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• Machine learning methods were ap-
plied to obtain pollutant concentration
in urban areas.

• Population weighted exposure was esti-
mated using dynamic mobile phone lo-
cation data.

• Long term NO2, PM, and O3 daily con-
centrations were provided for 6 urban
areas.

• Differences among cities were found
with spatial/geographical concentration
gradients.
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Cities are severely affected by air pollution. Local emissions and urban structures can produce large spatial het-
erogeneities.We aim to improve the estimation of NO2, O3, PM2.5 and PM10 concentrations in 6 Italian metropol-
itan areas, using chemical-transport and machine learning models, and to assess the effect on population
exposure by using information on urban population mobility. Three years (2013–2015) of simulations were per-
formed by the Chemical-Transport Model (CTM) FARM, at 1 km resolution, fed by boundary conditions provided
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bynational-scale simulations, local emission inventories andmeteorologicalfields. A downscaling of daily air pol-
lutants at higher resolution (200 m) was then carried out by means of a machine learning Random-Forest (RF)
model, considering CTMand spatial-temporal predictors, such as population, land-use, surface greenness and ve-
hicular traffic, as input. RF achieved mean cross-validation (CV) R2 of 0.59, 0.72, 0.76 and 0.75 for NO2, PM10,
PM2.5 and O3, respectively, improving results from CTM alone. Mean concentration fields exhibited clear geo-
graphical gradients caused by climate conditions, local emission sources and photochemical processes. Time se-
ries of population weighted exposure (PWE) were estimated for two months of the year 2015 and for five cities,
by combining population mobility data (derived from mobile phone traffic volumes data), and concentration
levels from the RF model. PWE_RF metric better approximated the observed concentrations compared with
the predictions fromeither CTMalone or CTMandRF combined, especially for pollutants exhibiting strong spatial
gradients, such asNO2. 50% of the populationwas estimated to be exposed toNO2 concentrations between 12 and
38 μg/m3 and PM10 between 20 and 35 μg/m3. This work supports the potential of machine learning methods in
predicting air pollutant levels in urban areas at high spatial and temporal resolutions.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Air pollution is known to cause health effects on the general popula-
tion. According to different Organizations and Commissions, about 4.2
million of deaths were attributable to PM2.5 ambient concentrations
during 2015 (Cohen et al., 2017; Ostro et al., 2018). In addition to mor-
tality, air pollution is associated with incidence of various debilitating
diseases such as chronic obstructive pulmonary disease, ischemic
heart diseases and cerebrovascular events (Brook et al., 2017; Cesaroni
et al., 2014; Scheers et al., 2015; Schikowski et al., 2014; Stafoggia
et al., 2014). Recent studies also identified a positive association be-
tween nitrogen oxides exposures and prevalence of diabetes (Renzi
et al., 2018) and incidence of dementia related to air pollution exposure
(Chen et al., 2017).

About 55% of the world's population lives in urban areas. Some of
them, and particularly those living in metropolitan areas, are exposed
to high pollution levels caused by urban sources (i.e. traffic, domestic
heating, industry), low dispersion conditions determined by the pres-
ence of buildings and emissions from sources located outside the city
(regional background) such as agriculture, natural sources and distant
industries (Harrison, 2018). In these areas, strong spatial inhomogenei-
ties in air pollution levels occur, particularly for NO2, that need to be ac-
curately estimated to properly quantify the burden of mortality and
morbidity attributable to ambient air pollutants. To obtain information
on the spatial distribution of pollutant levels, two main approaches
have been used by the epidemiologists: air qualitymodels and statistical
methods.

Gaussian plume or puff models are often used to describe the
distribution of traffic related air pollutants at local (up to 1 km)
and urban (up to 10 km) scales (Forehead and Huynh, 2018).
Since these models generally do not include the treatment of
gas-phase reactions and aerosol processes, their application is lim-
ited to primary pollutants. Chemical Transport Models (CTM) rep-
resent an alternative to Gaussian models thanks to their ability to
estimate secondary pollutants such as ozone, NO2 and particulate
matter secondary components (Zhang et al., 2012; Kukkonen
et al., 2012, 2016; Gariazzo et al., 2007). In most cases, their appli-
cation has been limited to a spatial resolution of 1 km, therefore
resulting in a misclassification of local scale phenomena such as
those occurring in street canyons.

