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Summary

Microsatellite loci have become important in population genetics because of their high level of

polymorphism in natural populations, very frequent occurrence throughout the genome, and

apparently high mutation rate. Observed repeat numbers (alleles size) in natural populations and

expectations based on computer simulations suggest that the range of repeat numbers at a

microsatellite locus is restricted. This range is a key parameter that should be properly estimated in

order to proceed with calculations of divergence times in phylogenetic studies and to better

investigate the within- and between-population variability. The ‘plug-in’ estimate of range based

on the minimum and maximum value observed in a sample is not satisfactory because of the

relatively large number of alleles in comparison with typical sample sizes. In this paper, a set of

data from 30 dinucleotide microsatellite loci is analysed under the assumption of independence

among loci. Bayesian inference on range for one locus is obtained by assuming that constraints on

range values exist as sharp bounds. Closed-form calculations and robustness revealed by our

analysis suggest that the proposed Bayesian approach might be routinely used by researchers to

classify microsatellite loci according to the estimated value of their allelic range.

1. Introduction

Microsatellite loci, also called VNTR (Variable

Number of Tandem Repeats) loci, are characterized

by the repetition in tandem of a fundamental motif

comprising a short sequence of nucleotides (up to

5 bp). Alleles at a microsatellite locus differ in the

number of repetitions of the fundamental motif ; this

number may be called the repeat number or allele size.

A non-negative integer can therefore be associated

with each allele.

Microsatellite polymorphism seems to be due

mainly to the interaction of mutation and genetic

drift, although selection may also be important in

some trinucleotide loci (Valdes et al., 1993). The

stepwise mutation model (Ohta & Kimura, 1973;

Moran, 1975) has been used to characterize the

dynamics of population mean, variance, kurtosis and

skewness (Goldstein et al., 1995; Slatkin, 1995;

Zhivotovsky & Feldman, 1995) under the assumption

that the range of repeat numbers is infinite.

* Corresponding author.

Several authors have pointed out that constraints

on the range of allele sizes (repeat numbers) should be

taken into account in phylogenetic studies (e.g. Valdes

et al., 1993; Bowcock et al., 1994; Goldstein et al.,

1995; Garza et al., 1995; Nauta & Weissing, 1996).

Proper estimates of range are important not only

because some evolutionary models require knowledge

of this parameter, but also as an aid in choosing those

loci that are most suitable for phylogenetic investi-

gation (Pollock et al., 1998).

Two main approaches have been taken to in-

corporate range constraints into evolutionary studies

of microsatellite loci. The first uses a model proposed

by Garza et al. (1995) and further analysed by

Zhivotovsky et al. (1997). It retains the assumption of

an infinite range but takes the stepwise mutation

process to be biased towards a fixed central value, so

that alleles are more likely to mutate towards a target

size in proportion to their difference from it. The effect

of this bias is to constrain the range of repeat

numbers.

Second, Nauta & Weissing (1996) and Feldman et

al. (1997) studied a model for microsatellites in which
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two allele sizes behave as reflecting barriers, so that an

unbiased stepwise process acts on all but these two

alleles, the upper and lower allele size boundaries, for

which the direction of mutation is unique. Further

investigation of this reflecting-boundary mutation

model was made by Pollock et al. (1998), who also

proposed methods of estimating range in the presence

of variation across loci in ranges and mutation rates.

The estimate of range is based on the family of

uniform distributions with two parameters repre-

senting the minimum and maximum repeat number.

The choice of that family is motivated by the necessity

of easy closed-form computation. Moreover, the

asymptotic distribution of repeat number under the

model assumed for the population dynamics is

uniform. The family of uniform distributions on a

parameterized range is, however, unlikely to ac-

curately describe a general locus in any natural

population.

In this note, we use a more formal approach to the

estimation of constraints on allele size, in which Greek

letters are used to indicate population parameters. We

assume that the repeat number at a microsatellite

locus is defined on the bounded set of integers Ωα,β

(modified, Feldman et al., 1997; Pollock et al., 1998) :

Ωα,β
¯²α,α1,…,β®1,β :0%α%β!¢´, (1)

where α and β, respectively the minimum and

maximum repeat number, are in general unknown.

