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a b s t r a c t

A complex system can be composed of inherent dynamical structures, i.e., relevant subsets of variables
interacting tightly with one another and loosely with other subsets. In the literature, some effective
methods to identify such relevant sets rely on the so-called Relevance Indexes (RIs), measuring subset
relevance based on information theory principles. In this paper, we present ReSS, a collection of
CUDA-based programs computing two of such RIs, either through an exhaustive search or a niching
metaheuristic when the system dimension is too large. ReSS also includes a script that iteratively
activates the search and identifies hierarchical relationships among the relevant subsets. The main
purpose of ReSS is to establish a common and easy-to-use general RI-based platform for the analysis
of complex systems and other possible applications.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Code metadata

Current code version v1.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-20-00103
Legal Code License MIT
Code versioning system used git
Software code languages, tools, and services used C++, CUDA, Python
Compilation requirements, operating environments 64-bit Linux o.s., CUDA > 9.0, Python > 3.7
If available Link to developer documentation/manual https://github.com/ri-unipr/ress/releases
Support email for questions michele.amoretti@unipr.it

1. Motivation and significance

The identification of functional structures in dynamical com-
lex systems composed of many interacting parts is a major
hallenge in science. These structures reflect the dynamics of
mall-scale processes with peculiar characteristics and can play
critical role in determining the behavior of the whole system.
To detect such structures, several measures, many based on

nformation theory [1], have been proposed. Tononi [2] and oth-
rs [3,4] introduced a method to identify these relevant struc-
ures, considering the system status at different times and associ-
ting each possible subset of system variables with an index. This
an be referred to as Relevance Index (RI), since its largest values
dentify the system’s (most) Relevant Sets (RSs).

∗ Corresponding author.
E-mail address: rpecori@unisannio.it (Riccardo Pecori).

To completely describe the system, one needs to exhaustively
compute the RI for all possible variable subsets, which becomes
unfeasible as the system dimensions increase. Therefore, meta-
heuristics are needed to identify subsets of variables describing
high-dimensional systems. Even so, the computation of hundreds
of thousands to millions of RIs may be required. Since the com-
putation of the RI for each candidate RS (CRS) is independent of
the others, an efficient implementation of the index computation
can be based on the use of GPUs.

To meet these requirements, we developed ReSS (Relevant
Set Search), a package for computing the RIs efficiently. It in-
cludes CUDA-based C++ modules and Python scripts that compute
the RIs, both exhaustively and through a niching metaheuristic,
namely K-Means PSO (KMPSO) [5].

The specific modules composing ReSS fulfill the following

goals:
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352-7110/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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1. optimizing the exhaustive search by computing the RI of
several CRSs in parallel;

2. providing a computationally-efficient objective function for
KMPSO, to detect the RSs whenever an exhaustive ap-
proach is too computationally demanding;

3. detecting possible hierarchical dependencies between RSs.

The third goal is achieved through a script calling the basic
algorithms iteratively [6]. In each iteration, the highest-index RS
found in the previous one is treated as a new single variable.
This way, a succession of system representations of decreasing
dimension is generated. The iterations stop when the RI falls
below a pre-set threshold.

ReSS was successfully employed to analyze the hierarchies of
RSs in random boolean networks, chemical reactions, and real-
world human communities [6], as well as to identify relevant
subsets in biological networks [7], reveal communities and emo-
tions in online social networks [8], and detect critical states in the
Ising model [9].

2. Relevance indexes

ReSS computes two indexes: the normalized version of the
Dynamic Cluster Index (Tc), and the Z-Index (zI).

The Dynamic Cluster Index C of a subset S of size d of a
dynamic system U , is defined as the ratio between the integration
of S:

I(S) =

∑
x∈S

H(x) − H(S) (1)

and the mutual information between S and the rest of the system
U − S:

C(S) =
I(S)

MI(S;U − S)
, (2)

where MI(S;U − S) ≡ H(S) + H(S|U − S) = H(S) + H(U − S) −

H(S,U − S) and H denotes entropy.
I(S) measures a global correlation between the variables in the

same set, while MI(S;U − S) measures how much information is
shared between S and the rest of the system.

In simpler words, large index values identify variable subsets
that describe independent ‘synchronized’ subsystems. These may
correspond to functional subsets of a physical system, sets of
elements that are contemporarily active in different phases of a
chemical reaction, etc.

In data science terms, the task that the considered Relevance
Index allows one to perform on a dataset, represented by a
relation whose rows are its instances (tuples) and columns its
attributes, is to cluster data columnwise based on the correlation
between attributes, instead of clustering instances based on their
similarity (distance) as happens in traditional clustering.