Statistical linear regression models have been often preferred to air
quality models, as they are easier to apply and reiterate on a yearly
basis. Land Use Regression (LUR) models are examples of such an ap-
proach (Hoek, 2017; Hoek et al., 2008; Cesaroni et al., 2012). LUR
models use the measurements as the dependent variable and land-use
related data, such as population, distance from main roads, land cover,
etc. as the independent variables (predictors) in a multivariate regres-
sion model. Air pollution levels are then predicted at any location,
such as individual addresses, using the parameter estimates derived
from the regression model. Changes over time of land use
characteristics and/or emissions may however introduce spatial-
temporal errors in population exposure estimates.

Recent studies used machine-learning (ML) methods to predict
high-resolution pollution maps (Chen et al., 2018a, 2018b; Stafoggia
et al., 2019; de Hoogh et al., 2019; Araki et al., 2018; Di et al., 2019).
Random-Forest (RF) algorithms represent a family of ML methods
consisting in an ensemble of decision trees (forest) that are able to cap-
ture complex and non-linear relationships between predictor variables.
Data about observations and spatial-temporal predictors are used to
construct a set of trees fromwhich an ensemble prediction of the target
variable (e.g. pollutant concentration) is obtained. This method allows
deriving accurate long time-series of daily pollutant concentrations at
a very fine spatial scale, typically 1 square km for nation-wide studies,
eligible for epidemiology studies. RFs models have been used to predict
nation-wide particulate matter, starting from satellite aerosol optical
depth data and spatial-temporal predictors (Chen et al., 2018a, 2018b;
Stafoggia et al., 2019). Another recent study predicted NO2 at high res-
olution across Switzerland using both mixed and RF models driven by
satellite NO2 data collected by Ozone Monitoring Instrument (OMI)
(de Hoogh et al., 2019). Araki et al. (2018) applied a RF approach for es-
timating metropolitan monthly NO2 exposure in Japan using satellite
derived OMI NO2 data. Di et al. (2019) used an ensemble-base ML
model to predict PM2.5 over United States at 1 km × 1 km grid cells,
with a focus over theGreat BostonArea at 100m×100musing a down-
scaling model.

Although ML methods are promising techniques to estimate expo-
sure, studies at urban scale are rare. The estimation of long time-series
of multi-pollutants concentrations at high spatial and temporal resolu-
tion would be needed to carry out high quality epidemiology studies
on urban resident population.

Despite the aforementioned literature on computational methods
developed for population exposure, there is a need to increase the spa-
tial and/or temporal resolution of concentrations estimates in urban
areas, aimed at reducing misclassification of exposure (Özkaynak
et al., 2013; Health Effects Institute, 2009). A possible way to improve
the accuracy of concentration estimates is to combine modelling tech-
niques in which the results from amodel are used as an input to the fol-
lowing one. Former studies applied different methods for models
combination such as: neural network downstream to a dispersion
model (Pelliccioni et al., 2003; Pelliccioni and Tirabassi, 2006), hybrid
modelling frameworks combining regional and local scale models
(Parvez andWagstrom, 2019), Bayesian ensemble approaches combin-
ing satellite and CTM PM2.5 data (Murray et al., 2019) and ensemble-
based machine-learning models (Di et al., 2019; Shtein et al., 2020).

The aim of this study was to improve the air quality assessment in
urban areas, by combining CTM and RF results, to support epidemiolog-
ical studies at high spatial resolution. This study was carried out in the
frame of BEEP (Big data in Environmental and occupational EPidemiol-
ogy) project whosemain goals are to improve exposure assessment and
to support environmental epidemiological studies in Italy by collecting,

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


3C. Gariazzo et al. / Science of the Total Environment 724 (2020) 138102
linking and analysing large amount of data from different sources.
Within the BEEP project, a multi-city exposure assessment study has
been carried out in six urban areas across Italy from north to south.
For five of them a time-limited dynamic population exposure study
has been conducted using mobile phone traffic data. These data have
been coupled in time and space with pollutants concentrations, pro-
vided by the above RF modelling techniques, allowing for a dynamic
population exposure analysis. In the following section (Section 2), the
urban areas and their monitoring networks, the urban CTM, the RF ap-
plication to downscale at finer spatial resolution and the dynamic pop-
ulation data used to derive population-weighted exposure are
described. Section 3 presents the validation of model's results with ob-
servations and population exposure results by city. A discussion follows
in Section 4.

