 min each in PBS, and the blockage of nonspecific binding was
performed by using the following mix: PBS 1� /FBS 10%/BSA 1 mg ml� 1 Triton
� 100 0.1%, for 1 h at room temperature. In the case of BrdU, IdU detections,
DNA was depurinated to make epitopes accessible to antibodies by incubating
slides in HCl 2N for 300 . Slides were then rinsed in borate buffer (0.1 M, pH 8.5) for
10 min at room temperature. Antibodies were diluted in blocking mix and incu-
bated at þ 4 �C overnight as suggested by the manufacturer’s instructions. The
following day, sections were rinsed in PBS for 5 min, three times, and fluorescent
secondary antibodies (Alexafluor conjugated) diluted in blocking mix, were applied
according to the manufacturer’s instructions. Slides were washed three times in
PBS for 5 min and incubated in Hoechst 33342 for nuclei counterstaining. When
necessary, antigens retrieval was performed by boiling samples in 10 mM sodium
citrate (pH 6) for 5 min. The following antibodies were used: rabbit a-CxcR4
(Novus) 1:100; rabbit a-Iba1 (Wako) 1:400; rabbit a-Tbr2 (Abcam) 1:500; chicken
a-GFP (Abcam) 1:500; rabbit a-pH3 (Cell Signaling) 1:200; rat a-CD206 (BD)
1:50; rabbit a-Ki67 (Novocastra) 1:100; rabbit a-CaB (Swant) 1:500; rat a-CD31
(BD) 1:100; rat a-BrdU (Abcam) 1:500; mouse a-IdU (BD) 1:75; rat a-CD45 (BD)
1:100; rabbit a-Casp3a (BD) 1:400; mouse a-F4/80 (Abcam) 1:200; rabbit a-Blbp
(Millipore) 1:700; and click-it EdU alexafluor 647 imaging reagent (Invitrogen).
Appropriate fluorophore-conjugated secondary antibodies (Alexa-Fluor 488, 546
and 633 Molecular Probes) were applied according to the manufacturers’
instruction. Immunohistochemistry was carried out as previously described57.

Briefly, slices were incubated in H2O2 3% for 20 min before adding the blocking
mix. Antibodies were diluted in blocking mix and incubated at þ 4 �C overnight, as
described above. The following day, sections were washed in PBS three times, and
the biotin-conjugated secondary antibody (Vector labs, Milan, Italy) was applied
for 2 h. Then sections were washed before adding the avidin-HRP reagent (Vector).
Signals were revealed by incubating slices with 3-amino-9-ethylcarbazole (AEC,
Sigma) solution. In situ hybridization was performed as previously described48.
Briefly, 12-mm-thick brain cryosections were post-fixed 15 min in 4%
paraformaldehyde and then washed three times in PBS. Slides were incubated in
0.5 mg ml� 1 of Proteinase K in 100 mM Tris–HCl (pH 8) and 50 mM EDTA for
10 min at 30 �C. This was followed by 15 min in 4% paraformaldehyde. Slices were
then washed three times in PBS before receiving H2O washes. Sections were
incubated in Triethanolamine 0.1 M (pH 8) for 5 min, and then 400 ml of acetic
anhydride was added three times for 5 min each. Finally, the sections were rinsed in
H2O for 2 min and air-dried. Hybridization was performed overnight at 60 �C with
P32 riboprobes at a concentration ranging from 106 to 107 counts per minute
(c.p.m.) per slide. The following day, the sections were rinsed in SSC 5� for 5 min
and then washed in Formamide 50% SSC 2� for 30 min at 60 �C. Then the slides
were incubated in Ribonuclease-A (Roche) 20 mg ml� 1 in 0.5 M NaCl, 10 mM
Tris-HCl (pH 8) and 5 mM EDTA 30 min at 37 �C. The sections were further
washed in Formamide 50% SSC 23 for 30 min at 60 �C and then the slides were
rinsed two times in SSC 2� . Finally, the slides were dried by using Ethanol series.
NTB emulsion (Carestream) was applied in a dark room, according to the
manufacturer’s instructions. After 1 week, the sections were developed in the dark
room, counterstained with Hoechst 33342 and mounted with DPX (BDH)
mounting solution. Digoxigenin in situ hybridization on frozen sections were
performed as previously reported33. The following probes were used: Cxcl12 (kind
gift of Dr Broccoli, San Raffaele Institute, Milan, Italy), Ttr was PCR-amplified on
the basis of Genebank DT00071, nt 13-1484, MIF was PCR-amplified on the basis
of Gene bank NM_010798, MIF PCR-amplified on the basis of Genebank
NM_010798, nt 20–300. Light (Olympus, BX51 with � 4 and � 20 objectives) and
confocal (Leica, SP5 with � 40 objective) microscopy was performed to analyse
tissue and cell staining. Analysis was performed by using the Leica LCS lite
software and the Adobe Photoshop CS software. Quantification of Iba1þ cells in
E14.5 and E18.5 WT brains was carried out by the Stereo Investigator v 3.0
software (MicroBrightField Inc., Colchester, VT, USA).

