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Scarce work has been done in the analysis of the composition of conserved non-coding elements (CNEs) that are
identified by comparisons of two or more genomes and are found to exist in all metazoan genomes.
Here we present the analysis of CNEs with a methodology that takes into account word occurrence at various
lengths scales in the formof feature vector representation and rule based classifiers.We implement our approach
on both protein-coding exons and CNEs, originating from human, insect (Drosophila melanogaster) and worm
(Caenorhabditis elegans) genomes, that are either identified in the present study or obtained from the literature.
Alignment free feature vector representation of sequences combined with rule-based classification methods
leads to successful classification of the different CNEs classes. Biologically meaningful results are derived by
comparison with the genomic signatures approach, and classification rates for a variety of functional elements
of the genomes along with surrogates are presented.
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1. Introduction

1.1. Conserved non-coding elements in metazoan genomes

It is generally believed that sequence conservation across genomes is
a key indication for functional relevance. As a consequence, since the
early days of comparative genomics several groups have focused on
the detection of genomic sequences highly similar between two or
more organisms. Bejerano et al. described a set of 481 sequences that
display 100% identity between the human, mouse and rat genomes,
so-called ultraconserved elements (UCEs) [1]. Surprisingly, themajority
of these sequences do not encode for proteins. The UCEs along with
several other classes of elements called UltraConserved Non-coding El-
ements (UCNEs) (N95% identity over N 200 bp between human and
chicken) [2] and Long Conserved Non-Coding Sequences (LCNS)
(N95% identity over N 500 bp between human and mouse) [3] are
among the most conserved sequences described in the biomedical
literature with mostly unknown functionality overall. These sequences
represent only the tip of the iceberg of a much larger class of conserved
non-coding elements (CNEs), whose mean level of conservation
frequently exceeds that of protein-coding sequences [4,5].

Conserved non-coding elements can be found in the literature under
various definitions, depending on the minimal sequence similarity
between species under consideration and the similarity score achieved
over a minimal sequence length [6]. Throughout this article, we use
the term CNE(s) to describe all such elements despite their specific
characterization as UCEs, UCNEs, LCNSs, etc. in the related literature.
We use the specific name only when we refer to the corresponding
class of elements.

Due to the level of conservation of those elements, their non-
random co-localization around developmental genes [7] and their
widespread distribution throughout genomes [5,8], many plausible
functional roles have been attributed to CNEs (reviewed in [5]). It has
been shown, amongst others, that many of the identified CNEs function
as regulatory elements that are important in the early stages of verte-
brate development and brain formation [9–11].

Although early studies have primarily focused on CNEs in vertebrate
genomes, CNEs with similar properties have been also identified in
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invertebrate genomes (insects, worms) [12,13] and in plants [14]. This
has suggested that they are of very ancient origin and has provoked
speculations about the emergence of those elements [5].

When compared to their surrounding genomic environment, CNEs
are generally AT-rich, often containing runs of identical nucleotides
(homopurines or homopyrimidines, unpublished results). Walter et al.
analyzed the base composition of human and fugu CNEs at single nucle-
otide level and found that they are A + T rich, much more so than the
region they reside in, in contrast to their flanking region just outside
their boundaries, which exhibits a marked drop in A + T content that
forms a unique pattern [15]. But surprisingly, very little is known
about the sequence intrinsic properties of CNEs that are important for
their function and that segregate them from other classes of functional
elements. It is therefore of great interest to further investigate the
compositional preferences of constrained regions in greater detail.

1.2. Alignment-based and alignment-free methods for sequence analysis

Similarity of sequences is generally used as an indication of a corre-
sponding similarity in their functionality. Also, similarity studies have
been widely used in the phylogenetic reconstruction based on molecu-
lar grounds. Most of the current sequence analysis methods are based
on alignments, i.e. aligning areas of sequences at several length scales,
from single genes to whole genomes. Each alignment is evaluated
with a score that depends on the number of same and contiguous char-
acters in the sequences. Optimal methods for sequence alignments rely
on dynamic programming techniques, the most widely used optimal
sequence alignment algorithms being the ones of Needleman and
Wunsch [16] and Smith and Waterman [17]. These algorithms are
computationally demanding and their complexity grows exponentially
with the length of the sequences. Heuristics have been proposed that
solve the sequence alignment problem, e.g. BLAST [18] and FASTA
[19]. In order to perform the alignment of multiple sequences more
efficiently, several algorithms have been proposed: ClustalW [20],
Muscle [21], Mafft [22], and Motalign [23].

Since the first decades of systematic sequencing of protein coding
and non-coding genomic regions, it has been noticed that, while align-
ment of protein coding genomic segments both between organisms
and inside genomes reveals a richness of information, it has limited
application on the non-coding. This is because the non-coding, in its
greatest part is not evolutionary constrained (i.e. conserved due to its
functionality in the course of evolutionary time). Nonetheless, align-
ment methods may be useful when applied in short non-coding DNA
stretches. In larger chromosomal regions their use is limited, because
in long regions synthesis is not conserved between organisms, which
are evolutionarily relatively distant. Alignment is particularly useful in
the study of transposable elements, which are found in multiple copies
in most organisms, and are marked by variable degrees of homology
between them, depending on their age in the genome. A recent applica-
tion of alignment ofwhole genomes between two ormore species led to
the aforementioned discovery of thousands of conserved and highly
conserved non-coding genomic elements (CNEs, UCNEs, etc.) through
various strategies.