2. Materials and methods

2.1. Urban areas description

The BEEP project analysed the health effects of air pollution in six re-
gions located in different parts of the country in order to consider
Fig. 1.Map of cities location (upper figure) and grids of chemical-transportmodel (grey) and of
(For interpretation of the references to colour in this figure legend, the reader is referred to th
different environmental and climate situations, urbanization levels
and economic conditions related to country's heterogeneities. The re-
gions chosen by the BEEP study were Piedmont, Lombardy, Emilia Ro-
magna, Lazio, Apulia and Sicily and their capital cities Turin, Milan,
Bologna, Rome, Bari and Palermo were selected as target urban areas.
Fig. 1 shows a map of the location of the six urban areas. These cities,
spanning from North to South, are characterised by different urban
structures and environmental/climate conditions (see Table 1). Health
effects caused by air pollution in these areas have been previously re-
ported (Cesaroni et al., 2012, 2014; Tramuto et al., 2011; Baccini et al.,
2017; Chiusolo et al., 2011).

Turin, Milan and Bologna are in the Po Valley, a well-known highly
entropized area located in Northern Italy, characterised by the presence
of many urban settings, industrial facilities, agricultural activities and
breeding farms. During wintertime, this area is affected by long-
lasting and intense atmospheric stability periods that cause rapid degra-
dation of air quality (Pernigotti et al., 2012; Bigi and Ghermandi, 2014;
Perrino et al., 2014). Themean annualNO2 and PM10 concentrations and
the corresponding number of days with daily PM10 concentration ex-
ceeding 50 μg/m3 (maximum allowed 35 days per year) and number
of hours with NO2 concentrations higher than 200 μg/m3 are provided
dynamic population data (red) over the city ofMilan in its Province (blue) (bottomfigure).
e web version of this article.)



Fig. 1 (continued).
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in Table 1, confirming the impact of these stagnant conditions on air
quality. The metropolitan area of Rome is also affected by air pollution
episodes (Gariazzo et al., 2007), although the proximity of the shoreline
limits their number, due to better dispersion conditions caused by fre-
quent sea-land breezes. As for Bari and Palermo, both located in South-
ern Italy, the temperate climate limits the use of domestic heating and
urban air pollution is mainly caused by traffic-related sources, although
the proximity of commercial harbours may contribute as well.

2.2. Urban areas air pollution monitoring networks

Air pollutants observed concentrations were used as training data
for the development of the RF models that will be described in
Section 2.4. Hourly values of measured NO2 and O3 concentrations, as
well as values of PM10 and PM2.5 daily concentrations were collected
from the local institutional monitoring networks for the years
2013–2015. Gaseous pollutants were then averaged on a daily basis to
be used in the training of the RF model. According to the EC legislation,
the air pollutionmonitoring stations are classified based on the “Type of
area” and “Type of station”. The former refers to the environment on a
scale of several kilometres (“urban”, “suburban”, “rural”) while the lat-
ter refers to the impact (or absence) of near-by emissions (“traffic”, “in-
dustrial”, “background”). Table 2 shows the number of stations used in
the study divided by type, pollutant and year. Most of the stations rep-
resented urban traffic and urban/suburban background conditions. On
average, 84, 42, 73 and 35 stations were used for NO2, O3, PM10 and
PM2.5 respectively.

Maps of locations of monitoring stations by pollutant and city are
shown in Supplementary Materials (SM) (Fig. S1).
2.3. The Air Quality Modelling System (AQMS)

The numerical simulations of meteorological parameters and
airborne pollutants have been performed by an AQMS based on
the chemical transport model (CTM) FARM (Flexible Air quality
Regional Model) (Gariazzo et al., 2007, Silibello et al., 2008). Phys-
ical and chemical processes influencing the concentration fields
within the modelling domains are described in FARM by a system
of partial differential equations expressing the time variation of
the average concentrations. A detailed description of AQMS appli-
cation is illustrated in SM. The AQMS includes subsystems used
to reconstruct the atmospheric flow and related turbulence param-
eters and to apportion data from the emission inventories to grid
cells. The meteorological fields were produced by the prognostic
non-hydrostatic model WRF (Skamarock et al., 2008). To better
capture the influence of urban areas on meteorological fields, the
so-called Building Environment Parameterization (BEP), a multi-
layer urban canopy model (Martilli et al., 2002), has been used.
Urban parameters were derived from building data available at
“Geoportale Nazionale” (http://www.pcn.minambiente.it/mattm/).
By carrying out WRF analysis by city, different climate conditions
can be taken into account in estimations of air pollution concentra-
tions. The emissions on the modelling domains (see Table 1) have
been derived from regional inventories. The INEMAR (http://www.
inemar.eu/xwiki/bin/view/Inemar/WebHome) inventories devel-
oped for Piedmont, Lombardy, Emilia Romagna and Apulia regions,
have been used to reconstruct emissions for the cities of Turin,
Milan, Bologna and Bari domains respectively. The emissions for
Palermo and Rome domains have been provided by the respective

http://www.pcn.minambiente.it/mattm/
http://www.inemar.eu/xwiki/bin/view/Inemar/WebHome
http://www.inemar.eu/xwiki/bin/view/Inemar/WebHome


Table 1
Main characteristics of the six selected cities and data used in this study.