Flow cytometry and cell sorting. Cell suspensions were made from E14.5 and
E15.5 forebrains. Briefly, tissues were cut into small pieces and incubated in ice-
cold HBSS 1� , Glucose 0.6%, Hepes pH 7.4, 5 mM. Upon mechanical dissociation,
cell suspensions were filtered through 40-mm cell strainer and then washed three
times in HBSS 1� and stained with the following monoclonal antibodies:
a-CD11b PE-Cy7 (BD), a-CD45 FITCH (BD), a-CxcR4 APC (BD), a-CD133 APC
(eBioscience) and a-Ly6C APC (BD). Flow cytometry studies were performed
using a Canto-DIVA (Becton Dickinson) and subsequently analysed using the
FCS-Express software (De Novo). Cell sorting was performed by using MoFlow
sorter. Approximately 10–20� 105 MG cells were obtained from 15 brains and
2� 106 CD133þ cells were obtained from 10 brains.

Primary microglia cultures and chemotactic assay. Mouse primary microglia
were raised P2 C57BL6/j pups, as follows. Brains were excised and placed in ice-
cold HBSS. Cortices were removed, meninges were pulled off and the remaining
tissue was minced with forceps. Neural Dissociation Kit (P) (Miltenyi-Biotec) was
used to obtain a single-cell suspension from minced tissue. Mixed glial cells were
then plated at 1� 105 cells per ml in T75 Flask and cultured in DMEM supple-
mented by 10% fetal bovine serum (Invitrogen), 1% GlutaMAX (Invitrogen) and
1% penicillin/streptomycin in a 5% CO2/37 �C incubator. The medium was
changed every 3 days, for a total of 14 days. Microglia cells were then collected by
vigorous shaking of flasks, for at least 5–10 min and percentages of Iba1þ cells
were evaluated with flow cytometry. Chemotaxis assay: Cxcl12-mediated microglia
recruitment was tested in vitro using Cxcl12 (Invitrogen) with or without the
Cxcl12/CxcR4 antagonistAMD3100 (Sigma-Aldrich). Transwell inserts (pore size,
8 mm, BD Biosciences) and 24-well culture plates (Corning Costar) were used to
that mean. Cell-free conditioned medium alone or with increasing Cxcl12 con-
centration (10, 100 and 200 ng ml� 1, Cxcl12 200 ng ml� 1 AMD3100 1 ng ml� 1)
were placed in lower chambers. Microglia were placed in upper chambers at
6� 105 cells per ml in the serum-free medium. The transwell plates were incubated
for 12 h at 37 �C. Migrated microglia cells were led to adhere to pre-coated p-lysine
in 12-mm coverslips. Standard immunostaining for Iba was then performed.

