Contents lists available at ScienceDirect

Stem Cell Research

journal homepage: www.elsevier.com/locate/scr

Lab Resource: Multiple Stem Cell Lines

Generation of induced pluripotent stem cell lines from a Crisponi/Cold induced sweating syndrome type 1 individual

Lara Schöning^{a,1}, Niki Tomas Loges^{a,1}, Yvonne Nitschke^a, Inga Marlena Höben^a, Albrecht Röpke^b, Laura Crisponi^c, Heymut Omran^a, Frank Rutsch^{a,*,#}, Insa Buers^{a,#}

^a Department of General Pediatrics, Muenster University Children's Hospital, Muenster, Germany

^b Institute of Human Genetics, University of Muenster, Muenster, Germany

^c Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cagliari, Italy

ABSTRACT

Cytokine receptor like factor 1 (CRLF1) is the gene implicated, when mutated, in Crisponi syndrome/cold-induced sweating syndrome type 1 (CS/CISS1). Here, we report the establishment of induced pluripotent stem cell lines (iPSCs) from fibroblasts of a Turkish CS/CISS1 individual with a homozygous variant in CRLF1 (c.708_709delinsT; p.[Pro238Argfs*6]). This variant is the most frequent variant associated to CS/CISS1 in the Turkish population. These patient derived iPSC lines show all pluripotency markers, a normal karyotype and the ability to differentiate into the three germ layers.

Da Ce Etl

Resource Table:

	Unique stem cell line id-	UKMi001-A
	entifier	UKMi001-B
		UKMi001-C
	Alternative name(s) of s-	CRLF1-iPSC-C1 (UKMi001-A)
	tem cell line	CRLF1-iPSC-C4 (UKMi001-B)
		CRLF1-iPSC-C6 (UKMi001-C)
	Institution	Muenster University Children's Hospital
		Department of General Pediatrics
		Albert-Schweitzer-Campus 1
		D-48149 Muenster, Germany
	Contact information of distributor	Dr. rer. nat. Insa Buers
		insa.buers@ukmuenster.de
	Type of cell line	iPSC
	Origin	Human
	Cell Source	Fibroblasts
	Clonality	Clonal
	Method of reprogram-	Transgene free (Sendai virus)
	ming	
	Multiline rationale	Isogenic clones
	Genetic Modification	YES
	Type of Modification	Hereditary mutation
	Associated disease	Crisponi syndrome/cold-induced sweating syndrome 1
	Gene/locus	CRLF1/chr19p12-13.1
	Method of modification	N/A
	Name of transgene or re-	N/A
	sistance	

Inducible/constitutive s- N/A

ystem	
te archived/stock date	November 2018
ll line repository/bank	N/A
nical approval	The study was approved by the ethics committee of
	Muenster University (number: 2017-523-f-s). Patient
	gave written informed consent for the study

1. Resource utility

The CS/CISS1 specific iPSC lines will be a powerful new resource for modelling cell-specific deficits in CS/CISS1 and can be used not only to understand the cellular consequences of disease-causing variants but also for the development of new therapeutic strategies for CS/CISS1.

2. Resource details

CS/CISS1 is characterized by severe thermoregulatory and orofacial/laryngeal muscular defects (Crisponi 1996). Pathogenic variants in *CRLF1* are the most frequent cause for CS/CISS1. *CRLF1* consists of nine coding exons and encodes the soluble cytokine receptor CRLF1. CRLF1 together with cardiotrophin-like cytokine factor 1 (CLCF1) forms an intracellular heterodimer complex that activates ciliary neurotrophic factor receptor (CNTFR) expressing cells after secretion. Mutated CRLF1 either is partially or no longer secreted resulting in inadequate activation of the CNTFR pathway and finally in disturbed or

* Corresponding author.

E-mail address: rutschf@ukmuenster.de (F. Rutsch).

¹ These authors should be considered joint first authors.

[#] These authors should be considered joint senior authors.

https://doi.org/10.1016/j.scr.2020.101820

Received 3 March 2020; Received in revised form 23 March 2020; Accepted 2 April 2020 Available online 28 May 2020 1873-5061/ © 2020 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).