Rome Milan Turin Bologna Bari Palermo

Region Lazio Lombardy Piedmont Emilia Romagna Apulia Sicily
Altitude 21 m 122 239 m 54 m 5 m 14 m
Climate Mediterranean Continental Continental Continental Mediterranean Mediterranean
Metropolitan area population 4352 k 3127 k 1437 k 1015 k 1252 k 1253 k
Total domain emission
NOx [t/y] 28,276.8 46,474.3 20,263.3 16,786.9 13,745.8 11,520.7
PM10 [t/y] 8416.1 10,701.3 5461.8 3031.7 3958.8 5151.8
PM10 [μg/m3]b 31

(26)
40
(97)

46
(118)

29
(40)

27
(14)

34
(26)

NO2 [μg/m3]c 62
(14)

64
(11)

80
(25)

46
(0)

43
(0)

60
(0)

FARM/RFa models
Domain extension [km2] 59 × 59 59 × 59 51 × 51 50 × 50 60 × 55 75 × 50
Dynamic population data
Number of grid cells 923 1419 571 n.a 144 165
Domain extension [km2] 114 × 114 90 × 57 65 × 67 n.a 97 × 72 83 × 82
Cell size (min/max) [km2] 0.26 × 0.34/16 × 20 0.5 × 0.65/4 × 5 0.26 × 0.34/4 × 5 n.a 1.0 × 1.3/16 × 20 0.5 × 0.65/16 × 20

a Flexible Air quality RegionalModel (FARM) andRandomForest (RF)models have been appliedwith a horizontal resolution of 1 kmand 200m respectively. Emission data provided by
regional inventories.

b Mean observed annual PM10, between parenthesis days with PM10 N 50 μg m−3 (based on 2017 data provided by National Agency for Environment (ISPRA)).
c Mean observed annual NO2, between parenthesis hours with NO2 N 200 μg m−3 (based on 2017 data provided by National Agency for Environment (ISPRA)).
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regional authorities. A description of emission inventory for Sicily
can be found in a related publication (ARPA Sicilia, 2012). As for
the domain of Rome, the regional inventory has been integrated
with detailed vehicular traffic information provided, for the city
of Rome, by the “Roma Mobilità” municipal agency and, for the
rest of the region, calculated by means of a traffic model. Details
about emission inventories can be found in SM. All the above in-
ventories were developed according to the EMEP/EEA air pollutant
emission inventory guidebook that provides guidance on estimat-
ing emissions from both anthropogenic and natural emission
sources. Pollutant emissions estimates are divided into sectors,
representing groups of homogeneous processes, and the sources
are classified according to their impact on air quality and the pos-
sibility of identification. Diffuse and point emission are considered,
the former related to smaller scattered sources for which it is im-
practical to collect reports from each individual source (e.g. do-
mestic heating, road traffic, agricultural activities, etc.), the latter
related to relevant plants such as thermal power plants, cement
plants, refineries, etc. The spatial disaggregation of diffuse emis-
sions on the grid cells was based on a statistical procedure,
which involves the use of spatial variables (proxy variables) that
are assumed to be related both to the type of emissions and to
the different territorial units (e.g. municipality). Point emissions
were allocated on the grid cells according to their geographic coor-
dinates, geometrical (stack height and diameter) and emissive
Table 2
Number of monitoring stations by type of area, type of station, pollutant and year used in the s

Rural Suburban Urban

Background

NO2 2013 4 17 23
2014 4 17 24
2015 4 16 25

O3 2013 4 16 17
2014 4 16 17
2015 4 16 17

PM10 2013 3 14 22
2014 3 14 24
2015 3 14 26

PM2.5 2013 2 4 13
2014 2 4 16
2015 2 4 16
data. Total NOx and PM yearly emissions over the six metropolitan
modelling domains are shown in Table 1.

Finally, boundary conditions to WRF and FARM models were pro-
vided by previous national scale simulations, performed by same
models and described elsewhere (Silibello et al., 2019).

