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A B S T R A C T   

In this paper, a method for generating samples of a fully non-stationary zero-mean Gaussian process, having a 
target acceleration time-history as one of its own samples, is presented. The proposed method requires the 
following steps: i) divide the time axis of the target accelerogram in contiguous time intervals in which a uni-
formly modulated process is introduced as the product of a deterministic modulating function per a stationary zero- 
mean Gaussian sub-process, whose power spectral density (PSD) function is filtered by two Butterworth filters; ii) 
estimate, in the various time intervals, the parameters of modulating functions by least-square fitting the expected 
energy of the proposed model to the energy of the target accelerogram; iii) estimate the parameters of the PSD 
function of the stationary sub-process, once the occurrences of maxima and of zero-level up-crossings of the target 
accelerogram, in the various intervals, are counted; iv) obtain the evolutionary spectral representation of the fully 
non-stationary process by adding the various contribution evaluated in the various intervals.   

1. Introduction 

Strong motion earthquakes represent critical actions for most Struc-
tural and Geotechnical (S&G) systems located in seismically active re-
gions. The analysis of recorded accelerograms after earthquakes 
evidences that different earthquakes produce ground motions with 
different characteristics in terms of intensity, duration, destructiveness, 
dominant periods and frequency content. It follows that, in order to 
guarantee a good performance of S&G systems in seismic areas, it needs 
to adequately characterise the ground motion acceleration [1]. 

The worldwide increasing availability of recorded accelerograms 
makes the use of these time-histories an attractive option to properly 
define the motions to be used as input in dynamic analysis of both S&G 
systems. According to most seismic codes, the selection of proper sets of 
input motions for these kinds of analyses is generally carried out 
defining a target motion through a design elastic pseudo-acceleration 
response spectrum [2]. 

The results of the selection procedure is influenced by multiple 
sources of uncertainties related to the definition of the seismic hazard at 
the site of interest, to the criteria adopted to check the compatibility of 
the selected records with the frequency and energy content of a target 
motion expected at the site of interest [3] and to the combined effects of 
frequency coupling and soil non-linear behaviour which significantly 

affect the characteristics of the ground motion expected at the site. 
Different procedures for the selection of sets of recorded accelero-

grams have been proposed in the literature [e.g. 4–6]. Several recent 
studies have clearly pointed out the crucial role of the geotechnical 
properties of soils at the site of interest, relevant in seismic perspective, 
and the need of defining proper target energy and frequency contents 
instead of, or together with, target elastic response spectra. As an 
example, in Ref. [7,8], with reference to 1D site response analyses, it is 
demonstrated that soil heterogeneity in terms of shear wave velocity 
profile and soil non-linear behaviour under cyclic loading significantly 
affect the interval of vibration periods relevant for the accelerogram 
selection and the characteristics of the selected input motions. 
Furthermore, Lanzo et al. [9] and Cascone et al. [10] pointed out the 
need of using target values of Arias intensity for a proper selection of 
input motions to be used in 2D non-linear analyses of the seismic 
response of earth-dams. 

However, depending on the characteristics of the target ground 
motion and on the adopted compatibility criterion, it may be impossible 
to select an adequate number of compatible accelerograms (i) actually 
reflecting the influence of the expected focal mechanism, (ii) reliably 
compatible with the magnitude and site-to-source distance that domi-
nate the seismic hazard at the site of interest and, finally, (iii) without 
applying large acceleration scale factors which distort the actual 
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characteristics of the un-scaled records leading to unrealistic input 
motions. In these situations, the use of artificial accelerograms repre-
sents a suitable alternative to realistically define the expected ground 
motion. 

The generation of artificial accelerograms was first based upon a sta-
tionary stochastic zero-mean Gaussian process assumption. In partic-
ular, stationary white-noise ground-motion models were proposed by 
Housner [11] and Bycroft [12]. Successively, to account for the fre-
quency content of earthquake ground motion, Gaussian filtered white 
noise with Kanai-Tajimi [13,14] or Clough-Penzien [15] spectra are 
frequently used in analytical random vibration analyses. Housner and 
Jennings [16] developed a method for generating filtered stationary 
Gaussian random processes with power spectral density (PSD) functions 
derived from the average of the undamped velocity spectra of recorded 
ground accelerations. These stationary models account for the site 
properties as well as for the dominant frequency in ground motion. 
However, they fail since are not able to reliably reproduce the changes in 
amplitude and frequency content, which are observed in actual seismic 
records. Faravelli [17] formulated a stationary ground-motion model 
with mu1timodal spectral density to reproduce frequency variation. 

Moreover, it has been recognised that artificial accelerograms 
generated by applying stationary models have an excessive number of 
cycles and consequently they possess unreasonably much higher energy 
content with respect to real ones [3,18]. 

It is well known that earthquake ground motions are non-stationary 
in both time and frequency domains. Temporal non-stationarity refers to 
the variation in the intensity of the ground motion in time, whereas the 
spectral non-stationarity refers to the time variation of the frequency 
content [19]. To capture the variation in the intensity of accelerograms, 
non-stationary processes have been introduced as the product of the 
stationary zero-mean Gaussian random process by a suitable determin-
istic time-dependent function, the so-called modulating function [see 
20–27]. Due to their non-stationarity in time, these are called separable 
non-stationary stochastic processes or more commonly: quasi-stationary 
(or uniformly modulated non-stationary) random processes. 

Opposite to temporal non-stationarity, spectral non-stationarity is 
not so easy to model. For both temporal and spectral non-stationarities, 
seismological as well as geotechnical aspects are extremely relevant 
since the distribution of the ground motion intensity over the time 
(temporal non-stationarity) as well as the energy distribution in the 
frequency domain (spectral non-stationarity) are strictly related to the 
characteristics of the source mechanism but are also significantly 
influenced by the seismic waves travel path and, finally, by the complex 
non-linear phenomena overall denoted as site effects. 

The spectral non-stationarity is prevalently due to different arrival 
times of the body (primary, secondary) and surface waves that propa-
gate at different velocities through the earth crust vary significantly in 
frequency content and reach the ground surface at different times. 

Moreover, it has been shown that the non-stationarity in frequency 
content can have significant effects on the response of both linear and 
non-linear structural [28–31] and geotechnical [32–36] systems. 

Non-linear S&G systems tend to have resonant frequencies which 
decay with time as the system responds to seismic acceleration, as a 
consequence of non-linear effects. This trend may coincide with the 
variation in time of the predominant frequency of the ground motion. 
The stochastic processes involving both the intensity and the spectral 
variation in time are referred in the literature as fully non-stationary (or 
non-separable) stochastic processes. 