Alignment-free methods are valuable when we want to extract
compositional profiles and preferences, and are applicable both
in whole-genome comparisons between organisms and in intra-
genomic detection of segments which exhibit particular modalities in
their composition, often related to their functionality. One classical
alignment-free method is based on studying distances between the
genomic signatures of sequences, which is briefly presented in the
methods section and is used in the present study for comparison with
the novel method applied herein. Based on alignment free techniques,
there are also various algorithms for locating CpG islands, which are
short genomic sequence stretches with no mutual similarity but with
several distinct compositional traits. Protein coding segments could be
determined by both alignment and alignment-free techniques, as the
use of the genetic code and the modalities of the machinery of protein
synthesis (mRNA-ribosome binding, tRNA abundances, etc.) endow
the protein-coding part of the genomewith characteristic composition-
al biases. Overall, we could say that alignment and alignment-free
methods are complementary and that particular components of the
genome could be studied by suitable combinations of both.

Alignment free techniques have been proven to be particularly
successful in phylogeny and sequence analysis [24]. In alignment free
methods the similarity of two sequences is assessed based only on the
dictionary of subsequences that appear within the studied sequences,
irrespective of their relative position. A promising alignment free meth-
od is based on the feature vector representation of a sequence [24-26],
and [27] where a sequence is encoded in a vector containing the occur-
rences of its substrings (k-mers). A k-mer is defined as a subsequence of
the original sequence, k characters long. In k-mer frequency analysis
every possible k-mer over the nucleotide alphabet {A, C, G, T} is
extracted, its occurrences in the original sequence are counted and its
frequency is calculated. A vector containing the relative frequency of
every k-mer is computed for each sequence in the analyzed data set.
Two sequences are rated similar by analyzing the dictionary of their
subsequences, without taking care of their relative position.

CNEs, as their name suggests, are identified through pairwise or
multiple sequence alignments between two or more genomes.
They tend to appear in single copies in the genome [1,28,29] and
have been proposed as markers for phylogenomic studies [30].
Herein, we propose an approach that does not rely upon the informa-
tion content of an alignment between different inter-genomic DNA
regions and we apply it to the classification of functional sequences
taken from several genomes, which range from invertebrates to
vertebrates. We also proceed to several comparisons that test the
robustness of our approach by comparing the performance of
our proposed method in classifying genomic elements not only
between species, but also within the same organism and of different
possible functionalities and evolutionary depth. For that purpose, we
use a wide collection of vertebrate conserved non-coding elements
published in the literature as well as new datasets of human and
invertebrate CNEs identified in this study.

2. Methods

2.1. Published datasets

In this study, we consider several published datasets of constrained
sequences extracted from the human (Homo sapiens), insect (Drosophila
melanogaster) and worm (Caenorhabditis elegans) genomes. We
randomly select 1000 elements from each superset for subsequent
analysis, given the heterogeneity of the datasets. Only worm elements
are studied in their entirety, since this set includes only 1869 elements.
The exonic sequences of human, worm and insect genomes are
downloaded from UCSC [31]. Apart from exonic sequences, several
classes of constrained non-exonic sequences are used as follows
(for various metrics, also see the Supplementary Excel available at
dmb.iasi.cnr.it/cnes.php):

(a) UltraConserved Non-coding Elements (UCNEs): These are
human non-protein coding sequences (hg19 assembly) that
display ≥95% sequence identity when compared to the chicken
genome and are longer than 200 bp [32].

(b) EU100 non-exonic CNEs (EU100nx CNEs): These are human
sequences (hg18 assembly) that are identical over at least
100 bp in at least 3 out of 5 placental mammals (human, mouse,
rat, dog and cow) [29]. The whole set is named EU100+ and
since we remove elements overlapping exons, we name it
EU100nx.

(c) Amniotic and mammalian CNEs: These are elements identified by
Kim and Pritchard [33]. Mammalian CNEs are sequences that are

http://dmb.iasi.cnr.it/cnes.php
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conservedwithinmammals but not found in chicken or fish, while
Amniotic CNEs are conserved in mammals and chicken but not
found in fish. LiftOver is used in order to convert the coordinates
to the most recent release of the human genome (from hg17 to
hg19).