The simulations with the above modelling system have been per-
formed for the years 2013, 2014 and 2015 over the 6 urban areas (see
Fig. 1 and model domain parameters in Table 1), on an hourly basis,
with an horizontal resolution of 1 km. Daily data were then produced
to feed the RF model.

2.4. The Random-Forest model

The AQMS modelled daily NO2, PM10, PM2.5 and ozone urban con-
centrations fields were processed by a Random Forest (RF) model
(Breiman, 2001) to derive concentration fields at the target spatial res-
olution of 200 m. RF models consist of an ensemble of decision trees
(forest), suitable both for classification and for regression problems,
which has been developed to solve the high variance errors typical of
a single decision tree. Each tree is built with a bootstrap of the input
data and each node is split by choosing the best subset of randomly cho-
sen predictors (Liaw andWiener, 2002). The final output of the ensem-
ble is computed by averaging the outputs of each single tree. The
application of the RF model was divided into two phases: the first
aimed at its formation, i.e. its ability to reproduce concentrations
tudy.

Suburban Urban Suburban Urban Total

Industrial Traffic

3 4 3 29 83
3 4 3 29 84
3 4 2 31 85
1 1 2 1 42
1 1 2 1 42
1 1 2 0 41
3 3 2 26 73
3 3 1 25 73
3 3 1 23 73
1 2 1 10 33
1 2 1 10 36
1 2 1 10 36



6 C. Gariazzo et al. / Science of the Total Environment 724 (2020) 138102
observed in monitoring sites (training phase) based on a set of predic-
tors. The second (generalization phase) aimed to estimate the concen-
trations elsewhere and in particular to the cells of the grid where no
observations are available. The model also provides an estimate of the
“importance” of each predictor by quantifying how much prediction
error increases when data for that variable is permuted while all others
are left unchanged (Liaw and Wiener, 2002).

The list of temporal, spatial and spatial-temporal predictors, chosen
to capture the peculiar time and space fluctuations of the concentration
fields, is summarised in Table 3, with each data source and resolution.
The target resolution was chosen as a compromise between the spatial
size of the census blocks (from 300m2 to 5.6 km2), to which concentra-
tions had to be provided for the epidemiologic studies carried out in the
BEEP project, and the spatial resolution of the covariates used as predic-
tors (between 30 and 300 m, see Table 3). The main spatial-temporal
predictor is represented by the concentration fields computed by the
FARM model at 1 km resolution (see Section 2.3). The Normalized Dif-
ference Vegetation Index (NDVI), Julian day, day of week and month
were included in the input dataset to predict the temporal variability
of the pollutants. Spatial information related to the land-use were pro-
vided by CORINE land use dataset and the so-called “Imperviousness
Layer” (IL).

NDVI is a spatial-temporal indicator of the greenness of the land sur-
face that is derived from satellite reflectancemeasurements andwas in-
cluded with a decade long temporal resolution.

The CORINE LandCover (CLC) inventorywas initiated in 1985 (refer-
ence year 1990) and updates have been produced in following years
(http://land.copernicus.eu/). It consists of an inventory of land cover
in 44 classes that we have reduced to a subset of 22 classes.

The IL, a Copernicus land use product, captures the percentage and
change of soil sealing. Built-up areas are characterised by the substitu-
tion of the original (semi-) natural land cover or water surface with an
artificial, often impervious cover.

CLC, NDVI and IL have been mapped from their original resolutions
of 100 m, 300 m and 100 m respectively, to the target one (200 m) by
means of GIS spatial joins and intersections procedures.

The predictors related to road traffic emissions are based on the daily
average traffic volume estimated by the Open Transport Map project
(OPM, 2019) on the Open Street Map road network. Traffic data have
been aggregated by summing in each target cell the traffic flow contri-
bution of each road arc; this procedure has been applied separately for
main (i.e. motorways and primary) and other roads (secondary and be-
yond). The RF model has been trained against the daily averages of the
target pollutants as measured by the local monitoring networks. The
Table 3
Description of the spatiotemporal and spatial variables used as predictors in the RF model.