The set Ωα,β
contains the repeat numbers that may

be sampled at one locus. Plug-in estimates of α,β and

range ρ¯β®α are obtained from a sample of size n

and realized values x¯ (x
"
,… ,x

n
) as

ρ# ¯β#®α# ¯x(n)®x("), (2)

where x(n) and x(") are, respectively, realizations of the

last and first order statistics X (n) and X (") (Casella &

Berger, 1990, p. 229).

It is well known that the estimator T
!
(X)¯

X (n)®X (") is biased downward, because the estimated

value ρ# is equal to ρ only if both α and β are among

the sampled values, and the probability of this event is

less than one. For small but reasonable probability

values on the maximum and minimum repeat number,

and for typical sample sizes of 20–100, Stefanini

(1997) numerically investigated the features of T
!
in a

subclass of microsatellite loci and found that T
!

is

biased strongly downward. The severity of the bias

increases as the probability values of α and β decrease,

and for long-tailed distributions.

Stefanini (1997) also proposed an improved es-

timator T
"

of ρ for a restricted class of microsatellite

loci by applying an approximate correction for bias

that depends on the first four estimated moments of

the distribution. This approach is not general because

it rests mainly on the numerical characterization of

correction terms, locus by locus.

Here we begin with a formalization of the estimation

problem and with a description of the features for a

generic microsatellite locus. Bayesian calculations are

developed to obtain the posterior distribution of

range for repeat numbers at one locus, and a point

estimate is proposed as the mode of the posterior

distribution. A Bayesian test of hypothesis is per-

formed to decide whether the sample range should be

considered as the population range. The proposed

model is applied to published data on 30 dinucleotide

microsatellites (Bowcock et al., 1994). The numerical

evaluation of robustness against different choices of

model components suggests that our method might be

used routinely by researchers to classify microsatellite

loci according to the estimated values of their ranges.

Credibility sets based on the posterior distributions

for range values may also be obtained to investigate

the sensitivity of some phylogenetic models to the

choice of the range parameter.

2. Materials and methods

(i) Families of distributions for microsatellite loci

The minimum and maximum repeat numbers α,β are

assumed to be specific features of the microsatellite

locus. The data we use were sampled from a number

of human populations. We shall assume that, for a

given locus, α and β are the same in all populations

sampled. This allows us to pool data for one locus

taken from all the populations.

The discrete random variable X represents a repeat

number sampled from a reference (human) population

at a given time. The most general shape for the

discrete distribution of X is obtained using a parameter

π
i
for each repeat number i in a large set of values that

includes α and β. In other words, the two boundaries

are finite and relatively small, 0%α%β%k, where k

is a constant conveniently chosen as 1000 for the class

of dinucleotide microsatellites in our analysis. We

denote by π the vector (π
!
,π

"
,…,π

"!!!
). The prob-

ability mass function of X refers to the probability of

sampling a repeat number, P
r
(X¯ i)¯π

i
, from the

reference population at a given locus, that is

p(X ;π,α,β)¯ 3
β

i=α

π
i
\I²i´

(x), (3)

where 3β

i=α π
i
¯1, πα " 0, πβ " 0, π

i
& 0 for α! i!β

with 0%α%β%1000 and I²i´
(x)¯1 if x¯ i and zero

otherwise.

The goal of the analysis is to estimate the range

ρ¯β®α, that is a function of the bounds β and α.

Estimates of ρ, β and α based on a sample of size n are

indicated respectively as ρ# , β# and α# .



Estimate of range in microsatellite loci 169

0·008

0·006

0·004

0·002

0·0

0 200 400 600 800 1000

Range

Equation 10

Uniform

Equation 11

Equation 12

P
ro

ba
bi

li
ty

Fig. 1. Plots of the four discrete prior distributions described in the text. All but the uniform prior distributions are
labelled with the equation number.

(ii) Inference about unknown parameters

For inferences about π, α and β, and ρ¯β®α, we use

the Bayesian paradigm (Berger, 1985; O’Hagan, 1994;

Bernardo & Smith, 1994).

The proposed Bayesian model has two main

components : the likelihood function p(x rπ,α,β) and

the prior distribution p(π,α,β). The parameters π,α,β

are considered to be random variables, and initial

beliefs about reasonable values of parameters are

expressed through the prior distribution p(π,α,β).