2.2. Identification of sets of CNEs in vertebrates, insects and worms

For the needs of our study, we also identify sets of conserved
elements in vertebrates, insects and worms using uniform criteria in
terms of the similarity thresholds applied between the compared
sequences and of the considered minimum length. We choose to
compare whole genomes of D. melanogaster/Drosophila virilis and
C. elegans/Camellia japonica because the species which form these
pairs are distant enough to allow a clear separation between function-
ally conserved and neutrally evolving genomic sequences, while
they are selected so that evolutionary distances within every pair
are close [34]. Whole-genome alignments between D. melanogaster
(dm3)/D. virilis (droVir3) and C. elegans (ce10)/C. japonica (caeJap4)
are downloaded from the UCSC Genome Browser [31]. Sequence
regions, where the percentage of sequence identity is consistently
≥90% and the length is N60 bp, are considered as conserved elements.
The sequence identity is computed in an asymmetric fashion by taking
as references D. melanogaster and C. elegans genomes and counting the
number of conserved bases in the target species in a 61 bp sliding
window. The number obtained from every window is used to assign a
percentage identity value to the base at the center of this window, as
described in [34]. In total, 45,345 sequences are identified as conserved
between D. melanogaster and D. virilis and 1869 between C. elegans and
C. japonica. Based on the Ensembl gene annotations for D. melanogaster
and C. elegans genomes, each of the conserved sequences is classified as
protein-coding or non-coding (intronic, UTR-associated or intergenic).

We also identify vertebrate CNEs (based on comparisons between
human and chicken) that exhibit various degrees of identity (75–80%,
80–85%, 85–90%, 90–95%). To obtain CNEs that have identity between
e.g. 75% and 80%, we first extract a set of CNEs that exhibits identity of
75% (using the same methodology as described above) and from this
setwe remove the CNEs that exhibit identity of 80%. From the remaining
sequences, we keep only those that are longer than 199 bp. We repeat
the same procedure for the other sets of CNEs, accordingly.

2.3. Surrogate sequences extraction

FASTA sequences are obtained fromBED files using the fastaFromBed
package of BEDTools [35]. Overlapping elements between different
datasets are calculated using intersectBed package from the same suite
of tools. In addition, we apply the EMBOSS suite to estimate fractional
GC content of sequences [36]. Given a CNE or another functional
element of each collection under study, an analogue of it is extracted
from the corresponding genome. Every such element (surrogate
sequence) is ensured to be of the same length and GC content (±1%)
with its corresponding element in the collection under study. Statistics
of the datasets (mean length of sequences andGC content) are available
in the Supplementary Excel available at dmb.iasi.cnr.it/cnes.php. As
vertebrate and invertebrate CNEs are of different lengths (the ones
belonging to the latter category are considerably smaller, see [34]), we
make sure that we take elements of same lengths as follows (in all
these cases the compared sets include one thousand sequences each):
(i) each time, we compute the length of one element from the ‘short
sequences collection’, (ii) then we take one element from the ‘long
sequences collection’ and we trim it retaining only its central part
equal to the length of the corresponding ‘short sequence’, (iii) we repeat
this procedure exhaustively (1000 times in all the considered datasets).
Thus, we end up with a new dataset for the ‘long sequences’ (collection
of sequences in the form of a BED file), of whichmembers have lengths
equal to the members of the ‘short sequences collection’.
2.4. The alignment-free sequences classification method LAF

To show that we can distinguish CNEs from other functional
sequences and from surrogate sequences based solely on sequence
intrinsic properties, we apply an alignment-free method based on

• a feature vector representation of the sequences and
• classification with rule based supervised machine learning techniques.

And we call it LAF (Logic Alignment Free).

The feature vector is a well-established technique for representing
biological sequences and for permitting a classification of them. This
methodology is described in Kudenko and Hirsch [25], Vinga and
Almeida [24] and Xing et al. [27], where sequence representations
with feature vectors are introduced and combined with supervised
classification methods, e.g., Support Vector Machines, for classifying
specimen to species. Another recent work is the one of Kuksa and
Pavlovic [26], who apply feature vector representations for DNA
Barcode classification.

The feature vector representation of a sequence S is based on the
computation of the substrings occurrences of a given length k in the
original sequence by applying a sliding window in S. These substrings
are called k-mers. The k-mer counts of a sequence are represented in
a feature vector, where each component of the vector is associated
with the occurrences of a particular k-mer.

The authors of Ref. [24] provide the following formal definition. Let S
be a sequence of n characters over an alphabet A, e.g. A= {A,C,G,T}, and
let k ∈ I, k b n, k N 0. If K is a generic subsequence of S of length k, K
is called k-mer. Let the set V = {k-mer1, k-mer2, …, k-merr} be all
possible k-mers over A, V has size t = |A|k. The k-mers are computed
by counting the occurrences of the substrings in Swith a slidingwindow
of length k over S, starting at position1 and ending at position n-k+1. A
feature vector C contains for each k-mer its occurrences (or counts) C=
{ck-mer1, ck-mer2,…, ck-mert}. The frequencies are then computed accord-
ingly and stored in a vector F = {fk-mer1, fk-mer2, …, fkmert}, for a generic
k-mer j the frequency is defined as fj = ckmerj/(n-k + 1). For example
considering the 4 letters alphabet {A, C, G, T}, the 2-mers, and the
sequence ACGACT, the feature vector C is:
AA
 AC
 AG
 AT
 CA
 CC
 CG
 CT
 GA
 GC
 GG
 GT
 TA
 TC
 TG
 TT
0
 2
 0
 0
 0
 0
 1
 1
 1
 0
 0
 0
 0
 0
 0
 0
and the frequencies vector F is:
AA
 AC
 AG
 AT
 CA
 CC
 CG
 CT
 GA
 GC
 GG
 GT
 TA
 TC
 TG
 TT
0
 2/5
 0
 0
 0
 0
 1/5
 1/5
 1/5
 0
 0
 0
 0
 0
 0
 0
The sequences are so represented in a coordinate space, that is
mathematically tractable with linear algebra and statistics, e.g., by
considering the vector representation of the sequences it is possible to
compute different distance measures between two sequences or to
give the vector representation as input to a supervisedmachine learning
algorithm, i.e. a classifier.