Variable Description

Temporal
Julian day, day of
week, month

Day/time characteristics

Spatial-temporal
NO2, PM10, PM2.5 and
O3

Model estimated pollutants concentration

NDVI Normalized Difference Vegetation Index

Spatial
Administrative areas Regions, Provinces, Municipalities
Population Resident population from census October 2011

Corine land cover Land cover characteristics
Imperviousness
surface areas

An indicator of the spatial distribution of artificial areas. Examples
railway yards, parking lots), roads, industrial and commercial area

Elevation European Digital Elevation Model EU-DEM
Vehicular traffic Daily traffic volumes over two roads classes (main and others)
training procedure involves all the six urban areas at the same time, to
increase the number of the training data representative of different en-
vironments and emission sources. It was performed separately for each
pollutant and each solar year from 2013 to 2015 to consider year-to-
year variability in full account. A total of 12 RF models (4 pollut-
ants × 3 years) were developed. Predictions by pollutant and year
were then obtained for all the six urban areas. Analyseswere performed
using the “caret” and “ranger” R packages for RF model (Kuhn, 2008;
Wright and Ziegler, 2017).

Each RF model has been validated with a two stage approach. In the
first stage the random forest was checked by out-of-bag predictions
comparing predicted to actual values on the training data. This proce-
dure allows to fine tune themodel by choosing the set of model param-
eters which minimizes the Root Mean Square Error. At the end of this
stage the relative importance of the predictors, directly provided by
the RF model, has also been checked. All above listed predictors were
retained in the final model.

In the second stage, each model has been validated by a left-out
monitor, using 10-fold cross-validation procedure by randomly dividing
the monitoring stations in 10 groups and the training dataset in 10 cor-
responding subsets. The model was iteratively trained with 9 groups
and prediction was performed on the remaining 10th testing group.
The model performance was assessed by comparing predicted values
with actual measurements in the testing subgroups: a simple linear
model relating predicted values with observations has been fitted and
the main statistical parameters such as R2, RMSE, slope and intercept
have been computed for the full dataset data (overall analysis), for
yearly averages at each monitoring station (spatial analysis) and for
time deviations obtained by subtracting the yearly average from daily
values (temporal analysis). Many authors already used this validation
by spatial and temporal components (eg. Stafoggia et al., 2017; Di
et al., 2019) to test model performance. The former represents the frac-
tion of spatial variation in annual average concentrations across the
monitoring stations captured by themodel, while the latter the fraction
of temporal variation in daily concentrations across all monitoring sta-
tions and days captured by themodel. In addition, an analysis ofmodel's
residual by type of monitoring station has been carried out to test its ac-
curacy across a range of landuse types. Results from the application of
RF model are described in Section 3.

2.5. The dynamic urban population data

Dynamic population data are related to the Telecom Italian Mobile
(TIM) phone operator subscribers and were provided within the TIM
Source Spatial
resolution

FARM 1 km

Copernicus
(2015 data)

300 m

ISTAT Polygons
ISTAT Census

blocks
EEA (2012 data) 100 m

include housing areas, traffic areas (airports, harbours,
s, construction sites, etc.

Copernicus
(2015 data)

100 m

EEA - CLMS ~30 m
Open Transport
Map

Polygons

http://land.copernicus.eu/
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BIGDATA Challenge 2015 edition. These data represent a relevant sam-
ple of the actual population considering that TIM market penetration is
about 32% at national level. The population dataset provides the number
of persons located in the studied area, at aggregated level, according to
full mobile phone communications types (eg. calls, TXTmessages, Inter-
net). The methodology used to derive the population data from mobile
phone traffic is described in Gariazzo et al. (2016) and Gariazzo and
Pelliccioni (2018). The population data, spatially and temporally re-
solved, refer to the main Italian cities and related Provinces and have
been provided over irregular grids covering the citieswithhigher spatial
resolution in downtown zones (from 0.26 × 0.34 up to 1.0 × 1.3 km2)
and coarser resolution in outskirts ones (from 4 × 5 up to
16 × 20 km2). Fig. 1 shows an example of these grids. Table 1 provides
a summary of the main characteristics of this dataset. Data were not
available for the city of Bologna. The data consist of the number of TIM
users located within each cell at a time resolution of 15 min, and span
from March to April 2015. Such data were averaged on hourly basis.

2.6. The population-weighted exposure

To estimate population-weighted exposure, population data and RF
model results have been matched considering the spatial and temporal
resolution of dynamic population data as the target ones. Since the RF
models spatial resolution (0.2 × 0.2 km2) was higher than the popula-
tion one, the RF and population grids have been intersected and for
each target grid cell the area intersecting RF model cells has been com-
puted. The latter was then used as weight of encompassing RF cells to
calculate the air pollution concentration at each target cell. Vice versa,
since the temporal resolution of RF model was lower than the dynamic
population data, daily RF data were modulated on an hourly basis using
corresponding hourly CTM results. Following such an approach, RF
model air pollutant concentrations were ready to be matched in space
(target population grid) and time (hourly basis) with population data.
A similar procedure has also been used to estimate population-
weighted exposure with concentration levels predicted by FARM.