Bayesian inference is based on the posterior (or

final) distribution of the parameter obtained by means

of Bayes’ theorem:

p(π,α,β rx)¯

p(x rπ,α,β)\p(π rα,β)\p(α,β)

3α,β& p(x rπ,α,β)\p(π rα,β)\p(α,β)\dπ

, (4)

where p(π rα,β)\p(α,β)¯ p(π,α,β) is a hierarchical

definition of the prior distribution.

For the present analysis, π is a vector of nuisance

parameters that are required to specify the model, but

are not of direct interest. They are integrated out of

the likelihood to obtain p(x rα,β). Inferences about

the two parameters α,β might be obtained using the

marginal posterior distribution p(α,β rx) that properly

summarizes the overall information available about

(α,β). Instead, we focus on the range, and its posterior

distribution is calculated by means of the trans-

formation ρ¯β®α.

A point estimate of ρ is an effective summary of the

posterior distribution of the range if the variance is

small with respect to the goal of the inference. If the

variance of the posterior distribution p(ρ rx) is not

negligible, a better summary is obtained through the

highest posterior density (HPD) region (O’Hagan,

1994, par 2±50 and 2±51). This is a credibility region R

obtained by collecting the range values with highest

posterior probability so that P[ρ `R rx] is large, say

0±95.

It is also interesting to test the hypotheses that the

plug-in estimate of range, i.e. the sample range, is the

true unknown value of population range (see

O’Hagan, 1994, par 3±53 and 3±54; Berger, 1985,

p. 145). According to the features of the stepwise

mutation process, further interesting hypotheses in-

volve values of range close to the observed value. That

is, sampling a repeat number i increases the belief that

i³c also belong to the population (c a small integer).

The hypotheses H(i), i¯ 0,1, 2,… , 7 are defined as:

H(!) : ρ¯x(n)®x(")

H(i) : ρ¯x(n)®x(")i, for i¯1,… , 6 (5)

H(() : ρ&x(n)®x(")7.
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Table 1. Obser�ed locus parameters

Locus r x(n) x(") n

D13S270 20 99 79 266
D13S126 18 114 96 244
D13S119 28 140 112 284
D13S118 14 201 187 282
D13S125 30 161 131 270
D13S144 18 199 181 288
UTSW1523 10 185 175 260
ACTC 28 99 71 264
D15S171 16 125 109 288
D15S169 22 162 140 286
D13S133 70 189 119 266
D13S137 24 123 99 268
D13S227 32 164 132 260
FES 24 167 143 288
GABRB3 20 201 181 268
D13S192 28 119 91 254
D13S193 22 150 128 274
HLIP 14 175 161 280
D15S98 34 175 141 270
D15S97 30 184 154 284
D15S100 30 133 103 290
D15S101 24 138 114 250
D13S115 18 180 162 258
D15S95 18 150 132 290
D15S108 24 163 139 290
D13S71 18 85 67 282
D15S102 22 118 96 290
D15S117 24 150 126 242
D15S148 20 151 131 282
D15S11 26 264 238 286

The columns from left to right are: locus name, observed
range (r¯x(n)®x(")), maximum (x(n)) and minimum (x(")) of
repeat numbers, sample size (n).

Multiple hypothesis testing (Berger, 1985, p. 157) is

performed by assessing the posterior probability

values of the hypotheses in (5). The range cannot be

smaller than the observed sample range; that is the

eight hypotheses in (5) represent a partition of the

parameter space for the range. Thus, the decision is

whether the population range is exactly equal to the

sample range, greater by just a few units or sub-

stantially greater.

(iii) Model specification

The likelihood function p(x rπ,α,β) is derived from

(3) under the assumption of conditional independence

among the random variables X
j
, j¯1,… , n, as

0n

j="
p(x

j
rπ,α,β). The use of sufficient statistics for π

(O’Hagan, 1994, par 3±7) allows the likelihood

function to be expressed in terms of counts of repeat

numbers, indicated here as x¯ n¯ (nα,…, nβ) :

p(x rπ,α,β)¯
n !

0β

i=α n
i
!
\0

β

i=α

πni
i
. (6)

We chose a Dirichlet distribution p(π rα,β) as a

prior :

p(π rα,β)¯
Γ(λ)

0β

i=α Γ(λ
i
)
0
β

i=α

πλ
i−"

i
, (7)

with parameters λ¯3β

i=α λ
i
¯1, and λ

i
¯

1}(β®α1). The lack of knowledge about proba-

bilities of repeat numbers in the population is reflected

by the small value of λ. A few sampled observations

may cause a detectable change in shape of the

distribution of π (O’Hagan, 1994, par 10±1–10±6).