The supervised machine learning approach is also called classifica-
tion: any collection of the analyzed sequences must contain an a priori
known class label, i.e. every sequence is associated with a given class,
e.g. Vertebrate, Invertebrate, Amniotic, andMammalian. Such a collection
is called training set. Based on the training set, the method extracts a
classification model, e.g., “if-then rules”, for distinguishing the different
sequences present in the data set. Themodel can then be evaluated on a
test set, that may be composed of unknown sequences or sequences
that belong to a known class, in order to verify the classification perfor-
mances. Our adopted approach combines the feature vector representa-
tion with rule based supervised machine learning methods [37,38].

http://dmb.iasi.cnr.it/cnes.php


Fig. 1. The LAF method flow chart.

Table 1
Data matrix example of the LAF method.
An example of the data matrix obtained by the application of the LAF method. The data
matrix is composed by twoheading columns, thefirstwith the identifiers of the sequences
and the second with the class labels. The following rows contain the frequency values of
the k-mers in the sequences.

Seq 1 Seq 2 …. Seq N-1 Seq N

Vertebrate Vertebrate …. Invertebrate Invertebrate

AAA 0.46 0.26 … 0.24 0.54
AAC 0.12 0.16 … 0.23 0.24
AAG 0.12 0.23 … 0.23 0.23
…. … … … …. …
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As a technique for biological sequence analysis, rule based classifiers
have been proposed in Bertolazzi et al. [39] and inWeitschek et al. [40],
in particular for classifying organisms using DNA Barcode sequences
and for viruses identification. In these works, the genomic sequences
were analyzed with a positional approach: each nucleotide was
analyzed independently by referring only to its position. Therefore an
alignment of the sequences or an overlapping gene region was neces-
sary: an analysis of the characteristic nucleotides present in a deter-
mined position for every class was performed, leading to logic rules of
the type, e.g., if pos90= A then the sequence belongs to class X. The align-
mentwas necessary, because a positional analysis is only possible when
the sequences come from the same gene regions and are aligned on a
reference position.

The output of a rule based classifier is a collection of if-then rules,
assigning a sequence to a particular class (species), e.g., if pos30 = A
and pos40= C then the sequence belongs to the squalus edmundsi species.
The major advantage of rule-based classification is the additional
knowledge that is given by the compact human interpretable model
(the if-then rules). In this work, the following algorithms are taken
into account for performing the rule based classification analysis of
the CNEs sequences feature vector representations: RIPPER [41],
RIDOR [42] and PART [43].

RIPPER is a classification algorithm that uses a direct method for
rules extraction: it infers the rules by processing directly the data.
RIPPER is composed of following computational steps:

1) rule growth
2) rule pruning
3) model optimization
4) model selection.

In the first step, the rules are computed in a greedy way by process-
ing the data attributes. The rules are then pruned (simplified) in step 2
according to statistical measures on the training set. In step 3 the rules
are optimized by extending them and adding new pruned rules. In the
last step the best performing rules are selected and the remaining
rules are discarded from the classification model.

The RIDOR classification algorithm also extracts the rules directly
from data. It firstly computes a default rule that covers the most repre-
sented class (e.g., “all sequences are Vertebrates”) and then exceptions
rules which cover the other classes (e.g., “except if freq(ACG) N 250 and
freq(AGT) b 200” these sequences are Invertebrates).

On the other hand, PART is an indirectmethod for rules extraction: it
processes the data by using the C4.5 tree based classifier [44] generating
a pruned decision tree for every iteration. Finally it selects the best
classification tree and uses the leaves as logic rules.

According to the previously described methods (feature vector
representation and rule based supervised learning) the LAF approach
that is adopted in this work performs for every sequence s in a data
set, which is associated to a class (e.g. Vertebrate, Invertebrate), the
following computational steps (see Fig. 1):

1. The reverse complement of the sequence s is computed.

2. The sequences S and its reverse complement sr is combined by
concatenation in a sequence S.

3. The counts of the k-mers (for k = 3,4,5) are calculated on the
sequence S, obtaining the feature vector C = {ck-mer1, ck-mer2, …,
ck-mert}.
The k-mer counts are extractedwith the Jellyfish software [45]. k has
been chosen between 3 and 5, based on the following references [46,
47], which state the optimality of such lengths as they provide an
ideal balance between the length of the subsequences and their
number, when the sequences are expressed in the 4-letter (A,C,G,
T) alphabet.