Table 1

Summary of lines						
iPSC line names	Abbreviation in figures	Gender	Age	Ethnicity	Genotype of locus	Disease
UKMi001-A UKMi001-B UKMi001-C	CRLF1-iPSC-C1 CRLF1-iPSC-C4 CRLF1-iPSC-C6	Female Female Female	9 years 9 years 9 years	European European European	Homozygous Homozygous Homozygous	Crisponi syndrome/cold-induced sweating syndrome1 Crisponi syndrome/cold-induced sweating syndrome1 Crisponi syndrome/cold-induced sweating syndrome1

reduced differentiation of motor neurons. Here, we establish the generation of three CRLF1-iPSC clones (CRLF1-iPSC-C1, CRLF1-iPSC-C4, CRLF1-iPSC-C6) from a 9-year-old female carrying the homozygous *CRLF1* variant c.708_709delinsT (Table 1). This variant is localized in *CRLF1* exon 5, resulting in a premature stop and in the expression and partial secretion of a truncated CRLF1 protein (p.[Pro238Argfs*6]).

Patient fibroblasts, obtained by nasal brushing, were reprogrammed by transduction of Sendai viral vectors containing the four Yamanaka factors Octamer binding transcription factor 3/4 (OCT3/4), Sex determining region Y-box 2 (SOX2), Kruppel-like factor 4 (KLF4) and c-MYC using CytoTune[™]-iPS 2.0 Reprogramming System (Life Technologies/ Thermofisher Scientific). The expression of stem cell markers RNA in all CRLF1-iPSC-clones was confirmed by quantitative PCR (q-PCR; OCT 3/ 4, SOX2, NANOG; Fig. 1A) and reverse transcription PCR (RT-PCR; e.g. OCT3/4, KLF4, c-MYC, SOX2, FGF4, TERT; Supplementary Fig. 1). All CRLF1-iPSC-clones showed typical stem cell morphology and immunocytochemical staining confirmed the presence of OCT3/4, and KLF4 (Fig. 1B). Additionally, cell surface markers such as stage-specific embryonic antigen-4 (SSEA4), Tra-1-60 and Tra-1-81, as well as the transcription factor NANOG, were detectable in all three CRLF1-iPSCclones (Fig. 1B). G-banding karyotype analysis showed normal diploid 46,XX karyotype (Fig. 1C). The three CRLF1-iPSC-clones harbour the homozygous CRLF1 c.708 709delinsT variant confirmed by Sanger sequencing (Fig. 1D). To confirm pluripotency of the CRLF1-iPSC clones they were differentiated into the three germ layers (ectoderm, mesoderm or endoderm) using the STEMdiffTM-Trilineage Differentiation Kit (Stem Cell Technologies, Germany). Typical markers for endoderm (FOX2A), mesoderm (Brachvury) and ectoderm (ßIII-Tubulin) were detectable after differentiation using confocal microscopy (Fig. 1E). Additionally, cells showed no contamination with mycoplasma (Supplementary Fig. 2). Parental fibroblasts and the CRLF1-iPSC-clones shared alleles with 100% match validated by analysis of eight high polymorphic and autosomal microsatellites (D3S1358, D10S1248, D2S441, D13S317, D16S539, D18S51, D19S433, D21S11, D12S391) plus DXS8060, and AMEL for gender determination (available by reauest).

3. Materials and methods

3.1. Extraction of fibroblasts

Fibroblasts of a CS/CISS1 individual were obtained by transnasal brush biopsy (Cytobrush Plus; Medscand Medical) and suspended in RPMI medium (Gibco). After washing cells were resuspended in DMEM-F12 medium containing 2% Ultroser-G (Cytogen) and plated on collagen-coated flasks. After 3 weeks, collagen was resolved with collagenase type IV and fibroblasts were passaged. The study was approved by the ethics committee of Muenster University (number: 2017-523-f-s).