To obtain a citywide population exposure we used the Population-
Weighted Exposure (PWE), a metric already applied by different au-
thors (Nyhan et al., 2016; Aunan et al., 2018; Chen et al., 2018a). The
hourly total PWE of pollutant p at time t, PWEp(t), is given by following
equation:

PWEp tð Þ ¼
Xncells

i¼1

Cp;i tð Þ �WPi tð Þ

where ncells is the number of target cells intersecting the RF model do-
main; Cp,i(t) is the estimated concentration of pollutant p at time t in the
target cell i provided by either RF or FARM models; WPi(t) is a weight
calculated as the ratio of the number of persons located in the target
cell i to the total number of persons in the domain at time t. The use of
this metric enables a comparison of population exposures among cities.
It can be noticed that PWEs values, being a concentration multiplied by
a weight, have unit of concentration.

To evaluate the amount of population exposed to specific air pollut-
ant concentration values, cumulative population-weighted exposures
were calculated by ordering for increasing values of hourly pollutant
concentrations on the target grid, and cumulating the percentage of
population involved, as already done by other authors (Gariazzo et al.,
2016; Nyhan et al., 2016). This analysis, as PWE, allows evaluating the
combined effects on exposure of spatial-temporal variability of popula-
tion mobility and pollutants concentration.

Since the analysis of population-weighted exposure was limited to
March–April 2015, due to dynamic population data availability, the pol-
lution levels during this period are different than the annual ones, and
the population-weighted exposure estimates are representative of air
quality conditions normally occurring during spring seasons.
3. Results

3.1. RF models concentration results

The results of theRF validation procedure are summarised in Table 4.
They show a good agreement of the RF predictions with the observa-
tions, picking up the overall, spatial and temporal variability. The poorer
R2 results shown for O3 in the spatial analysis are related to both its
ubiquitous nature, more associated with larger scale photochemical
processes than with the considered high-resolution spatial predictors,
and the location of monitoring stations that, for this pollutant, are gen-
erally sited in remote and background areas. The intercept values, asso-
ciated withmodel bias, for the overall analysis are generally close to the
ideal value of zero, aswell as the slope values (ideal value of one). A per-
formance analysis has been done for FARM and the results are pre-
sented in SM (table S2), outlining the improvement obtained by the
downscaling procedure. At this regard, it should be considered that
the adopted FARM resolution (1 km) does not permit to reproduce ad-
equately the concentration observed at monitoring stations highly in-
fluenced by nearby traffic emissions.

Fig. 2 shows scatter plots comparing the daily RF model predicted
pollutants concentrations with the observed values at the different cit-
ies. Similar results for the FARM model are shown in the SM (Fig. S3).
Fig. 3 shows boxplots of the residuals of the RF models by the type of
monitoring station for the year 2015. A similar by city analysis is
shown in SM (Fig. S4).The median values of the model's residuals are
close to the ideal value of zero. As for NO2, the best performances are ob-
served for urban-traffic stations and urban/suburban background ones,
with most of data (25th–75th percentiles) in the range of ±13 μg/m3.
The other types of station (urban background, urban/suburban indus-
trial and suburban traffic) have a small overestimation tendency
(10–15 μg/m3). This result can be caused by the lower number of mon-
itoring stations located in these areas (see Table 2) and consequently a
lower representativeness in the final RF model setup. Better results are
obtained for PM10 and PM2.5, with most of data (25th -75th percentiles)
in the range of ±5 μg/m3 in both urban-traffic and urban/suburban
background stations. In addition the RMSE values shown in Table 4 for
the overall analysis, are half of those obtained for the FARM model
alone (see Table S2 in SM), supporting the better performance of RF
for these pollutants.

To provide evidence of the effects of the adopted downscalingproce-
dure, Fig. 4 shows the annual averaged NO2 concentration fields for the
year 2015, produced by FARM alone and RFmodels for Turin and Rome
urban areas. Additional maps are reported in the SM (fig. S5-S7). The
analysis of this figure shows, as expected, higher NO2 levels estimated
by RF model due to both the increase of horizontal resolution and the
consequent more detailed description of road network and related
contributions.