4. The frequencies of each k-mer are computed: fj = ckmerj/(n-k+ 1).
5. A feature frequency vector of each sequence is obtained:

F ¼ fk‐mer1; fk‐mer2;…; fkmertf g

6. The feature vectors are combined in a data matrix, where each row
represents a sequence and each column the k-mer frequency. A
header with the name of the sequences and their belonging class
is present. An example of the data matrix is given in Table 1.

7. The numeric data sets are discretized, i.e. the frequencies are
converted from numerical to nominal by the definition of intervals,
according to Fayyad & Irani's MDL method [48]; the discretization
procedure improves the performance of the rule based algorithms.

8. The data matrix is given as input to three rule based supervised
machine learning algorithms: RIPPER, RIDOR, and PART.

9. The classification methods are run in 10 fold cross validation mode
to evaluate the performances.
Cross validation is a standard sampling technique that splits the
dataset in a random way in m disjoints sets, and the data mining
procedure is run m times with different sets. At a given run n the
nth subset is used as test set and the remainingm-1 sets aremerged
and used as training set for building the model. Each of the m sets
contains a random distribution of the data. The cross validation
sampling procedure builds m models and each of these models is
validated with a different set of data. Classification statistics are
computed for every model and the average of these represents an
accurate estimation of the data mining procedure performance.

10. The classification models are extracted, e.g.,
if freq(AAAC) b 0.195 then the organism is Vertebrate;
if freq(AAAC) N 0.195 then the organism is Invertebrate.

11. The models are evaluated in terms of correct classification rate.
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Scripts for filtering, reverse complementing, joining the data sets,
calculating the frequencies, discretizing, and classifying have been
implemented and are available upon request.

The Weka [48] implementations of the ruled based classification
algorithms are adopted for performing the analysis. The experiments
have been run under a 64-bit Debian Linux workstation with kernel
2.6.26, 32GB of RAM, and an Intel i7 4-core processor.

2.5. The “genomic signature” method

A different technique for classification of biological sequences is
considered for a direct comparison with the results obtained using the
LAF approach proposed here. A classical method for quantifying the
neighbor preferences in a DNA sequence of an entire genome is the
computation of the vector of the odds ratios for dinucleotides [49].
The odds ratio of each dinucleotide is the quantity: ρij = fij/(fi fj),
where fij and fi, fj stand for the frequencies of occurrence in the studied
sequence of a dinucleotide and its constituent nucleotides respectively.
Thus subscripts i, j represent any pair of A, G, C and T. This is the ratio of
the “observed” dinucleotide frequency over the “expected” one under
no neighbor preference, thus it expresses the actual neighbor prefer-
ences of the given pair of nucleotides. Before computing the odds
ratios for a given sequence, this is concatenated to its reverse comple-
ment. Consequently, the relevant ratios are only ten, i.e. four for the
self-complementarydinucleotides and six for themutually complemen-
tary couples. Karlin and co-workers found that these quantities differ-
entiate between different genomes, according, approximately, to their
evolutionary distance [50]. Thus they have assigned to the vector of
these ten “first neighbor preferences” the name of genomic signature
[51]. Inwhat follows, we use classification based on genomic signatures
for comparison with classification based on the alignment-free method
described in the previous section. We also consider RIPPER, PART and
RIDOR as classifiers for all the experiments and we also perform the
discretization procedure as described previously.

All scripts used throughout this work are available upon request to
interested readers. All the used files (in BED format) are available as
Supplementary material at dmb.iasi.cnr.it/cnes.php.

3. Results and discussion

In this section, we present a systematic classification analysis of
short genomic segments displaying different functionalities and found
in the human and other genomes by using a supervised machine learn-
ing approach. For every classification task, we adopt the technique of
feature vector representation and rule based classification explained
Table 2
Comparison of background genomic sequences from different organisms.
Inter-genomic comparisons between pairs of collections of 1000 background sequences each (
surrogates for the CNEs and exons studied later. Each sequence has same length and same GC%w
each classification experiment is shown in bold. For more details on the used methods see in t