3.2. Generation of iPSC-clones

Generation of CRLF1-iPSC-clones was performed using the CytoTune[™]-iPS 2.0 Reprogramming System (Life Technologies/ Thermofisher Scientific) according to the manufacturer's specifications. Briefly: At a density of 50-80% confluency, fibroblasts were transduced using the CytoTune 2.0 Sendai vectors for 24h. After transduction fibroblast media was changed every other day. Seven days later transduced cells were seeded on MEFs in fibroblast medium. Medium was switched to iPSC media after 24h and changed three times a week. iPSC colonies with typical morphology were picked and cultured on Matrigel (Corning)-coated plates using mTeSR Plus medium (Stem Cell Technologies).

3.3. In vitro differentiation

The iPSCs were harvested with gentle cell dissociation reagent (Stem Cell Technologies) and plated for trilineage differentiation according to the STEMdiff[™]-Trilineage Differentiation Kit protocol (Stem Cell Technologies).

3.4. Mycoplasma detection

The mycoplasma test was performed by mycoplasma detection kit $MycoSPY^{*}$ (Biontex Laboratories) according to the manufacturer's instructions.

3.5. Karyotyping and microsatellite analysis

Metaphases for karyotyping based on conventional G-banding analysis were prepared according to standard procedures (Barch et al., 1997). For microsatellite analysis, we used 11 polymorphic microsatellite markers (Table 1). PCR reactions with one fluorescent-labelled primer for each marker were performed using described touchdown protocols (Hecker et al., 1996). PCR-products were analyzed on an ABI3730 sequencer (Thermo Fisher Scientific Inc.) and evaluated using GeneMarker software version 1.51 (Softgenetics LLC). For sex determination a polymorphic sequence in intron 3 of both amelogenin genes (Akane et al., 1991) was analyzed by standard PCR.

3.6. RT- and qPCR

Isolation of total RNA was performed by phenol-chloroform precipitation. cDNA was synthesized by reverse transcription using Superscript[™] III reverse transcriptase (Invitrogen[™] Life Technologies). PCRs were performed using TAQ DNA polymerase (Qiagen) in a Mastercycler epGradientS (Eppendorf). Primer sequences used are listed in Table 2. qPCR was performed using CFX Touch Real Time PCR Detection System (Bio-Rad) and the iQ Syber Green Supermix (Bio-Rad) following our standard protocols (Buers et al., 2016). Specific primers are listed in Table 2. Gene expression level analysis was performed in triplicate and normalized to 18 sRNA.

3.7. Immunofluorescence staining

Immunofluorescence staining was performed following our standard protocols (Buers et al., 2016). Primary antibodies (Table 3) were incubated overnight at 4°C followed by incubation with secondary antibodies (Table 3) at RT for one hour and by DAPI incubation for 10 min. After mounting samples were examined with a Zeiss Apotome Axiovert 200 or LSM880 (Zeiss) and processed with AxioVision v.4.8 and Adobe CS4.

Fig. 1. Characterization of iPSC

Table 2

Characterization and validation

Classification	Test	Result	Data
Morphology	Photography	Normal	Fig. 1 panel B
Phenotype	Qualitative analysis by Immunocytochemistry	OCT 3/4, KLF 4, NANOG, Tra-1-60, Tra-1-81, SSEA4.	Fig. 1 panel B
	Quantitative analysis by qPCR and RT-PCR	Positive for OCT3/4, NANOG, SOX2	Fig. 1 panel A
Genotype	Karyotype (G-banding) and resolution	Normal, 46, XX Resolution 250-300	Fig. 1 panel C
Identity	Microsatellite PCR (mPCR) OR	Not performed	N/A
	STR analysis	11 loci sites (D3S1358, D2S441, D10S1248, D12S391, D13S317, D16S539, D18S51, D19S433, D21S11,DXS8060, AMEL) tested and all matched	Available with authors
Mutation analysis (IF	Sanger Sequencing	c.708_709delinsT	Fig. 1 panel D
APPLICABLE)	Southern Blot OR WGS	N/A	N/A
Microbiology and virology	Mycoplasma	Mycoplasma testing by PCR, negative	Suppl. Fig 1B
Differentiation potential	In-vitro differentiation with STEMdiff TM - Trilineage Differentiation Kit	Endoderm: Forkhead Box A2 (FOXA2), Mesoderm: Brachyury, Ectoderm: BIII-Tubulin	Fig. 1 panel E
Donor screening (OPTIONAL)	HIV 1 + 2 Hepatitis B, Hepatitis C	Negative	Not shown but available with author
Genotype additional info (OPTIONAL)	Blood group genotyping HLA tissue typing	Not performed Not performed	N/A N/A

Table 3

Reagents details.