Since C(S) scales with the size of S, the indexes of differently-
sized systems need to be normalized to be comparable. To this
aim, a system whose variables are equally correlated, termed
homogeneous system Uh, is taken as a reference. For each sub-
set size d, the average integration ⟨Idh ⟩ and the average mutual
information ⟨MIdh ⟩ are used to normalize the cluster index value
as follows:

C ′(S) =
I(S)
⟨Idh ⟩

/
MI(S;U − S)

⟨MIdh ⟩
(3)

where d is the dimension of set S.
Indeed, to measure the relevance of each set S, its Tc (normal-

ized cluster index) value is used, defined as follows:

Tc(S) =
C ′(S) − ⟨C ′ d

h ⟩

′ d , (4)

Fig. 1. ReSS architecture.

where ⟨C ′ d
h ⟩ and σ (C ′ d

h ) are the average and the standard devia-
tion, respectively, of the normalized cluster indexes of all the sets
from the homogeneous system having the same size d as S.

In practice, the Tc measures how much the dynamics of S
diverge from those of the subsets of Uh having the same size.

If the integration is only considered, another index, termed Z-
Index, can be computed to assess such a divergence. It is defined
as a sort of z-score, as follows:

zI(S) =
2nI(S) −

⟨
2nI(Sdh )

⟩
σ (2nI(Sdh ))

, (5)

where n is the number of configurations of the whole system
given as input, S is a subset of U , ⟨Sdh⟩ and σ (Sdh ) are the average
and the standard deviation of the integration of all the sets
from the homogeneous system that have the same size d as S,
respectively.

It can be demonstrated that 2nI ≈ χ2
g under the hypothesis of

independent random variables and with n large enough. There-
fore, the terms in Eq. (5) can be computed just by knowing the
degrees of freedom g of the Chi-squared distribution [10]. Indeed,
under the hypothesis of independent variables:

⟨2nI(Sh)⟩ = g (6)
σ (2nI(Sh)) =

√
2g (7)

Therefore, using the Z-Index avoids the need for defining and
simulating a homogeneous system.

3. Software description

3.1. Software architecture

As per Fig. 1, ReSS is provided as a Python script (ress.py)
that activates three executables (homgen, eress, and kress),
whose main functions are defined in the files homgen.cu, eress.cu
and kress.cu, respectively. homgen computes the statistics of the
homogeneous system from the input sequence of configurations
of the system to be analyzed. These statistics are needed only
to compute the Tc index. eress implements the exhaustive RSs
search, while kress implements the search using KMPSO [11].
Finally, by selecting the proper option, ress.py can also perform
the hierarchical grouping.

The system description is expected to be provided as a text file
with the following structure (for N variables):

• a header including a sequence of N space-separated variable
names following the %% prefix;
σ (Ch )

2
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• N binary patterns where the bits that encode the corre-
sponding variable (in the order specified in the header) are
set to 1;

• one row only displaying the %% string used as a separator;
• a list of rows, each representing a system configuration,

where the value of each variable is binary-coded.

or example, the following representation corresponds to a sys-
em with 4 variables (B, BA, BAA, and BAAB), each encoded by
wo bits:

%% B BA BAA BAAB
11000000 % the first 2 bits represent B
00110000
00001100
00000011
%%
01010101
10011100
10011110
01010101
01010101
10011100
10011110
...

The instructions for running homgen, eress, kress, and
ress.py are given in the README file provided with the source
code.1

The output of both kress and eress is a text file having the
following format:

• a header displaying N variable names, space-separated and
followed by a label specifying the chosen RI;

• a list of system subsets (N bits, where 1s correspond to their
constituting variables) along with their RI value.

For example, the following output regards a system with 4
variables, analyzed using the zI:

B BA BAA BAAB zI
0 0 1 1 229.3 %the zI of {BAA,BAAB} is 229.3
1 0 1 0 205.2
0 1 1 1 120.4
...

3.2. CUDA-based implementation of the search

In our implementation:

– Each sample is stored in a memory area including K adja-
cent unsigned integers, containing the Nbit bits needed to
represent the N variables of the system. If n is the number
of samples, then the system data can be stored in an array
of n · K unsigned integers.

– Each CRS is represented as a bit mask of Nbit bits, where the
ith bit is set to 1 if the ith variable is contained in the CRS.

The exhaustive computation of the selected index for all the
RSs is split into the following steps:

1. Computation of the probability distribution function (PDF)
for each system variable;

2. Generation of Uh and index computation for its variable
subsets (only for Tc);

3. index computation for each CRS.

1 https://github.com/ri-unipr/ress.