Several approaches have been adopted in the literature to capture 
the variation in both amplitude and frequency of recorded accelero-
grams. In particular, by solving probabilistic energy spectra equations, 
Spanos [37,38] introduced evolutionary non-separable power spectra as 
the product of a deterministic time-frequency dependent function by the 
PSD function of stationary zero-mean Gaussian stochastic processes. 
Alternative very widespread fully non-stationary stochastic process 
models based on filtered processes have also been proposed. These 

models, whose parameters can be identified by matching with the 
characteristics of the target accelerogram, can be subdivided in two 
categories: a) stochastic processes obtained by passing a white noise 
through a filter with time dependent coefficients [19,28,30,39,40]; b) 
processes obtained by passing a train of Poisson pulses through a linear 
filter [41–44]. 

A very useful approach to generate fully non-stationary zero-mean 
Gaussian stochastic processes is the one based on the evolutionary 
spectral representation, that requires the introduction of the Evolu-
tionary Power Spectral Density (EPSD) function [45,46]. Three main 
models have been proposed in the literature to evaluate EPSD functions 
whose parameters are identified from recorded accelerograms. The first 
was the Saragoni and Hart model [47] in which the time axis is sub-
divided in three contiguous segments, each with different modulating 
and PSD functions. The modulating function is used to control the process 
intensity level, while the counting of zero-level crossings and peaks are 
used to characterise the PSD functions in the three time intervals. The 
second model was proposed by Der Kiureghian and Crempien [48] in 
which the strength function of the process is changed at discrete points 
along the frequency axis. The resulting process is given by the super-
position of independent processes with constant PSD function, and 
unitary variance, over their respective bands. This model, in a sense can 
be considered as the complement of the Saragoni and Hart [47] model. 
However, one shortcoming of this model, in the identification of its 
parameters, is the need to perform, in each frequency segment, the in-
verse Fourier transform of the Fourier transform of the accelerogram. In 
the third model, proposed by Conte and Peng [49], the resulting process 
is evaluated as the sum of a finite number of zero-mean, independent, 
uniformly modulated zero-mean Gaussian sub-processes, the so-called 
sigma-oscillatory processes. Each uniformly modulated process consists 
of the product of a real deterministic time modulating function and a 
stationary Gaussian sub-process, having unimodal PSD function with 
unitary variance. The parameters of the resulting analytical EPSD 
function are estimated in the least-square sense by using the short-time 
Thomson’s multiple-window method. The main shortcoming of this very 
interesting model is the complexity of the identification procedure. 

Other strategies to analyse the evolutionary frequency content of 
fully non-stationary stochastic processes are based on: a) the short-time 
Fourier transform [50,51]; b) the wavelet transform [52–54]; c) the 
Hilbert-Huang transform [55,56]. 

In this paper a method for generating samples of a fully non-stationary 
zero-mean Gaussian process, having an actual acceleration record as one 
of its own samples, is presented. 

To this purpose, the time duration of the accelerogram is divided in 
some contiguous time intervals in which zero-mean Gaussian uniformly 
modulated stochastic processes are adopted. Each uniformly modulated 
random process consists of the product of a positive deterministic 
modulating function, and a stationary zero-mean Gaussian sub-process, 
whose PSD function is filtered by one high pass and one low pass But-
terworth filters. It follows that the Priestley’s evolutionary EPSD func-
tion is evaluated by adding the contributions of all zero-mean Gaussian 
uniformly modulated stochastic processes. In the considered time in-
tervals a polynomial or an exponential decaying form of the modulating 
function is assumed. The order of the polynomials and their coefficients 
are estimated by least-square fitting, in each time interval, the expected 
energy of the proposed model of the fully non-stationary process to the 
energy of the target accelerogram. Then, in each interval the parameters 
of the PSD function of the stationary sub-process are estimated once the 
occurrences of maxima and the occurrences of crossings of the time-axis 
with positive slope of the target accelerograms are counted. Finally, the 
parameters of Butterworth filter are opportunely chosen. 

The analytical form of the modulating functions in the various in-
tervals have been chosen with the purpose to obtain functions that 
permit to evaluate closed form solutions of the EPSD function of the 
seismic response of S&G systems in seismic areas [see 57]. This goal 
cannot be achieved by adopting the modulating function of the Saragoni 
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and Hart [47] model. 
The paper is organised as follows. In Section 2, a brief summary of 

the fundamentals of the evolutionary spectral representation of fully 
non-stationary zero-mean Gaussian stochastic processes is presented. 
Section 3 outlines the proposed evolutionary model for the fully non- 
stationary stochastic process. In Section 4 a method for the estimation of 
both modulating function and PSD function of stationary sub-processes 
parameters, from target accelerograms, is described. Finally, in Sec-
tion 5, eight accelerograms relative to four seismic events are analysed 
to show the accuracy and computational efficiency of the proposed 
method. 

2. Evolutionary spectral representation of fully non-stationary 
zero-mean Gaussian stochastic processes 

A zero-mean Gaussian fully non-stationary random process F0(t), is 
usually represented by the evolutionary spectral Priestley’s model [45, 
46]. Moreover, in the stochastic analysis the one-sided Power Spectral 
Density (PSD) function is generally used to characterise the input pro-
cess. It has been demonstrated that, since the one-sided PSD function is 
not symmetric [58–60], the corresponding autocorrelation function is a 

complex function having real part coincident with the autocorrelation 
function corresponding to the two-sided PSD [59]. This implies that, 
from a mathematical point of view, the zero-mean Gaussian fully 
non-stationary random process is a complex process too. It can be 
defined by means of the following Fourier-Stieltjes integral: 

F0(t)=
∫∞

0

exp(iωt) a(ω, t) d N(ω) (1)  

where i =
̅̅̅̅̅̅̅
− 1

√
is the imaginary unit; a(ω, t) is a slowly varying complex 

deterministic time-frequency modulating function, which has to satisfy 
the conditions: a(ω,t) ≡ a*( − ω,t),Re{a(ω,t)} ≥ 0; N(ω) is a zero-mean 
process with orthogonal increments satisfying the condition: 

E〈d N(ω1) d N*(ω2)〉=
1
2

δ(ω1 − ω2) G0(ω1)d ω1 d ω2 (2)  

where the operator E〈 •〉 denotes the stochastic average; the asterisk * 
indicates complex conjugate quantities; δ( •) is the Dirac delta, and 
G0(ω) is the one-sided PSD function of the “embedded” stationary 
counterpart process [61], which is a real function for ω ≥ 0, while 
G0(ω) = 0 for ω < 0. 