Moreover, the expectation E[π
i
rα,β] of the population

frequency is a constant that does not depend on the

repeat size, as obtained from theoretical calculations

of the equilibrium distributions (Feldman et al., 1997).

It may be shown that the integral of the likelihood

function with respect to π is proportional to moments

of the nuisance parameters within π :

p(x rα,β)¯& p(x rπ,α,β)\p(π rα,β)\dπ

¯
n !

0β

i=α n
i
!
\E 90β

i=α πni
i

rα,β: . (8)

Specification of the model is completed by the

choice of the prior distribution p(α,β). The moderate

state of knowledge about α and β suggests a

distribution with a large variance, such as

p(α)¯uniform(0,1000)

p(β rα)¯uniform(α,1000).

5

6
7

8

(9)

Equation (9) implicitly defines the prior distribution

of the range ρ. From (9) and the equality p(α,β)¯
p(β rα)\p(α), the prior distribution p(ρ) of ρ¯β®α is

obtained by straightforward calculations :

p(ρ)¯
1

1001
\ 3
"!!!−

ρ

i=!

1

(1001®i)
\I²

!,
…,"!!!

´(ρ), (10)

where I²
!,

…,"!!!
´(ρ)¯1 if ρ belongs to ²0,…,1000´,

and zero otherwise.

The robustness to the choice in (10) is investigated

by assessing how point estimates of ρ vary with

the choice among three other prior distributions. The

first is a uniform distribution for ρ, which has a

larger variance than (10). The second is linear on

²0,…,1000´, and is characterized by

p(ρ¯ 0)

p(ρ¯1000)
¯1001 ;

that is,

p(ρ)¯
1001®ρ

501501
\I²

!,
…,"!!!

´(ρ). (11)

The third is less dispersed than (10), and is obtained
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Fig. 2. Histograms of repeat numbers. The name of the locus is reported on the x-axis.
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Fig. 3. Posterior distributions of range given the working prior (first 15 loci). The continuous line shows the overall shape of the distribution. The
prior distribution for the range is drawn as a dotted line.
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by increasing the probability value of repeat numbers

close to zero:

p(ρ)¯
(1001®ρ)(

3"!!!
k=!

(1001®k)(
\I²

!,
…,"!!!

´(ρ). (12)

A graphical representation of the prior distributions

for ρ is shown in Fig. 1. The scale on which we are able

to define boundaries is that of α and β ; thus (10) must

be considered as the working prior distribution.

Equation (11) refers to a prior in which the set

²0,…, 400´ contains range values with similar plau-

sibility. The prior in (12) reflects a belief that a range

greater than 300 is unlikely, while values smaller than

200 are more plausible. The choice of prior distribution

is not straightforward if the amount of prior infor-

mation is not large.

(iv) The case study

The data previously published by Bowcock et al.

(1994) were re-analysed to estimate range values at 30

microsatellites loci. They include 30 dinucleotide

microsatellite loci studied in samples from 14 bio-

logical populations (Australian, Cambodian, CAR

Pygmy, Chinese, North Italian, Japanese, Karitiana,

Lisongo,Melanesian, NorthEuropean,NewGuinean,

Surui, Zaı$ re Pygmy), as shown in Table 1. The

original biological populations were fully aggregated

into one macropopulation, called the reference popu-

lation, because α and β are assumed to be a feature of

a given locus, and not to differ among the populations.

3. Results and discussion

The analysis of 30 microsatellite loci is performed

assuming independence among loci. In Fig. 2, barplots

of repeat numbers are shown for each locus. On the

x-axis the name of each locus is reported below the

repeat scores, while probability values are located on

the y-axis. A fair amount of heterogeneity is present

among loci, both in the shape of the distribution and

in the minimum and maximum repeat numbers, and

therefore for the range. The microsatellite locus

D13S133 (Fig. 2, second row, fifth column from left)

differs greatly from the other loci, in both the

pronounced multimodality and the large range.