In the first step, each variable is examined individually to
compute its PDF. The distribution of the ith variable is estimated
as the frequency of the values of its bits. This information is used
for the generation of Uh, if needed, and to compute the entropy
H of the variable.

In the second step, if N is the dimension of the system X , Uh
is generated from N independent random variables, having the
same PDF as the corresponding variables of X . We obtain n sam-
ples by assigning to the ith variable, for each sample, a randomly
generated value from the previously estimated distribution.

Thus, Uh meets the homogeneity requirement while maintain-
ing a relationship with X .

As shown in Fig. 2, for each possible CRS size, from 2 to N −1,
we compute the mean and the standard deviation of C . If the
considered size is d, then the CRSs to be examined are selected by
scanning all possible permutations of an N-bit string containing d
bits set to 1 and N−d bits set to 0. Each selected CRS is assigned to
a grid of T threads, responsible for computing C , with T = NBNT ,
where NB is the number of blocks per grid and NT the number of
threads per block. Each CRS S is paired with its complementary
subset U − S, whose entropy is necessary for computing the MI;
thus, each grid is composed of T/2 complementary CRS pairs: one
CRS of size d and another of size N − d. Therefore, if the threads
are properly synchronized, it is possible to concurrently compute
the statistics (mean and standard deviation) of the CRSs of both
sizes, further halving the computation time.

The third step consists of three sub-phases:

1. Creation of the frequency histogram: the number of occur-
rences of each value of the CRS is counted; the result is a
list of value/number of occurrence pairs;

2. Entropy computation: the entropy is computed using the
frequency histogram;

3. Computation of the final output: the threads of the block are
synchronized to make the complementary entropy avail-
able to each CRS. This also enables the computation of the
MI , when computing the Tc .

Calculating the frequency histogram is, computationally, the
hardest step. To obtain a good trade-off between performance
and memory usage, we generated a hash map, pre-allocated for
each thread to be managed by the GPU kernel computing the
histogram.

The module computing the Tc or the zI is a simple extension
of the one that computes the corresponding unnormalized index.

3.3. K-means PSO metaheuristic

An exhaustive search is not feasible for high-dimensional sys-
tems, because of the curse of dimensionality. This is why we sug-
gest that the proposed software compute the index exhaustively
for systems of dimension up to about 20, while for larger ones one
should rely on kress. In kress, K-means PSO preserves diver-
sity within the swarm, exploring many peaks simultaneously, by
alternating classical PSO [12] and K-means [13] clustering steps.

PSO is a continuous optimization method. In this package,
it deals with a discrete domain problem, in which each CRS is
represented as an N-bit binary string Pi, whose bits are set to
1 if the corresponding variable is included in the CRS, or to 0
otherwise.

Since a particle is actually an N-dimensional vector pi ∈ RN ,
kress uses the sign of each component to transform its real value
into the corresponding bit of Pi as follows:

Pi,r =

{
1 if pr ≥ 0

(8)

0 if pr < 0

3
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Fig. 2. Computation of the selected index, with the sub-modules for the Tc in dashed red.

Fig. 3. The 612 users (left) of the Facebook group with the detected sentiment-based community (green nodes) and the 32 users (right) posting at least 15 times
in the considered period. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The fitness F (pi) of a particle pi is equal to the RI value of the
CRS that pi represents. The fitness function F is to be maximized.
Finally, kress outputs the list of the best Ns sets found during
the whole search process.

4. Illustrative examples

We provide two examples of usage of ReSS: the identification
of relevant sets in an online social network, and the detection of
a hierarchical structure in a chemical reaction.

4.1. Unveiling social relationships

This example entails a Facebook group composed of patients
affected by Hidradenitis Suppurativa. The dataset was obtained
using the information about the group members who published at
least 15 posts between 2010 and 2016. This allowed us to reduce
the number of considered users to 32 and to study the most
active members. Each sample of the system represents a specific
month within the period of interest. In particular, we focused on a
sentiment-based analysis, i.e., the value corresponding to a certain
user can assume 4 different categorical values, corresponding to
the prevailing mood of her/his posts (no posts, positive, negative,
neutral).

Fig. 3 represents, on the left, all the 612 users of the Facebook
group. Each node of a graph is a user and each edge is a friendship
relationship between two users, while the size of each node is
proportional to the node degree. The green nodes represent the
highest-Tc RSs. The right side of the figure focuses on the 32 users
posting at least 15 times in the considered period.

The highlighted set of users is the most representative in
terms of Tc , showing that the application of ReSS to the Facebook
group identified an interesting community, characterized by the
presence of many friendship connections within its members.
This result confirms the effectiveness of such a support group and
the psychological influence that its manager (the largest circle)
exerts on the members more closely connected to her.