Notice that, because of the PSD function has been assumed one- 
sided, the zero-mean Gaussian non-stationary random process F0(t) is 
a complex one [58–60] that can be defined, in the time domain, by the 
knowledge of its complex autocorrelation function: 

RF0F0 (t1, t2) ≡ E〈F0(t1) F0(t2)〉 =

=

∫∞

0

exp[iω(t1 − t2) ]GF0F0 (ω, t1, t2)dω (3)  

where: 

GF0F0 (ω, t1, t2) = a(ω, t1) a*(ω, t2)G0(ω) (4) 

Table 1 
Main characteristics of the selected accelerograms.  

n◦ Earthquake Name Station and Event Date Mw RJB [km] amax [m/s2] vs,30 [m/s] TD [s] SMD [s] I0 [m2/s3] IA [m/s] N0
+ P0 

1 Kern County Taft Lincoln School – 21 
21/07/1952 

7.36 38.42 1.55 385.43 54.34 30.28 3.44 0.55 163 289 

2 Kern County Taft Lincoln School – 111 
21/07/1952 

7.36 38.42 1.76 385.43 54.36 28.77 3.73 0.59 167 295 

3 Kobe, Japan  Kakogawa – 0 
16/01/1995 

6.90 22.5 2.35 312.00 40.95 13.15 6.43 1.03 154 259 

4 Kobe, Japan  Kakogawa – 90 
16/01/1995 

6.90 22.5 3.18 312.00 40.95 12.85 10.53 1.68 134 264 

5 Friuli, Italy – 02  Forgaria Cornino – 0 
15/09/1976 

5.91 14.65 2.56 412.37 21.98 4.49 1.82 0.29 116 196 

6 Friuli, Italy – 02  Forgaria Cornino – 270 
15/09/1976 

5.91 14.65 2.07 412.37 21.98 4.57 2.33 0.37 99 204 

7 Kocaeli, Turkey Yarimca – 60 
17/08/1999 

7.51 1.38 2.22 297.00 28.99 15.09 8.30 1.32 60 112 

8 Kocaeli, Turkey Yarimca – 150 
17/08/1999 

7.51 1.38 3.15 297.00 28.99 15.07 8.26 1.32 71 260  

Table 2 
Parameters of the modulating function selected for the accelerograms listed in 
Table 1.  

n◦ t1 [s] t2 [s] k1% k2% p Dp [m/s2] |Üg(TD)| [m/s2] 

1 3.13 40.58 1 98 7 0.167 0.00275 
2 3.45 25.82 3 91 7 0.171 0.00758 
3 2.55 14.22 1 91 10 0.247 0.00210 
4 2.63 26.47 1 99 9 0.308 0.00084 
5 2.51 6.84 2 90 5 0.192 0.00134 
6 3.33 7.55 4 94 9 0.191 0.00114 
7 2.55 14.10 1 91 8 0.285 0.02539 
8 3.31 14.55 3 91 10 0.310 0.01282  

Table 3 
Polynomial coefficients [m/si+2] in the first two time intervals of the modulating functions of the selected accelerograms.  

n◦ 0 ≤ t < t1 t1 ≤ t < t2 

α1 α2 α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 

1 8.6⋅10− 3 0.020 0.226 − 0.054 5.6⋅10− 3 − 3.38⋅10− 4 1.1⋅10− 5 − 1.97 1.4⋅10− 9 – – – 
2 3.7⋅10− 4 0.028 0.513 − 0.247 0.050 − 0.005 3.1⋅10− 4 − 9.6⋅10− 6 1.1⋅10− 7 – – – 
3 1.5⋅10− 3 0.051 1.679 − 3.106 2.529 − 1.101 0.284 − 0.045 4.5⋅10− 3 − 2.7⋅10− 4 8.9⋅10− 6 − 1.2⋅10− 7 

4 1.8⋅10− 4 0.056 1.246 − 0.857 0.290 − 0.054 5.8⋅10− 3 − 3.8⋅10− 4 1.4⋅10− 5 − 3.0⋅10− 7 2.7⋅10− 9 – 
5 0.071 5.0⋅10− 4 0.309 1.251 − 1.207 0.358 − 0.034 – – – – – 
6 0.067 4.6⋅10− 3 6.505 − 22.109 34.227 − 27.535 12.101 − 2.842 0.296 2.6⋅10− 4 − 1.6⋅10− 3 – 
7 0.130 6.8⋅10− 5 1.680 − 1.725 0.916 − 0.283 0.051 − 0.005 2.9⋅10− 4 − 6.6⋅10− 6 – – 
8 0.125 1.3⋅10− 4 5.799 − 11.743 10.432 − 5.114 1.522 − 0.286 0.034 2.5⋅10− 3 1.0⋅10− 4 1.8⋅10− 6  
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The complex process F0(t), which generates the complex autocor-
relation function (3) has been called pre-envelope process by Di Paola 
[58]. In the Priestley evolutionary process model, the function 

GF0F0 (ω, t)= |a(ω, t)|2G0(ω) (5)  

is called one-sided evolutionary power spectral density (EPSD) function of 
the non-stationary process F0(t). This process is called fully non-station-
ary random process, since both time and frequency content change. If 
the modulating function a(ω, t) ≡ a(t) is a positive time dependent real 
function, the non-stationary process is called uniformly modulated (or 
quasi-stationary) random process. In the latter case the EPSD function 
assumes the expression: GF0F0 (ω, t) = a(t)2G0(ω). 

The samples of real and imaginary part of the fully non-stationary 

complex process F0(t), introduced in Eq. (1), can be generated, ac-
cording to the procedure described in Ref. [62], by applying the 
following relationships [57]: 

F(i)
0 (t) ≡ Re

{
F(i)

0 (t)
}

=
∑mc

k=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2GF0F0 (ωk, t)Δω
√

sin
(
ωk t + θ(i)

k

)
;

Im
{

F(i)
0 (t)

}
=
∑mc

k=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2GF0F0 (ωk, t)Δω
√

cos
(
ωk t + θ(i)

k

)
.

(6) 

In this equation F(i)
0 (t) is the i-th sample of the process F0(t); Δω is 

the frequency step; mc is an integer number, chosen in such a way that 
the relationship mc = ωc/Δω is satisfied, with ωc the upper cut-off cir-

cular frequency; ωk = k Δω (k = 1,2, ..., mc); θ(i)
k are random phase 

Fig. 1. Absolute value of the analysed accelerograms and selected modulating functions a(t), having the smaller rms difference Dp: a) Taft Lincoln School-21; b) Taft 
Lincoln School-111; c) Kakogawa-0; d) Kakogawa-90; e) Forgaria Cornino-0; f) Forgaria Cornino-270; g) Yarimca-60; h) Yarimca-150. 
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angles uniformly distributed over the interval [0 − 2π). Notice that the 
random phase angle, θ(i)

k , must be the same in both Eq. (6), to simulta-
neously obtain the real and imaginary part of the i-th sample of the 
complex process F0(t) [57]. 