In utero electroporation and drug injections. The following plasmids were
injected into the ventricular cavity of E14.5 forebrains (Charles River Italy):
pCAGG-GFP (0.1 mgml� 1), pCAGG-Cxcl124 (1mg ml� 1), pCAGG-Tbr24

(0.6 mgml� 1), pCAGGS-dnMAMl.eGFP26 (2.5 mg ml� 1), pCDNA3-MIF
(1 mgml� 1) and pCDNA3-TK (1mgml� 1). Plasmids were mixed with 0.01% Fast
green (Sigma), and 1–2 ml of each DNA mix were injected into the ventricle
through a fine-glass capillary. Electrodes (Tweezertrodes, BTX Harvard Apparatus,
Holliston, MA, USA) were placed flanking the ventricular region of each embryo,
covered by a drop of PBS and pulsed four times at 50 V for 50 ms, separated by
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intervals of 950 ms, with a square wave electroporator (ECM 830, BTX Harvard
Apparatus). Then, the uterine horn was placed back into the abdominal cavity filled
with warm PBS 1� . Embryos were left to develop in utero for 48 h and then
administered with S-phase tracers (EdU, IdU and BrdU accordingly each
experimental paradigm) as above described. In some experiments we included
embryos only receiving surgery, that are referenced as untreated. For blocking of
Cxc12/CxcR4 interaction, 1 ml of AMD3100 solution (12.6 mM; Sigma) or PBS was
injected into the lateral ventricle at E12.5 and the embryos were left to develop
in utero for 20 h. For blocking MIF/CD74 interaction, 1 ml of p425 (ref. 41; 0.5 mM)
or PBS was injected in the lateral ventricle of E14.5 and the embryos were left to
develop in utero until E16.5.

Real-time and standard RT–PCR. Total RNA from brain tissues was extracted by
using the RNeasy Mini Kit (Qiagen) according to the manufacturer’s recommen-
dations including DNase (Promega) digestion. cDNA synthesis was performed by
using the ThermoScript RT–PCR System (Invitrogen) and Random Hexamer
(Invitrogen), according to the manufacturer’s instructions in final volume of 20 ml.
The LightCycler 480 System (Roche) and the LightCycler 480 SYBR Green I Master
Mix (Roche) were used for real-time PCR. cDNA analysis was also carried out by
standard RT–PCR, performed on Bio-Rad C-1000 thermal cycler. Samples were
normalized by using the housekeeping gene Histone H3 with the following pri-
mers: H3 F: 50-GGTGAAGAAACCTCATCGTTACAGGCCTGGTAC-30 H3 R:
50-CTGCAAAGCACCAATAGCTGCACTCTGGAAGC-30 . Specific primers were
used for gene expression analysis:

CxcR4: F: 50-GTCATCACACTCCCCTCCTGGGC-30 ; R:50-CCCTGACTGA
TGTCCCCCTGGC-30

CxcR7: F: 50-GCTTCATCAACCGCAACTACAGG-30 ; R: 50-ACCACAGGA
CCCAGCCGCCC-30

MIF: F: 50-TGGTGCCCAGAACCGCAACTAC-30 ; R: 50-GCCAGGACTC
AAGCGAAGGTGG-30

CD74: F: 50-GCGACCTCATCTCTAACCATGAAC-30; R: 50-GCGAAGGCTC
TCCAGTTGCAGG-30

Iba1: F: 50-GCAGGAAGAGAGGCTGGAGGGGATC-30 ; R: 50-CTCTTCAGC
TCTAGGTGGGTCTTCGG-30

Pax6:F: 50-GATGGGCGCAGACGGCATGTATG-30 ; R: 50-TCTCCCCCTCCT
TCCTGTTGCTG-30

IL1b: F: 50-CCTGTCCTGTGTAATGAAAGACGG-30 ; R: 50-TGTCCTGACC
ACTGTTGTTTCCC-30

TNFa: F: 50-GCCTCTTCTCATTCCTGCTTGTGGCAG-30 ; R: 50-GACGTGGG
CTACAGGCTTGTCACTCG-30

IFNg: F: 50-ACTGCCACGGCACAGTCATTGAAAGC-30 ; R: 50-CAGGTGTG
ATTCAATGACGCTTATGTTG-30 .

Statistics. Data are expressed as the mean±s.e.m. or mean±s.d. of independent
experiments. Normality was assessed in each experiment by applying either
Kolmogorov–Smirnov test (with Dallas–Wilkinson–Lille for P value) or Skewness
test. Comparisons were made using the unpaired t-test, one-way analysis of
variance (ANOVA), or two-way ANOVA followed by Bonferroni post test.
Statistical tests were carried out using PRISM5.01 (GraphPad Software, La Jolla,
CA, USA). A P value less than 0.05 was considered statistically significant.
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