Experiment no Description Average length

#1 Surrogate for human exons 167.84
Surrogates for worm exons 169.32

#14 Surrogates for human UCNEs 86.09
Surrogates for insect UCNEs 86.58

#20 Surrogates for human exons 169.82
Surrogates for insect exons 169.32

#22 Surrogates for worm exons 213.37
Surrogates for insect exons 212.86

#23 Surrogates for worm UCNEs 83.18
Surrogates for hUCNEs 82.93

#13 Surrogates for worm UCNEs 83.41
Surrogates for insect UCNEs 86.58

Average
in previous sections. Every classification task is performed using feature
vector representation with k-mers of length 3, 4 and 5, which are given
as input to three different rule based algorithms (RIPPER, RIDOR, PART),
adopting a 10-fold cross validation sampling technique. The full list of
accuracy results with all parameters is summarized in Supplementary
Excel available at dmb.iasi.cnr.it/cnes.php. We omit the percentages of
false positives and false negatives, because the errors are equally distrib-
uted between the different classes in the datasets. We report here and
discuss based on the best result (highest classification rate) among
each different rule based algorithm, applied on the feature vectors
composed of k-mers length 3, 4, 5. The reason for choosing the overall
best for this purpose is that we consider that it captures more directly
the potential of k-mers based classification and consequently it might
be correlated more meaningfully with several biological characteristics
and reveal functional modalities of the studied sequences. In the
Supplementary Excel, interested readers are provided with the average
classification rates as calculated based on all 26 experiments performed.
Based on our results, we suggest k= 3 and PART as the optimal param-
eters for an ab initio classification experiment (see Supplementary
Excel). For all the considered experiments, genomic signatures are
also used as an alternative to the k-mers based classification method.
Genomic signatures, as characteristic constitutional traces of different
genomes, have a long history and represent a classical standard to
which we would like to compare the k-mers based approach. In the
case of genomic signatures, the best overall result in terms of algorithm
used is also considered.

The following classification analyses are presented in order to assess
the potential usefulness of our approach in distinguishing among differ-
ent genomic elements in the same or in different metazoan genomes.
The classification rules extracted with the alignment-free sequences
classification method (LAF), described in the “Methods” section, are
available for download at dmb.iasi.cnr.it/cnes.php. The interested read-
er can identify the characteristic k-mers for every pairwise experiment
and class of the investigated data sets.
3.1. Inter-species comparison of background sequences

In these comparisons between human,worm and insect background
sequences we use as representative samples of the different genomes
surrogate sets, composed either for exons or for CNEs. Comparisons
involving H. sapiens yield always the best classification rates using
both LAF and Genomic Signatures (GS), see Table 2. This may be
understood on the grounds of the high difference of neighbor
preferences,mainly in CpG and TpA betweenH. sapiens and the inverte-
brates, while these preferences are found to be close between
non-CNE, non-exonic) from the three studied genomes. These sequences are produced as
ith onemember of the CNE or exon collections. The highest value of LAF or GS accuracy in

he text and supplementary material.

Average GC LAF, accuracy GS, accuracy

0.40 84.21 86.93
0.52
0.36 81.45 84.30
0.39
0.51 84.66 87.89
0.52
0.42 78.60 70.95
0.52
0.43 82.10 84.48
0.36
0.43 64.70 63.65
0.39

79.29 79.70

http://dmb.iasi.cnr.it/cnes.php
http://dmb.iasi.cnr.it/cnes.php
http://dmb.iasi.cnr.it/cnes.php
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invertebrate species:D. melanogaster (insect) and C. elegans (worm). GS
is exclusively a quantification of first neighbor preference, while in LAF
several other components of the sequence composition are implicitly
included alongside, e.g. mono-nucleotide composition and higher
order neighbor preference. In accordance with the above description,
in cases where human sequences are included in the comparison, GS
perform systematically better than LAF, while in the remaining two
cases LAF is the best.

Another conclusion that stems from simple inspection of the Table 2
is that in interspecies comparisons between background genomic
sequences, the best results are obtained for exonic surrogates (vs. CNE
surrogates). This relies on the simple fact that the mean lengths of
exons, in all cases, clearly exceed mean lengths of CNEs (and the same
holds true for their surrogate sequences, by construction). Higher
mean lengths obviously allowbetter statistics and thus higher classifica-
tion rates in both LAF & GS. Note that, concerning interspecies CNE
comparisons, the sequences of the vertebrate CNE set are always
trimmed to the mean length of the shorter invertebrate CNEs set (for
details see in the Methods section).

3.2. Comparison of constrained sequences vs. their corresponding surrogates

The following experiments refer to comparisons of constrained
sequences against their surrogates (Table 3). Note that surrogates
share with the initial sequences the same GC% and length (see the
Methods section). As evidenced, comparisons involving invertebrate
constrained sequences are not classified as successfully as their
human counterparts using LAF. The latter may be understood on the
grounds of several particularities of the warm-blooded animals (and
often of all vertebrates) especially in their non-functional, non-
constrained background genomic fraction. These include a high enrich-
ment in repetitive sequences. Such genomes also present a typical
profile of avoided dinucleotides (especially CpG and TpA) that are less
avoided in the constrained elements (exons, CNEs), which having func-
tional roles, do not strictly follow the average genomic compositional
trends. Note that invertebrate genomes are much less abundant in
repeats and less marked by underrepresentation of specific dinucleo-
tides. In the comparisons by means of GS, the same trend is followed,
Table 3
Comparison of constrained sequences versus their corresponding surrogates.
Intra-genomic comparisons between pairs of collections of CNEs or exons vs. surrogates.
The highest value of LAF or GS accuracy in each classification experiment is shown in bold.
Here worm CNEs are studied in their entirety against their surrogates (1869 sequences).
For more details on the used methods see in the text and supplementary material.