3. Evolutionary model for earthquake-induced ground 
acceleration 

In this paper, the fully non-stationary model of earthquake ground 
acceleration is defined as the sum of zero-mean Gaussian uniformly 
modulated stochastic processes. Each uniformly modulated random pro-
cess consists of the product of a positive deterministic modulating func-
tion, a(t), and a stationary zero-mean Gaussian filtered sub-process, 
Xk(t). Thus, according to the philosophy of Saragoni and Hart [47] 
model, the fully non-stationary stochastic process F0(t), of time duration 
TD, is here obtained by dividing the time interval 0÷ TD in n contiguous 
time intervals of amplitude ΔTk = tk − tk− 1(k = 1, 2⋯, n) and requiring 
that in each time interval the sub-process Xk(t), possesses a unimodal 
PSD function, that is: 

F0(t) =
∑n

k=1
F0,k(t) =

∑n

k=1
a(t) Xk(t) W(tk− 1, tk) (7)  

where W(tk − 1, tk) = U(t − tk) − U(t − tk − 1) is the window function, 
with U(t) the unit step function. Moreover, in the time interval [tk− 1,tk), 
the sub-process Xk(t) is here characterised by the following one-sided 
PSD function: 

GXk (ω) = βk

(
ω2

ω2 + ω2
H,k

)(
ω4

L,k

ω4 + ω4
L,k

)

G(CP)
k (ω); k = 1, ..., n (8)  

where ωL,k and ωH,k are the k-th frequency control of the second order 
low pass and first order high pass Butterworth filters, respectively, 
G(CP)

k (ω) is a unimodal one-sided PSD function, having unit area, which 
can be viewed as the linear combination of the displacement and ve-
locity responses of a second-order oscillator subjected to two statistically 
independent Gaussian white noise processes [49]: 

G(CP)
k (ω) =

ρk

π

(
1

ρ2
k + (ω + Ωk)

2 +
1

ρ2
k + (ω − Ωk)

2

)

; k = 1, ..., n (9) 

In this equation ρk and Ωk are two free parameters. The first one is a 
circular frequency bandwidth, the second one is close enough to the 
predominant circular frequency of the k-th filtered stationary process 
[49]. Finally, in Eq. (8) the coefficient βk is evaluated in such a way that 
the sub-process Xk(t) possesses unit variance E〈X2

k(t)〉 ≡ σ2
Xk

= 1. It is 
given in closed form solution as follows: 

βk =
2 akbk

(
ω4

H,k + ω4
L,k

)

ω3
L,k

(

ck + dk + ek

) (10)  

where:  

Fig. 2. Moduli of Fourier transforms of the eight modulating functions evaluated by applying the proposed procedure: a) Taft Lincoln School; b) Kakogawa; c) 
Forgaria Cornino; d) Yarimca. 

Table 4 
Main parameters of the one-sided PSD functions in the three time intervals analysed for each of the selected accelorograms.  

n◦ 0 ≤ t < t1 t1 ≤ t < t2 t2 ≤ t ≤ TD 

N0,1
+ P1 ΔT1 

[s] 
Ω1 

[rad/s] 
ρ1 

[rad/s] 
β1 N0,2

+ P2 ΔT2 

[s] 
Ω2 

[rad/s] 
ρ2 

[rad/s] 
β2 N0,3

+ P3 ΔT3 

[s] 
Ω3 

[rad/s] 
ρ3 

[rad/s] 
β3 

1 12 23 3.1 24.1 12.6 7.1 128 204 37.4 21.4 10.1 5.6 23 65 14.7 10.5 6.3 3.6 
2 13 30 3.7 21.6 12.2 6.9 79 127 22.3 22.5 10.6 6.0 75 142 28.5 16.5 8.6 4.8 
3 18 24 2.5 44.5 18.2 10.2 52 77 11.6 28.0 12.5 7.0 84 166 26.7 19.7 10.5 5.9 
4 14 29 2.6 33.5 18.2 10.3 89 151 23.8 23.4 11.5 6.4 31 91 14.4 13.4 8.2 4.7 
5 21 30 2.5 52.5 22.8 12.8 26 33 4.3 37.8 14.8 8.2 69 138 15.1 28.6 15.3 8.6 
6 26 40 3.3 49.0 22.5 12.6 20 26 4.2 29.8 11.9 6.6 53 140 14.4 23.0 13.7 7.8 
7 15 39 2.5 36.9 21.9 12.4 21 82 11.5 11.4 7.5 4.2 24 99 14.8 10.1 6.7 3.8 
8 23 55 3.3 43.7 25.1 14.2 18 103 11.2 10.0 7.0 4.0 30 110 14.4 13.0 8.4 4.8  
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Scaling the PSD function (8) to have unit variance allows separating, 
in each time interval, the time variation in amplitude from the frequency 
content of the various segments of the stochastic process F0(t). 

It has to be emphasised that the unimodal PSD function G(CP)
k (ω) of 

the Conte and Peng [49] model behaves like ω− 2 for ω tending to infinite 
and this shows that ωi G(CP)

k (ω) for i ≥ 1 is not integrable. So the spectral 

Fig. 3. One-sided PSD functions in the three contiguous time intervals, of the selected accelerograms: a) Taft Lincoln School-21; b) Taft Lincoln School-111; c) 
Kakogawa-0; d) Kakogawa-90; e) Forgaria Cornino-0; f) Forgaria Cornino-270; g) Yarimca-60; h) Yarimca-150. 
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(
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(
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)
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(
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k − ω2
H,k

)
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(
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(

ρ4
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)((
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k + Ω2
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(
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)
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(
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k + Ω2
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)
;

ek =
̅̅̅
2

√
bk ρk

{
ω2

L,k

(
ω2

H,k − ω2
L,k

)(
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L,k + ρ4
k − 2ρ2

kΩ2
k − 3Ω4

k

)
+
(
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H,k + ω2

L,k

)[
ρ6

k + Ω6
k + 3Ω2

kρ2
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(
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k + Ω2
k
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k − 3Ω2
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(11)   
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moments of the function G(CP)
k (ω) of order greater than zero are diver-

gent quantities. Moreover, the PSD function G(CP)
k (ω) presents frequency 

distortion at very low frequencies. To avoid these two drawbacks of 
G(CP)

k (ω) function, in this paper, respectively, second order low pass 
Butterworth filters, with k-th frequency control ωL,k, and first order high 
pass Butterworth filters, with k-th frequency control ωH,k, have been 
introduced in Eq. (8), to characterise the one-sided PSD function of the 
k-th sub-process Xk(t). 