The visual insight from Fig. 2 is confirmed by

further numerical analysis. The three most represented

repeat numbers in the sample constitute from 0±47 to

0±90 of the overall frequency distribution (data not

shown). The absolute mean difference at a locus

among pairs of repeat numbers is typically above 3±0,

with only one locus in which its value is 2±22 and one

locus in which it reaches a value of 22.

The sampled values of range, minimum, maximum

for each locus are listed in Table 1, from left to right.

The observed value of the range r varies from 10 to 70

for locus D13S133. A substantial amount of variability

Table 2. Test of hypothesis

me mo c2 0 1 2 3 4 5 6 7

24±0 21 32 14 17 15 12 10 7 6 19
21±4 19 28 17 19 16 12 9 7 5 14
36±5 30 52 5 8 9 9 8 7 7 47
17±4 15 24 18 19 16 12 9 6 5 14
34±9 31 44 10 13 13 12 10 8 7 27
22±0 19 30 14 17 15 12 10 7 6 19
13±6 10 22 19 19 15 11 8 6 5 16
32±5 29 41 11 14 14 12 10 8 6 24
19±3 17 26 18 19 16 12 9 7 5 14
25±7 23 33 15 17 15 13 10 7 6 17
75±1 72 84 9 12 12 12 10 9 7 29
27±3 25 34 17 19 16 13 10 7 5 14
36±8 33 46 10 14 13 12 10 8 7 26
32±9 26 50 5 8 8 8 8 7 7 48
23±3 21 30 17 19 16 13 9 7 5 14
31±2 29 37 17 19 16 13 10 7 5 13
25±3 23 32 17 19 16 13 10 7 5 14
18±3 15 27 15 16 14 12 9 7 6 21

37±5 35 44 15 18 16 13 10 8 6 15
35±6 32 46 9 12 12 11 10 8 7 32
37±6 32 52 6 9 9 9 9 8 7 43
27±3 25 34 17 19 16 13 10 7 5 14
21±3 19 28 17 19 16 12 9 7 5 14
21±4 19 28 17 19 16 12 9 7 5 15
27±3 25 34 16 19 16 13 10 7 5 14
22±0 19 30 15 17 15 12 10 7 6 19
25±3 23 32 17 19 16 13 9 7 5 13
27±3 25 34 17 19 16 13 10 7 5 14
24±0 21 32 14 16 15 12 10 8 6 19
29±7 27 37 14 17 16 13 10 8 6 17

From left to right, the mean (me), the mode (mo), the right
bound of the 95% HPD region (c2) and the posterior
probability values (times 100) of the multiple test of the
eight hypotheses in (5) are shown. The left bound of the
95% HPD region is equal to the plug-in range estimate
(Table 1). Hypotheses are labelled as 0 for H (!), 1 for H ("),
etc.

is found in the minimum and maximum values of

repeat numbers. Note that the sample size n is greater

than 240 at each locus.

The working prior distribution in (10) was used to

obtain the posterior distributions of the range at 30

microsatellite (Figs. 3, 4). For all 30 loci, the posterior

distributions are highly concentrated with respect to

the working prior, as the latter was deliberately

chosen to be diffuse.

As regards point estimates (Table 2), range estimates

based on the mean values of the posterior distributions

for the four priors differ only slightly from the

observed range r. Estimates based on the mode are

often unchanged or else usually differ by only one

repeat unit. Point estimates based on the mode are

closer to the observed values. We suggest classifying

the microsatellite loci according to the mode of the

posterior distribution obtained using (10).

At each locus, the HPD region (Table 2) includes

the plug-in estimate of range (Table 1), and its size is
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Fig. 5. Differences between probability values of the posterior distributions of ρ at locus D13S270. Probability values
from the posterior distribution under a uniform prior for ρ are subtracted from the values of the final distributions of ρ
obtained using priors in (10), (11) and (12).

typically equal to 10. The posterior probability values

of the hypotheses in (5) are smaller than 50% and are

often quite similar. We conclude that on the basis of

the overall available information there is not a range

value that stands out as most plausible for the

population range, because posterior probability values

in the multiple test are quite similar. This conclusion

is also evident from the size of HPD regions and from

the values of Bayes factors (data not shown).

The robustness of the posterior distribution for the

range was studied by examining the changes in the

posterior due to the use of different priors for ρ. The

differences in probability values are difficult to judge

in an overlapped plot of posterior distributions at one

locus. In Fig. 5, the difference between the probability

values from the prior distributions in (10, 11, 12) and

values from the uniform prior are represented in a

stacked barplot to summarize the overall behaviour of

locus D13S270. The differences in probability values

are in general quite small for each repeat number.