Antibodies used for immunocytochemistry/flow-citometry					
	Antibody	Dilution	Company Cat # and RRID		
Pluripotency Markers	Mouse anti-Human	1:100	STEMCELL Technologies		
	OCT3/4 Antibody, Clone	1:100	Cat#60093, RRID:AB_2801346		
	3A2A20	1:100	STEMCELL Technologies		
	Mouse anti-Human	1:100	Cat#60062, RRID:AB_2721031		
	SSEA-4 Antibody, Clone	1:100	BD Bioscience Cat#560173,		
	MC-813-70	1:100	RRID:AB_1645379		
	Mouse anti-Human TRA-		STEMCELL Technologies		
	1-60 Antibody		Cat#01556, RRID:AB_1118559		
	Mouse anti-Human TRA-		Cell Signalling Technology		
	1-81 Antibody, Clone		Cat#4038, RRID:AB_2265207		
	IKA-1-81 Dobbit onti VIE4		R & D Systems Cat#AF1997,		
	Rabbit anti-KLF4		RRID:AB_353097		
Differentiation Markers	Robbit anti EOXA2	1.200	Abcam Cat#102864		
Differentiation markets	Goat anti-Brachvury	1.200	R & D Systems Cat# AF2085		
	Mouse anti ßIII-Tubulin	1:200	REID:AB 2200235		
	antibody	1.200	Abcam Cat $\#$ ab78078.		
			RRID:AB 2256751		
Secondary antibodies	Donkey anti-Mouse IgG,	1:1000	Thermo Fisher Scientific Cat# A-		
•	Alexa Fluor 488	1:1000	21202, RRID:AB_141607		
	Donkey anti-Rabbit IgG,	1:1000	Thermo Fisher Scientific Cat# A-		
	Alexa Fluor 546	1:1000	10040, RRID:AB_2534016		
	Donkey anti-Goat IgG,	1:1000	Thermo Fisher Scientific Cat# A-		
	Alexa Fluor 546		11056, RRID:AB_2534103		
	Donkey anti-Mouse IgG,		Jackson ImmunoResearch Labs Cat#		
	Alexa Fluor 546		715-166-150, RRID:AB_2340816		
	Donkey anti-Rabbit IgG,		Jackson ImmunoResearch Labs		
	Alexa Fluor 488		Cat#711-546-152,		
			RRID:AB_2340619		
Primers	Townsh	Formula (Deverse primer (F/ 20)			
Diverimentary are monitored	Target	FORWARD/REVERSE PRIMER (5'-5')			
(apcp)	0013/4 COV2				
(qPCK)	SUAZ NANOC				
	IVAIVUU				

(continued on next page)

Table 3 (continued)