Finally, the one-sided EPSD function for the proposed model results: 

GF0F0 (ω, t) =
∑n

k=1
a2(t)W(tk− 1, tk)GXk (ω) ≡

∑n

k=1
GXk (ω, t) (12) 

Furthermore, since each sub-process possesses unit variance, the 
time-dependent variance of the fully non-stationary process F0(t) is given 

as: 

σ2
F0
(t)≡E〈F2

0(t)〉 =

∫∞

0

GF0F0 (ω, t)dω=
∑n

k=1
a2(t) W(tk− 1, tk) (13) 

Note that, the EPSD function (12) describes simultaneously the time- 
varying intensity and the time-varying frequency content. It follows that 
F0(t) is fully-non stationary, although its component processes are indi-
vidually uniformly modulated. Therefore, each uniformly modulated sub- 
process Xk(t), characterised by a PSD function in the frequency 
domain and a modulating function in the time domain, captures, in its 
time interval, a group of seismic waves possessing a specific time- 
frequency distribution of earthquake-induced ground motion 
acceleration. 

Fig. 4. Comparison between the selected horizontal and the corresponding i-th generated samples F(i)
0,ℓ. The vertical dashed lines delimit the three time intervals: a) 

Taft Lincoln School-21; b) Taft Lincoln School-111; c) Kakogawa-0; d) Kakogawa-90; e) Forgaria Cornino-0; f) Forgaria Cornino-270; g) Yarimca-60; h) Yarimca-150. 
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4. Parameters estimation from target accelerograms 

In the previous section a fully non-stationary model of earthquake 
ground acceleration has been described. The purpose of this section is to 
define a stochastic process F0(t) such that the target accelerogram, Üg(t), 
may be considered as one of its samples. To do this the modulating 
function and the frequency content of the process F0(t) can be estimated 
separately. 

4.1. Estimation of modulating function 

Let us consider a target accelerogram Üg(t) of time duration TD. To 
evaluate the modulating function, a(t), the time interval 0÷ TD is sub-
divided in na contiguous time intervals of amplitude ΔTj = tj − tj− 1 

(j = 1, 2,⋯,m,⋯na). The cumulative energy function of the target 
accelerogram is evaluated as: 

EÜg
(t) =

∫t

0

Ü2
g(τ) dτ =

∑m ≤na

j=1

∫tj

tj− 1

Ü2
g(τ)dτ; 0 ≤ t ≤ TD (14) 

Moreover, EÜg
(TD) ≡ I0 is the so-called total intensity of the ground 

motion acceleration [63]. Remembering that in each time interval the 
sub-processes Xj(t), in Eq. (7), possess unitary variance as well as the 
definition (13) of the time-dependent variance of the fully non-stationary 
process, the cumulative expected energy function of the stochastic process 
F0(t) can be evaluated as [47]: 

E〈EF0 (t)〉=
∫t

0

E〈F2
0(τ)〉 dτ ≡

∫t

0

σ2
F0
(τ) dτ =

∑m ≤na

j=1

∫tj

tj− 1

a2(τ) dτ (15) 

To estimate a(t), in the j-th time interval [tj− 1, tj), the function ψ j(t) is 
introduced: 

Fig. 4. (continued). 
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ψj(t)=
∫ t

tj− 1

[

a
(
tj− 1
)
+ aj(τ)

]2

dτ , tj− 1 ≤ t< tj; (16)  

where the function aj(t) is here assumed as a polynomial of p-th order: 
⎧
⎪⎨

⎪⎩

aj(t) =
∑p

i=1
αi
(
t − tj− 1

)i
, tj− 1 ≤ t < tj;

aj(t) = 0, t < tj− 1, t ≥ tj.

(17) 

The polynomial coefficients αi can be evaluated by least-square 
fitting ψ j(t) to the accelerogram cumulative energy EÜg

(t). That is, in 
the j-th time interval [tj− 1, tj), the following optimization problems have 
to be solved: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

find α1, α2,⋯ αp;

minimising
∫ tj − Δt

tj− 1

[

EÜg
(t) − ψj(t)

]2

dt; j = 1, 2,⋯, na − 1

such that aj(t) ≥ 0, aj(t) =
∑p

i=1
αi
(
t − tj− 1

)i
, tj− 1 ≤ t < tj;

(18)  

being Δt the sampling interval of the target accelerogram. Note that the 
upper limit of the integral, in the optimization problem, avoids the 
overlap between the values of the cumulative energy function at the 
extremes of chosen time intervals. This guarantees the continuity of 
modulating functions too. 

In the last (na − th) time interval with t ∈ [tna − 1, tna ≡ TD], the 
modulating function is approximated by an exponential decaying function 
whose coefficients are evaluated by imposing the continuity with the 

Fig. 5. Comparison among the energy 
functions of the selected accelerograms with 
statistics of the artificial ones: a) Taft Lincoln 
School-21; b) Taft Lincoln School-111; c) 
Kakogawa-0; d) Kakogawa-90; e) Forgaria 
Cornino-0; f) Forgaria Cornino-270; g) 
Yarimca-60; h) Yarimca-150. Target accel-
erogram (red solid line); mean value func-
tion (black dotted line); mean value plus/ 
minus standard deviation functions (black 
dashed lines); envelope of the maximum and 
minimum values of all samples (shaded 
area). (For interpretation of the references to 
colour in this figure legend, the reader is 
referred to the Web version of this article.)   

G. Muscolino et al.                                                                                                                                                                                                                             



Soil Dynamics and Earthquake Engineering 141 (2021) 106467

10

previous one and its decaying down to the absolute value, 
⃒
⃒Üg(TD)

⃒
⃒, at 

the end of the target accelerogram: 

a(t) = a(tna − 1)exp

⎡

⎣ t − tna − 1

TD − tna − 1
ln

⎛

⎝

⃒
⃒Üg(TD)

⃒
⃒

a(tna − 1)

⎞

⎠

⎤

⎦, tna − 1 ≤ t ≤ TD. (19) 

Finally, once the functions aj(t) are evaluated, the modulating function 
in the time interval [0,TD] can be written as: 

a(t) =
∑na − 1

j=1
aj(t)W

(
tj− 1, tj

)

+ a(tna − 1)exp

⎡

⎣ t − tna − 1

TD − tna − 1
ln

⎛

⎝

⃒
⃒Üg(TD)

⃒
⃒

a(tna − 1)

⎞

⎠

⎤

⎦W(tna − 1, TD).

(20) 

It should be emphasised that for the estimation of the modulating 

Fig. 6. Comparison among the zero-level 
up-crossings of the selected accelerograms 
with statistics of the artificial ones: a) Taft 
Lincoln School-21; b) Taft Lincoln School- 
111; c) Kakogawa-0; d) Kakogawa-90; e) 
Forgaria Cornino-0; f) Forgaria Cornino-270; 
g) Yarimca-60; h) Yarimca-150. Target 
accelerogram (red solid line); mean value 
function (black dotted line); mean value 
plus/minus standard deviation functions 
(black dashed lines); envelope of the 
maximum and minimum values of all sam-
ples (shaded area). (For interpretation of the 
references to colour in this figure legend, the 
reader is referred to the Web version of this 
article.)   