Experiment
no

Description Average
length

Average
GC

LAF,
accuracy

GS,
accuracy

#2 Worm exons 213.37 0.42 65.63 63.75
Surrogates 213.37 0.42

#3 Human exons 169.82 0.52 73.31 65.81
Surrogates 169.82 0.52

#17 Insect exons 388.82 0.54 63.72 61.95
Surrogates 381.56 0.54

#4 Worm UCNEs 82.88 0.43 61.00 57.71
Surrogates 82.88 0.43

#5a Human UCNEs 326.92 0.37 81.15 73.55
Surrogates 326.92 0.37

#5b Human EU100nx
CNEs

155.50 0.38 75.95 65.15

Surrogates 155.50 0.38
#5c Amniotic CNEs 289.06 0.38 76.25 66.10

Surrogates 289.06 0.38
#5d Mammalian CNEs 246.49 0.40 73.65 60.00

Surrogates 246.49 0.40
#12 Insect UCNEs 86.58 0.39 67.95 66.95

Surrogates 86.58 0.39
Average 70.96 64.55
but differences are minor, due to the simpler structure of this genomic
metrics. Furthermore, we know from earlier studies that genomic signa-
tures do not perform well in intra-species comparisons because neigh-
bor preferences remain relatively constant within the same genome.
Therefore, in all cases listed, LAF performs better than GS.

The last six rows of Table 3 denote comparisons of several CNE
sequences collections against their surrogates. In general we notice
that among constrained sequences, human CNE sequences vs. surro-
gates exhibit relatively higher classification rates, if compared with
exonic sequences vs. their corresponding surrogates. Although, we are
not able at this stage to clearly interpret this finding, it might be related
to the hypothesis that CNEs orchestrate highly sophisticated develop-
mental processes including brain formation [11]. The instructions that
direct these processes might be hardwired and reflected in their
sequences themselves. It is known from the literature that CNEs do
serve as transcription factor binding sites and bear several motifs [52,
53] that k-mer analysis is possibly sensitive enough to detect and thus
increase the found CNE vs. background towards exons vs. background
classification rates.

3.3. Intra-species comparison of constrained sequences (functional sequences
vs. functional sequences of a different type)

3.3.1. Case of exons vs. UCNEs
We next proceed to the study of the sequence characteristics of

elements that are characterized as functional; exons that are known to
be under selective constraints and encode for polypeptide chains and
CNEs that aremostly of unknown functionality,which is though implied
by their high degree of conservation. At a first glance, differences in
classification rates between LAF and GS, tabulated in Table 4, may be
related to the gradation of GC content between the studied classes.
Indeed, it is known from the literature that CNEs are generally AT rich
[15], while protein coding genes are relatively GC rich, see also GC
content values included in Table 4. However, this may not be entirely
true, as classification success in the case of worm exons vs. worm
UCNEs is medium (see experiment #6, 68.65%)while CG content differ-
ence is minimal. This might indicate that exons and CNEs functional
differences are inscribed in their sequence composition. Known such
modalities are codon biases and amino-acid frequencies in coding
exons, or inscription of several protein binding and other consensus
sequences frequent within CNEs.

3.3.2. Case of different classes of CNEs
Here we compare different classes of CNEs which are identified

using the same criteria but with gradually increasing similarity thresh-
olds, using a step of 5 percentage points per dataset (see the Methods
section). Note that differentiation on the basis of GC composition
between these datasets is quite low. However, we still obtain good
Table 4
Comparison of different types of constrained sequences.
Pair-wise intra-genomic comparisons between collections of CNEs, vs. exons, containing
1000 sequences each. The highest value of LAF or GS accuracy in each classification exper-
iment is shown in bold. For more details on the used methods see in the text and supple-
mentary material.

Experiment
no

Description Average
length

Average
GC

LAF,
accuracy

GS,
accuracy

#6 Worm exons 82.64 0.42 68.65 61.88
Worm UCNEs 83.11 0.43

#7 Human exons 169.82 0.52 82.79 77.66
Human UCNEs 169.32 0.37

#18 Insect exons 86.09 0.52 82.80 81.90
Insect UCNEs 86.58 0.39

Average 78.08 73.81



Table 5
Comparison of CNEs identified using the same criteria but with different thresholds.
Intra-genomic comparisons between pairs of collections of 1000 human CNE sequences
each. These datasets consist of sequences identified between pairwise human/chicken
alignments with gradually increasing similarity thresholds. The highest value of LAF or
GS accuracy in each classification experiment is shown in bold. For more details on the
used methods, see in the text and supplementary material.