4.2. Hierarchical grouping

In this subsection, we describe an application of the third al-
gorithm implemented in ReSS, i.e., the search of the RSs based on
a hierarchical grouping of the variables according to the iterative
strategy mentioned in Section 1.

The example concerns a Catalytic Reaction System (CatRS),
involving enzymatic condensations and self-maintaining behav-
iors such as Reflexive Autocatalytic Food-generated (RAF). The
considered entities are molecular species represented by letters.
Their state, in the input file, is represented by an encoding of their
concentration trend (increasing, decreasing, steady). In Fig. 4, they
form a CatRS of seven reactions, divided into two RAFs: a linear
chain (RAF1) and a second one (RAF2), where two reciprocally
catalyzing reactions are the roots of another linear chain.

Fig. 5 shows that, after five iterations, RAF1 has already been
identified as a single RS, whereas, within the more complex
RAF2, the other detected RSs highlight strict relations among the
reagents and the catalyzer of the same reaction. The available
time series is too short to permit an immediate detection of
the whole RAF2 group with sufficient significance (Tc ≥ 3).
However, it is actually possible to detect the whole set by going
on iterating the method after the groups that are found start
having significance below the chosen threshold (T = 3).
c

4
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Fig. 4. The considered CatRS. Ellipses represent chemical species (injected in orange, created in white), rectangles represent reactions. Dashed lines indicate the
catalytic role of a species. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. The five RSs (red) found after the first five iterations of the hierarchical grouping. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

5. Impact

The purpose of this article is to publish ReSS, an open source
ackage to analyze complex systems through the computation
f the RIs. ReSS has already been tested in different research
cenarios, enabling both a speed-up of the index computation and
he search of relationships among the system variables.

Regarding the speed-up, we obtained manageable computa-
ion times by using kress rather than an exhaustive approach.
tatistics of 10 independent runs are summarized in Table 1.2
hey relate to the 26-variable CatRS described in Section 4,3 a
8-variable stochastic artificial system reproducing a Leaders &
ollowers (LF) behavior, and a 56-variable system (Green Net-
ork Community, GNC) whose status represents the participation
f 56 partners in several project meetings. Notice that, for such a
ize, an exhaustive search is unfeasible on a standard computer,
ven using GPU parallelization. Also the computation time re-
uired by kress does not only depend on the size of the system,
ut also on the number of status samples in the dataset, and on

2 The algorithm configuration is the same as in the corresponding scripts
ncluded in the package.
3 Only 21 variables are relevant, since 5 variables have the same value in all

nstances.

the statistical distribution of the index values over the CRSs. In
fact, finding RSs in a real-world system as the CatRS is harder
than in larger artificial LF systems, since more and more complex
relationships exist among the variables.

Tests were run on a Linux server equipped with two Intel Xeon
Silver 4210 2.2 GHz CPUs, 64 GB of RAM, and a GeForce RTX 2080
8GB GDDR6 256-bit GPU by NVIDIA.

As regards applications, beyond its use for the native goals,
as described in the examples (see [6–8,14] for more details), the
application of ReSS to pattern recognition tasks also seems to be
promising. In particular, in some preliminary tests, ReSS aided
the detection of malicious users in social networks [15], unsu-
pervised feature extraction applied to character recognition and
classification of DNA sequences [16], and pattern clustering [17],
obtaining interesting results and hints for further exploration of
these mostly unexplored additional capabilities.

ReSS can be further extended to compute other RIs.

6. Conclusions

We have presented ReSS, a package that discovers RSs in
complex systems. Presently, no other tools for computing the
considered RIs are freely available. The distribution of ReSS, be-
sides allowing more researchers to experiment with RIs, could
5
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able 1
unning times, not including the homogeneous system computation that is equal for all cases, for kress (K) on three different systems (with N variables and Nd
amples) and comparison with eress (E) where possible.
System N Nd Time [s] ± std (E) Time [s] ± std (K) Avg. speedup

Tc zI Tc zI Tc zI

CatRS 21 751 0.57 ± 0 0.567 ± 0.004 3.438 ± 0.03 3.88 ± 0.04 0.165 0.146
LF 28 150 83.173 ± 0.842 83.672 ± 0.218 3.575 ± 0.031 3.902 ± 0.020 23.265 21.443
GNC 56 124 n.a. n.a. 16.401 ± 0.39 21.517 ± 0.26 n.a. n.a.

foster the comparison of the approach based on such indexes with
other methods aiming at identifying the core subsets of complex
systems as well as new research in pattern recognition.
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