Table 5 
Mean values μI0 , μN+

0
, standard deviations σI0 , σN+

0
, and coefficients of variation 

σI0/μI0 , σN+
0
/μN+

0
, of total intensity I0, and of the total number of zero-level up- 

crossing N+
0 , for the eight analysed accelerograms.  

n◦ μI0 
[m2/s3]  σI0 [m2/s3]  σI0 /μI0  

μN+
0  

σN+
0  

σN+
0
/μN+

0  

1 3.48 0.32 0.093 163.34 4.65 0.028 
2 3.80 0.36 0.095 167.17 4.59 0.027 
3 6.25 0.64 0.102 152.62 4.44 0.029 
4 10.80 1.18 0.109 135.26 4.58 0.033 
5 1.80 0.32 0.178 114.16 3.75 0.032 
6 2.29 0.48 0.210 98.98 4.06 0.041 
7 8.04 1.28 0.159 62.32 2.92 0.046 
8 8.00 1.47 0.184 74.02 3.37 0.045  
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function, in each generic time interval, only the evaluation of the energy 
of the target accelerogram in the same time-interval is required. 

Notice that in the proposed procedure it could be also assumed na ∕=

n, n being the number of contiguous time intervals in which the EPSD 
function (12) of the stochastic process F0(t) is subdivided. Obviously, the 
assumption na = n simplifies the procedure from a computational point 
of view. 

4.2. Estimation of PSD function parameters 

Since analysing the expected cumulative energy function of the fully 
non-stationary stochastic process F0(t), it is possible only to estimate the 
amplitude variation of the target accelerogram Üg(t), another criterion 
to estimate the variation of the frequency content of F0(t) must be 
established, such that Üg(t) may be considered as one of its samples. 
Once the time interval 0 ÷ TD is divided in n contiguous time intervals, 
this purpose is here achieved by capturing in the generic k-th time in-
terval a group of seismic waves possessing the specific frequency dis-
tribution of the target accelerogram in the same time interval. To do this 
the spectral parameters, Ωk, ρk, ωH,k and ωL,k, appearing in Eq. (8), of the 
one-sided PSD function GXk (ω) of the stationary sub-process Xk(t) must 
be appropriately estimated. 

It is well known that the frequency content of a recorded accelero-
gram Üg(t) can be related to the frequency of occurrences of certain 
events. The most useful are: a) occurrences of both positive and negative 
maxima, here simply called peaks; b) occurrences of crossings of the 
time-axis with positive slope, commonly called zero-level up-crossings. 
For theoretical narrow-band zero-mean stationary stochastic process, 
the zero-level up-crossings frequency and peaks frequency are exactly the 
same and are coincident with the mean frequency of the process. For 
wider bandwidths, more than one peak occurs between two zero-level up- 
crossings. It follows that the ratio of the zero-level up-crossings frequency 
to the peak frequency, the so-called irregularity factor [64], gives a 
measure of the bandwidth of the process, i.e. how much the examined 
stochastic process differs from the narrow band one. To account for the 
irregularity of zero-mean stationary stochastic processes, Cartwright 
and Longuet-Higgins [65] introduced the bandwidth parameter, which 
can be evaluated as [66,67]: 

ε=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −

(
N+

0

P0

)2
√

(21)  

where N+
0 and P0 are the total number of zero-level up-crossings and the 

total number of peaks of target accelerogram. It follows that, having 
evaluated the mean circular frequency, 2 π N+

0 /TD, a measure of the 
dispersion width of the energy spectrum of the target accelerogram Üg(t)
can be approximately evaluated by the following spectral parameter: 

δ=
2 π N+

0

TD

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −

(
N+

0

P0

)2
√

(22) 

In this paper, to capture the frequency content of the target accel-
erogram in the n contiguous time intervals in which TD is divided, the 
number of peaks, Pk, and the number of zero-level up-crossings, N+

0,k, in all 
time intervals, [tk− 1,tk), are evaluated. Since in the k-th time interval the 
stochastic process is assumed uniformly modulated, with EPSD function 
a(t) GXk (ω), the zero-level up-crossing frequency of target accelerogram, 
N+

0,k/ΔTk, is very close to the mean frequency of the process and it can be 
reasonably assumed equal to the predominant circular frequency, Ωk, of 
the k-th stationary sub-process. That is, the following relationship is 
written: 

Ωk ≅
2 π N+

0,k

ΔTk
(23) 

In order to evaluate the circular frequency bandwidth parameter, ρk,

of the unimodal one-sided PSD function G(CP)
k (ω), given in Eq. (9), it 

needs to evaluate the convergent part of the second λ̃(CP)
1,Xk 

and third λ̃(CP)
2,Xk 

spectral moments as [see e.g. 68]: 

λ̃
(CP)
1,Xk

=
Ω2

k + ρ2
k

Ωk

[

1 +
Ω2

k − ρ2
k

π(Ω2
k + ρ2

k)

]

arctan
(

Ωk

ρk

)

; λ̃
(CP)
2,Xk

= Ω2
k − ρ2

k ; (24) 

Relating, for every time interval [tk− 1, tk), the spectral parameter 
given in Eq. (22) to the radius of gyration, with respect to the centre of 
gravity, of the unimodal one-sided PSD function G(CP)

k (ω), the following 
relationship can be written: 

δ(CP)
Xk

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ̃
(CP)
2,Xk

−
(

λ(CP)
1,Xk

)2
√

≅
2 π N+

0,k

ΔTk

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −

(N+
0,k

Pk

)2
√

(25) 

After some algebra, it can be proved that the frequency bandwidth ρk 

of the function G(CP)
k (ω) can be approximated as: 

ρk ≃
π N+

0,k

2 ΔTk

[

π − 2
N+

0,k

Pk

]

(26) 

To complete the characterization of the one-sided PSD function 
GXk (ω), given in Eq. (8), the circular frequency control of two Butter-
worth filters ωH,k and ωL,k in all time intervals [tk− 1, tk), have to be esti-
mated. In particular, the k-th high pass filter was introduced only to 
avoid very low frequency distortion of the PSD function G(CP)

k (ω). On the 
contrary the k-th low pass filter was introduced for both to ensure the 
convergence of spectral moments until fourth order of the one-sided PSD 
function GXk (ω), and to reduce the gap between the number of zero-level 
up-crossings N+

0,k of target accelerogram and the expected number of zero- 
level up-crossings of the fully non-stationary process F0(t). 

5. Numerical examples 

In the previous sections the fully-non stationary zero-mean Gaussian 
process F0(t), was defined as the sum of zero-mean Gaussian uniformly 
modulated processes, defined in contiguous time intervals (see Eq. (12)). 
Then, a method for generating samples of a fully non-stationary zero- 
mean Gaussian process, in such a way that a given target accelero-
gram Üg(t) can be considered as one of its own samples, was proposed. 