As regards robustness of the choice of prior

distribution for π, we also performed the integration

for π
i
¯10}(β®α1) at each i, and the integrated

likelihoods turned out to be more concentrated than if

π
i
¯1}(β®α1) (data not shown). The choice λ¯

10 represents increased strength of our prior belief,

and it can be interpreted as a virtual sample of size 10.

We did not try greater values because the resulting

strength is not justified on the basis of our prior

knowledge.

The choice of a working prior with π
i
¯

1}(β®α1) entails that the probability for each

repeat at one locus is likely to be very small or very

large (U-shaped distributions). This is an inevitable

consequence of choosing small values for λ, to allow

small samples to affect substantially the shape of the

distribution. This behaviour would not occur for

higher values, say λ¯1000.

Readers interested in numerical summaries of the

posterior distributions may find the posterior prob-

ability values in a file at the web page of one of the

authors (http:}}www.ds.unifi.it} 4 stefanin).

This Bayesian framework has several advantages

for range estimation. As weak as the prior information

might seem, the Bayesian approach takes advantage

of it in a coherent way (O’Hagan, 1994, cap. 1). That

is, we used the information available about the

asymptotic distribution of repeat numbers at (genetic)

equilibrium (in building the prior distribution of π)

and about a reasonable set of values for the boundaries

of repeat scores in dinucleotides (in obtaining the

prior distribution of α and β). In addition, Bayesian

computation can be accomplished here without

performing Monte Carlo simulations (e.g. Stefanini &

Feldman, 1998), namely with minimum effort. Esti-

mates of the range may change sharply as more
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experimental information becomes available, but

Bayesian updating of the estimates adequately reflects

this.

The model assumes that the sharp bounds α and β

exist as features independent of the biological popu-

lations, and that alleles carrying repeat numbers equal

to α and β belong to the population from which the

sample is drawn, i.e. πα,πβ are greater than zero at

each locus. The existence of sharp bounds is still an

open question. Recently, Kruglyak et al. (1998)

proposed a model that explains heterogeneity in the

distributions of repeat sizes for different organisms

and repeat motifs without imposing sharp bounds. Fu

& Chakraborty (1998) developed a simultaneous

estimation procedure for all the parameters of the

stepwise mutation model based on Monte Carlo

samples. An extension of our model to parallel these

studies should include information about the popu-

lations dynamics under the stepwise mutation model,

but this would be unlikely to allow closed-form

solutions.

Our analysis does not depend on a specific model

for the population dynamics (e.g. Wilson & Balding,

1998) other than the genetic features contained in the

assumptions above. This approach is a reasonable

alternative to a full Bayesian hierarchical model that

might take account of all the different genetic models

(stepwise, infinite alleles, etc.), weighted by the

corresponding prior belief, because of the prohibitive

computational burden, even under Monte Carlo

computation. Likewise, the search for an unbiased

estimator in a non-Bayesian setting is less appealing

than usual, because several models are expected to fit

the data quite well. Approximately unbiased esti-

mators of range seem to depend on the adoption of

very simple models in which the likelihood function is

typically so constrained as to be almost useless.

Further investigations might include information

about the expected number of alleles maintained in

the population in the prior distribution of our model.

Recently, a simultaneous estimation algorithm for the

key genetic parameters was proposed by Fu &

Chakraborty (1998). Results by Dib et al. (1996) and

Weber & Wong (1993) suggest that a mutation rate

equal to 0±0006 might be appropriate for dinucleotide

microsatellites. If the assumption that α and β are

represented in the population is not satisfied, then ρ

can be interpreted as the minimum reasonable value

of β®α.

Finally, the nuisance parameters in π play an

important role. Indeed α and β depend on π at least

until experiments show that alleles greater (or smaller)

than a certain value are not compatible with survival

of the organism. The distribution of repeat numbers

at a locus changes over time, and neighbouring repeat

numbers may have correlated frequencies under a

stepwise mutation model (Feldman et al., 1997). A

correlation parameter was not considered because the

stepwise genetic model does not belong to the

conditioning information of our model. We have

assumed that the time scale of changes in the

distribution is large enough to make the proposed

model useful.
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