Experiment
no

Description Average
length

Average
GC

LAF,
accuracy

GS,
accuracy

#24 CNEs 75–80% 248.92 0.39 55.45 53.95
CNEs 80–85% 248.39 0.38

#25 CNEs 75–80% 248.92 0.39 57.45 50.00
CNEs 85–90% 250.63 0.38

#26 CNEs 75–80% 248.92 0.39 60.95 59.05
CNEs 90–95% 268.64 0.37

#27 CNEs 75–80% 248.92 0.39 68.50 63.25
CNEs 95–100% 319.70 0.37

#28 CNEs 80–85% 248.39 0.38 50.00 50.00
CNEs 85–90% 250.63 0.38

#29 CNEs 80–85% 248.39 0.38 58.90 54.30
CNEs 90–95% 268.64 0.37

#30 CNEs 80–85% 248.39 0.38 68.60 61.80
CNEs 95–100% 319.70 0.37

#31 CNEs 85–90% 250.63 0.38 58.00 50.00
CNEs 90–95% 268.64 0.37

#32 CNEs 85–90% 250.63 0.38 65.65 59.30
CNEs 95–100% 319.70 0.37

#33 CNEs 90–95% 268.64 0.37 61.55 50.00
CNEs 95–100% 319.70 0.37

#34 CNEs 75–80% 248.92 0.39 76.20 64.10
Surrogates 248.92 0.39

#35 CNEs 85–90% 250.63 0.38 78.45 65.25
Surrogates 250.63 0.38

#5a CNEs 95–100% 326.92 0.37 81.15 73.55
Surrogates 326.92 0.37

Average 64.68 58.04
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classification rates, clearly better than those using genomic signatures.
Especially high accuracy values are obtained when we deal with
ultraconserved elements (UCNEs, 95–100% similarity between
human and chicken, experiments #27, #30, #32, #33, #5a). UCNEs are
presumed to form a distinct class, distinguishing themselves from
CNEs of the other datasets included in Table 5 comparisons, that are
identified from the same organisms but using less stringent criteria of
sequence identity. Furthermore, when we compare CNEs 75–80%,
CNEs 85–90% and CNEs 95–100% vs. their corresponding surrogate
sequences in the human genome, we observe a gradual increase in
performance (compare #34 and #35 with #5a). Note here, that we
consider for this kind of experiments raw sequences that are not
processed in any way (i.e. trimming is not performed). Overall, as we
have mentioned earlier, we get the best classification rates when we
have UCNEs (Experiment #5a). The information content hardwired in
those sequences probably renders them detectable by our method
with high efficiency. The genomic signatures approach also performs
well in this case, which means that those sequences do probably form
a distinct category of ultraconserved sequences from the point of view
of first neighbor preferences too.
Table 6
Overall statistics describing the effectiveness of our method. LAF (Best).
The best combination for each experiment, in terms of k-mer and classifier used, is considered a
k-mers and rule-based classifiers are averaged, LAF (k = 3, PART): Based on all the experimen
each experiment, GS (without discretization): genomic signatures as calculated without the ex
our analysis.

LAF, accuracy,
Best

LAF, accuracy,
average of 9

LAF, accuracy,
k = 3, PART

Overall 75.19 71.33 74.39
Inter-species 80.20 75.56 79.81
Intra-Species 70.90 67.69 69.74
3.4. Classification based on k-mer analysis and rule based classifiers proves
efficient in distinguishing sequences from the same species (intra-species
comparisons)

By definition, genomic signatures are widely used for the identifi-
cation of different species [50]. Using a graphical representation of
genomic composition termed Chaos Game Representation (CGR),
Deschavanne et al. reported that subsequences of a genome display
the main characteristics of the whole genome converging to the geno-
mic signature concept [54]. Interestingly, the authors attributed the
variability observed among sequences to base concentrations, runs of
complementary bases or purines/pyrimidines and over- or under-
expressed words of various lengths with the aim to measure phyloge-
netic proximity. We categorize the performed experiments as inter-
species or intra-species based on whether the sequences under study
derive from different or the same organism respectively. Based on the
statistics presented in Table 6, it seems that our method performs
almost equallywellwith theGS approach,when dealingwith sequences
from different species (80.20% vs. 80.19% for the genomic signatures).
When it comes to intra-species comparisons, however, the method
proposed herein performs fairly better (70.90% vs. 65.83%). This lies
in accordance with the fact that k-mer analysis of relatively short
sequences combined with logic mining classifiers is a promising
method, since it also takes into account the occurrence in the studied
sequences of other oligonucleotide stretches such as homopurines,
homopyrimidines (unpublished results) or overlapping transcription
factor binding sites that are found in the sequences and represent
another type of “signature” that distinguishes them from the bulk or
from other non-constrained sequences.

4. Conclusions

Wepresent and apply an approach based on k-mer analysis and rule
based classification called Logic Alignment Free (LAF) in order to repre-
sent and subsequently classify biological sequences of different func-
tionalities and origins. We compare this approach vis-à-vis Karlin's
Genomic Signature (GS) method, and present classification rates. To
our knowledge, our study is the first one that applies those methodolo-
gies on short biological sequences, as up to now GS had only been
applied in more extended genomic regions of 50 kb or more [49].
Based on our results, we deduce that LAF performs particularly well
when dealing with sequences from the same species surpassing the
performance of Genomic Signatures (GS), while in inter-species
comparisons, where the potential of GS has already been validated by
comparing large genomic regions, the two methods perform equally
well. Therefore, LAF analysis of biological sequences could be further
used in applications involving sequence analysis such as categorization
of different possible functionalities within groups of CNEs or identifica-
tion of metagenomic components.
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