In this section, in order to verify the accuracy of the proposed 
method, some statistics of a set of fully non-stationary Gaussian zero- 
mean artificial accelerograms having on average the cumulative en-
ergy functions and zero-level up-crossings of the target ones, are evalu-
ated. The temporal variation of the amplitude is obtained through an 
appropriate estimate of the modulating function a(t), while the variation 
in the frequency content of the generated samples is obtained by 
appropriately estimating the PSD functions of stationary sub-processes 
having unit variances. Since the sub-processes have unit variances, the 
modulating function and the main parameters characterizing the PSD 
functions, in the various time intervals, can be estimated separately. 

The proposed procedure is applied to both the horizontal compo-
nents of four seismic acceleration records, namely: Kern County (Cali-
fornia, USA) 1952, Kobe (Japan) 1995, Friuli (Italy) 1976, Kocaeli 
(Turkey) 1999, downloaded from PEER database [69]. 

Table 1 lists the main characteristics of the analysed accelerograms: 
event name, station name and event date, moment magnitude Mw, site- 
source distance RJB [70], peak ground acceleration amax (i.e. the largest 
absolute value of the target accelerogram), average value of propagation 
velocity of S waves in the upper 30 m of the soil profile at the recording 
station vs30, time duration of the analysed accelerogram TD, significant 
strong motion duration SMD (i.e. interval of time elapsed between the 
5% and 95% of the I0), total intensity I0, Arias intensity IA [71], total 
number of zero-level up-crossings N+

0 and total number of peaks P0. 
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5.1.1. Estimation of the modulating function parameters of the analysed 
accelerograms 

To evaluate the modulating function a(t) of the uniformly modulated 
sub-processes, the time duration of the analysed accelerogram 0÷ TD, 
has to be divided in na time intervals. Two strategies can be adopted to 
obtain a good match between the expected cumulative energy function 
of artificial and target accelerograms: i) subdivide the target accelero-
gram in several time intervals (e.g. Der Kiureghian and Crempien [48] 
suggested at most nine frequency bands); ii) subdivide the time duration 
in only three time intervals na = 3, also optimizing the choice of instants 
of passage from one time interval to adjacent ones. 

The second strategy is here adopted. Moreover, according to the 
models by Amin and Ang [21] and by Jennings et al. [23], the modulating 
function in the first time interval, 0 ≤ t < t1, is here assumed paraboli-
cally increasing from zero; while in the third time interval, t2 ≤ t ≤ TD, it 
is assumed exponentially decreasing, consistently with Eq. (20). In the 
second time interval, t1 ≤ t < t2, the assumption of constant modulating 
function, as proposed by Amin and Ang [21] and by Jennings et al. [23], 
leads to very unsatisfactory results for both energy and frequency con-
tent of the fully non-stationary process F0(t). Therefore, in the proposed 
approach, a polynomial of p-th order to model the modulating function in 
the second interval is adopted. It has been also observed that the choice 
of time instants t1 and t2 strongly influences both the energy and fre-
quency content of the process F0(t). Hence, the proposed method re-
quires an optimal choice of time instants t1 and t2, as well as of the order 
p of the polynomial modulating function. As a measure of the accuracy, 
the root-mean-square (rms) difference Dp, between the estimated modu-
lating function, given in Eq. (20), and target accelerogram absolute 
values is defined as follows: 

Dp =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Δt
TD

∑TD/Δt

j=0

[

a(j Δt) −

⃒
⃒
⃒Üg(jΔt)

⃒
⃒
⃒

]2
√
√
√
√ (27)  

where Δt is the sampling interval of the target accelerogram and the 
subscript p denotes the order of the polynomial considered in the second 
time interval. 

Specifically, for the estimation of the modulating function the 
following steps are required:  

a) in the first time interval, the modulating function a(t), is assumed as a 
polynomial of second order; then the optimization problem 
described with reference to Eq. (18) for five values of 
t1 = t1%, t2%,⋯, t5% (tk% time instant in which the cumulative energy 
function of the accelerogram assumes the k% of its total intensity: 
EÜg(tk%)≡k %× I0 ) is solved;  

b) in the second time interval it is assumed that the modulating function 
is a polynomial, the order of which, p, varies from one to ten; 
furthermore, different values of both time instant of passage from the 
first to the second interval, t1 = t1%, t2%,⋯, t5%, and from the second 
to the third interval, t2 = t90%, t91%, ⋯, t99% are chosen; 

c) in the third time interval [t2, TD], according to Eq. (20), an expo-
nential decay form for the modulating function is assumed; its initial 
value, a(t2) depends on the various combinations adopted for the 
modulating function in the second time interval. 

Finally, among the various modulating functions obtained by applying 
the previously described procedure (varying the instants t1 and t2), the 
one characterised by the lowest rms difference Dp, is selected. 

The parameters which characterise the selected modulating functions 
a(t) are listed in Table 2, for all the selected accelerograms, together 
with the values of the time instants, t1 and t2, corresponding to the 
passage from one interval to another, the corresponding percentages of 
total intensity, k1% and k2%, the order p of the polynomial in the second 

time interval, the rms difference Dp, and the absolute value 
⃒
⃒
⃒
⃒Üg(TD)

⃒
⃒
⃒
⃒ at 

the end of the target accelerogram. 
For the first two time intervals, the polynomial coefficients αi, ob-

tained through the optimization procedure, are listed in Table 3. 
In Fig. 1, for the eight analysed accelerograms, the absolute value of 

each accelerogram together with the four modulating functions having 
the smaller rms difference Dp are plotted. This figure shows that small 
rms differences Dp can be obtained with different choices of the poly-
nomial order and that often the highest order of the polynomial does not 
provide the smallest Dp. Furthermore, choosing the same polynomial 
order for all target accelerograms could give in many cases inaccurate 
results. For coherence in the following the polynomial order which gives 
the lowest Dp is adopted. 

Finally, Fig. 2 shows that the moduli of Fourier transforms, |F [∙∙]|, 
of the eight modulating functions of Fig. 1 are mainly concentrated in 
the region of zero frequency. This is in accord with Priestley’s definition 
of a slowly varying function of time [46]. 