Antibodies used for immunocytochemistry/flow-citometry					
	Antibody	Dilution	Company Cat # and RRID		
Pluripotency markers Endo OCT3/4		GACAGGGGGAGGGGGGGGGGGGGGGGGGGGGGGGGGGG			
(RT-PCR)	NANOG	CAGCCCCGATTCTTCCACCAGTCCC/CGGAAGATTCCC AGTCGGGTTCACC			
	REX1	CAGATCCTAAACAGCTCGCAGAAT/GCGTACGCAAAT TAAAGTCCAGA			
	DPPA4	GGAGCCGCCTGCCCTGGAAAATTC/TTTTTCCTGATA TTCTATTCCCAT			
	DPPA2	CCGTCCCCGCAATCTCCTTCCATC/ATGATGCCAACA TGGCTCCCGGTG			
	DNMT3B	TGCTGCTCACAGGGCCCGATACTTC/TCCTTTCGAGCT CAGTGCACCACAAAAC			
	GABRB3	CCTTGCCCAAAATCCCCTATGTCAAAGC/GTATCGCCA ATGCCGCCTGAGACCTC			
	GAL	TGCGGCCCGAAGATGACATGAAACC/CCCAGGAGGCTC TCAGGACCGCTC			
	IFITM1	CCCCAAAGCCAGAAGATGCACAAGGAG/CGTCGCCAA CCATCTTCCTGTCCCTAG			
	GRB7	TCCAGCCCCACAGCAGCATCAACTACC/CCGGGTTGA AGGTGGCTTTGACTGCTC			
	CD9	GTGCATGCTGGGACTGTTCTTCGGCTTC/CACGCCCCC AGCCAAACCACAGCAG			
	BRIX	CACCACGGTATCATCCCAAAAGCCAACC/ACGCCGATG CATGTTTGGTGACTGGTAG			
	GDF3	CTTATGCTACGTAAAGGAGCTGGG/GTGCCAACCCAG GTCCCGGAAGTT			
	FGF4	CTACAACGCCTACGAGTCCTACA/GTTGCACCAGAA AAGTCAGAGTTG			
	Endo SOX2	GGGAAATGGGAGGGGTGCAAAAGAGG/TTGCGTGAG TGTGGATGGGATTGGTG			
	TDGF1	CTGCTGCCTGAATGGGGGGAACCTGC/GCCACGAGGTGC TCATCCATCACAAGG			
	Endo c-MYC	GCGTCCTGGGAAGGGAGATCCGGAGC/TTGAGGGGC ATCGTCGCGGGAGGCTG			
	LEFTB	CTTGGGGACTATGGAGCTCAGGGCGAC/CATGGGCAG CGAGTCAGTCTCCGAGG			
	NODAL	GGGCAAGAGGCACCGTCGACATCA/GGGACTCGGTGG GGCTGGTAACGTTTC			
	hTERT	CCTGCTCAAGCTGACTCGACACCGTG/GGAAAAGCT GGCCCTGGGGTGGAGC			
	UTF1	CCGTCGCTGAACACCGCCCTGCTG/CGCGCTGCCCAG AATGAAGCCCAC			
KLF4 endo ACGATCGTGGCCCCGGAAAAGG		ACGATCGTGGCCCCGGAAAAGGACC/TGATTGTAGTGC TTTCTGGCTGGGCTCC			
Housekeeping Gene	18sRNA	AAACGGCTACCACATCCAA/CCTCCAATGGATCCTCGT TA			
Sequencing Primer	CRLF1-Exon 5	TGTAAAACGACGGCCAGTGAAAACAGAGGCAGGTTC CA/			
		CAGGAAACAGCTATGACCGGACAGTGAGGACAA GGTCAG			

4. Variant identification

DNA was isolated with QIAamp DNA Mini Kit (Qiagen) according to manufactures instructions. PCR products were sequenced by Sanger sequencing. Primers are listed in Table 2.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.scr.2020.101820.

References

Crisponi, G., 1996. Autosomal recessive disorder with muscle contractions resembling

neonatal tetanus, characteristic face, camptodactyly, hyperthermia, and sudden death: a new syndrome? Am. J. Med. Genet. 62, 365–371. Buers, I., Pennekamp, P., Nitschke, Y., Lowe, C., Skryabin, B.V., Rutsch, F., 2016. Lmbrd1

- Buers, I., Pennekamp, P., Nitschke, Y., Lowe, C., Skryabin, B.V., Rutsch, F., 2016. Lmbrd1 expression is essential for the initiation of gastrulation. J. Cell. Mol. Med. 20, 1523–1533.
- Barch, M.J., Knutsen, T., Spurbeck, J.L. (Eds.), 1997. The AGT Cytogenetics Laboratory Manual. Lippincott Williams & Wilkins.
- Hecker, K.H., Roux, K.H., 1996. High and low annealing temperatures increase both specificity and yield in touchdown and stepdown PCR. Biotechniques 20, 478–485.
- Akane, A., Shiono, H., Matsubara, K., Nakahori, Y., Seki, S., Nagafuchi, S., Yamada, M., Nakagome, Y., 1991. Sex identification of forensic specimens by polymerase chain reaction (PCR): two alternative methods. Forensic. Sci. Int. 49, 81–88.