5.1.2. Estimation of the sub-processes PSD function parameters 

The characterization of the fully-non stationary zero-mean Gaussian 
process F0(t) must be completed by estimating the parameters of the 
one-sided PSD function GXk (ω) of the stationary sub-process Xk(t),
appearing in Eq. (8). To do this, for the three time intervals of each of the 
eight analysed accelerograms Üg,ℓ(t), the predominant circular fre-
quency Ωk, and the bandwidth frequency parameters ρk, have to be 
evaluated. According to Eqs. (23) and (26), the evaluation of these pa-
rameters requires the counting of the number of zero-level up-crossings 
N+

0,k, and the number of peaks Pk in the time intervals ΔTk, of each 
accelerogram. The parameters useful to the characterization of the one- 
sided PSD function GXk (ω) are reported in Table 4. Finally, through 
several numerical tests it was verified that the control frequencies of two 
Butterworth filters ωH,k and ωL,k can be assumed equal to ωH,k = 0.1 Ωk 

and ωL,k = Ωk + 0.8ρk, respectively. 
In Fig. 3, for the eight analysed accelerograms Üg,ℓ(t), the one-sided 

PSD functions GXk ,ℓ(ω) of the stationary sub-processes Xk,ℓ(t) are 
depicted. Curves in Fig. 3 represent the variation of the three PSD 
functions in the three contiguous time intervals, pointing out the time 
variation of the frequency content of target accelerograms. Analysing 
the results in Fig. 3, and the predominant circular frequencies listed in 
Table 4, it is apparent that the predominant frequencies Ωk usually 
decrease with increasing time. However, in some cases, this condition is 
not completely satisfied. 

5.1.3. Generation of artificial accelerograms 

Once the parameters characterizing the fully-non stationary zero- 
mean Gaussian process, F0(t), defined in Eq. (7), are estimated, it is 
easy to generate its samples in such a way that the selected target 
accelerogram can be considered as one of its own samples. Indeed, ac-
cording to the first of Eqs.(6), the i-th sample of the real part of the F0(t), 
containing in its set the target accelerogram Üg(t), can be evaluated as: 

F(i)
0 (t) = a(t)

̅̅̅̅̅̅̅̅̅̅
2Δω

√

×

[
∑n

k=1

∑mN

r=1
W(tk− 1, tk)sin

(
r Δω t + θ(i)

r

) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

GXk (r Δω)

√
]

(28)  

assuming a frequency increment Δω = ωN/mN = 0.1, an upper cut-off 
circular frequency ωN = 100 rad/s, mN = 1000 and Δt = π/(4ωN). 
Note that the random phase angles, θ(i)r , uniformly distributed over the 
interval [0 − 2π), must be the same for all segments of the i-th sample. 

Using this approach, a set of one hundred samples is evaluated for 
each of the selected accelerogram. In Fig. 4 the time-history of the eight 
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analysed records, numbered in Table 1, is compared with one sample of 
the corresponding stochastic process (28) and a good similarity of the 
sample to the target accelerogram can be observed. 

A more complete comparison can be performed by evaluating for the 
eight analysed accelerograms the cumulative energy functions EÜg,ℓ(t)

and cumulative zero-level up-crossing functions N+
0,ℓ(t), which count the 

number of zero-level up-crossing until the time t. These two functions are 
compared, for each of the analysed accelerogram, with the corre-
sponding mean value functions obtained by calculating the average of 
the results of the sets of artificial accelerogram samples. 

In particular, in Fig. 5 the cumulative energy functions of the eight 
analysed target accelerograms are compared to those obtained as the 
mean value of the hundred samples. In Fig. 5 the cumulative energy 
function confidence intervals, evaluated as the mean values plus/minus 
the corresponding standard deviation, are also plotted. In Fig. 6 the 
cumulative zero-level up-crossing functions of target accelerograms are 
compared with the mean value functions of the one hundred samples 
and the cumulative zero-level up-crossing function confidence intervals. 
In Figs. 5 and 6, the shaded areas represent the envelope of the 
maximum and minimum values of the cumulative energy function and 
cumulative zero-level up-crossing of the 100 generated samples, 
respectively. 

Figs. 5 and 6 evidence the accuracy of the proposed procedure. Note 
that the choice of the simple decreasing exponential function in the third 
time interval is paid for with a small difference in terms of zero-level up- 
crossings in the last time interval. 

Note that although the generated accelerograms are samples of a 
zero-mean Gaussian process, the corresponding cumulative energy 
function and the cumulative zero-level up-crossing function are not zero- 
mean Gaussian processes. To evidence this, the mean values μI0 , μN+

0
, 

the standard deviations σI0 , σN+
0
, and the coefficients of variation σI0/μI0 ,

σN+
0
/μN+

0 
of total intensity I0 and of the total number of zero-level up- 

crossing N+
0 are reported in Table 5, for the eight analysed accelerograms. 

6. Conclusions 

For several practical applications concerning non-linear dynamic 
analyses of both structural and geotechnical aspects, the need of 
generating artificial accelerograms having frequency and energy con-
tent and distribution of number of cycles consistent with actual accel-
eration records, is manifest. 

In this vein, a method for generating samples of a fully non-stationary 
zero-mean Gaussian process, in such a way that the chosen target 
accelerogram can be considered as one of its own samples, is presented 
in the paper. In the proposed method, once the target accelerogram is 
subdivided in some contiguous time intervals, the computation of the 
cumulative energy and the cumulative counts of zero-level up-crossings as 
well as negative and positive maxima (the so-called peaks) is required. 

The evolutionary power spectral density (PSD) function of the pro-
posed fully non-stationary process model is evaluated as the sum of 
uniformly modulated processes. These are defined in each time interval, 
as the product of deterministic modulating functions per stationary zero- 
mean Gaussian sub-processes, whose unimodal PSD functions are 
filtered by high pass and low pass Butterworth filters. In each time in-
terval the parameters of modulating functions are estimated by least- 
square fitting the expected energy of the proposed model to the en-
ergy of the target accelerogram, while the parameters of PSD functions 
of stationary sub-processes are estimated once both occurrences of peaks 
and of zero-level up-crossings of the target accelerogram, in the various 
intervals, are counted. There is no need for sophisticated processing of 
the recorded motion such as Fourier transform. 

In the numerical example, applications using as target accelerograms 
both horizontal acceleration components of four recorded seismic events 
are described in detail. A practical application of the proposed 

procedure to a set of four target horizontal acceleration time-histories is 
also presented and discussed in the paper. 

In particular, according to various models proposed in the literature 
[21,23,47], the accelerograms are subdivided in three contiguous in-
tervals in which appropriate unimodal PSD functions and polynomial 
forms of modulating functions have been chosen to obtain realistic 
seismic motion useful in the evaluation of the dynamic response of 
structural and geotechnical systems. The examples described in the 
paper demonstrate the effectiveness of the proposed parameter estima-
tion method and the accuracy of the model in reproducing realizations 
with statistical characteristics similar to those of the target motion. 

As a final remark it is important to stress that, despite the proposed 
procedure was presented and described with reference to a single target 
accelerogram, it can be extended to account for the variability of the 
expected ground motion considering the uncertainties inherent to the 
values of the seismic parameters assumed as targets in the generation 
procedure. 
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