Table S3 in the SM shows the relative importance of predictors in the
RF model. Specifically, having set to 100% the importance of FARM pre-
dictor, it displays the importance of all other predictors relative to it. The
relevance of traffic flow predictors, together with other spatial-
temporal predictors, as FARM and NDVI, is confirmed for NO2. As for
the other pollutants, the traffic related predictors are less relevant,
while the spatial-temporal predictors keep their importance. Table S4
in the SM shows the ranges of mean yearly pollutants concentrations
by city predicted by theRFmodel during the year 2013–2015. Other sta-
tistical parameters (standard deviation and percentiles) are also shown.
Other than O3, all remaining pollutants exhibit a clear geographic gradi-
ent with higher concentrations for cities with continental climate
(Milan, Turin and Bologna) and lower in cities characterised byMediter-
ranean climate (Bari, Palermo and Rome). Differences in city specific
total emissions also contribute to this effect. As for O3, higher concentra-
tions are estimated for cities located in the Mediterranean climate con-
ditions due to photochemical processes driven by higher solar radiation.
It is worth to notice that the different climate conditions existing among



Table 4
Fitting statistics comparing daily observed and 10-fold CVRF predicted NO2, PM10, PM2.5, O3 concentrations, by pollutant and year: R2 (percent of explained variability), rootmean squared
error (RMSE, μg/m3), intercept (μg/m3) and slope (μg/m3), overall and disaggregated by spatial and temporal components.

Overall Spatial Temporal

R2 RMSE Inter. Slope R2 RMSE Inter. Slope R2 RMSE Inter. Slope

NO2

2013 0.59 13.56 −0.63 1.00 0.62 8.54 0.31 0.97 0.57 10.54 0.00 1.03
2014 0.57 12.89 1.07 0.95 0.63 8.54 1.52 0.94 0.50 9.70 0.00 0.98
2015 0.62 13.48 −1.08 1.02 0.64 8.98 0.21 0.99 0.59 10.15 0.00 1.05

PM10

2013 0.72 10.12 −2.03 1.05 0.68 3.99 −0.29 1.00 0.72 9.30 0.00 1.06
2014 0.69 9.99 −3.33 1.09 0.57 3.92 −1.40 1.02 0.70 9.24 0.00 1.10
2015 0.76 9.32 −1.52 1.03 0.70 3.71 0.53 0.97 0.77 8.54 0.00 1.05

PM2.5

2013 0.77 8.25 −0.79 1.04 0.75 3.33 3.47 0.83 0.78 7.60 0.00 1.05
2014 0.73 7.17 −0.86 1.02 0.60 3.00 0.94 0.93 0.75 6.53 0.00 1.03
2015 0.78 7.92 −0.34 1.01 0.70 3.11 2.72 0.88 0.80 7.25 0.00 1.03

O3

2013 0.74 13.79 0.69 0.99 0.14 7.75 21.99 0.56 0.81 11.31 0.00 1.01
2014 0.71 13.30 2.01 0.97 0.12 7.98 26.55 0.46 0.81 10.07 0.00 1.02
2015 0.79 13.25 0.20 1.00 0.31 7.49 12.01 0.77 0.84 10.96 0.00 1.02

Fig. 2. Scatter plots of daily RF predicted pollutants vs observed concentrations by city. Year 2015. Colours represent the different cities analysed.
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citieswere taken into account by theWRF analysis, and consequently by
both FARM and RF simulations.

3.2. Population exposure results

Fig. 5 shows a box plot of hourlyNO2, O3, PM2.5 and PM10 estimations
of population-weighted exposure by cities calculated by matching the
predictions from the RFmodel with the populationmobility data, as de-
scribed in Section 2.6. As for NO2, PWE median values exhibit a clear
South-North geographic gradient with the highest exposure in cities lo-
cated in the Po Valley area (Turin, Milan), followed by the city of Rome.
These results are consistentwith the amount of emissions in the related
areas, which are linked to the total resident population (see Table 1). It
is worth noting the boxes size (25th–75th percentiles) that also in-
crease in a similar manner. Extreme values higher than 100 μg/m3 are
observed for Rome and Milan.

A similar South-North geographical gradient is estimated for PM2.5

and PM10 PWE. People living in more populated cities like Milan, Turin
and Rome are affected by higher PWE concentrations as both median
value (38, 36 and 25 μg/m3 for PM2.5 respectively) and 25th–75th per-
centiles interval. PM2.5 PWE values higher than 60 μg/m3 are estimated
for Turin and Milan.
Fig. 3. Boxplots of NO2, O3, PM10 and PM2.5 residuals (as observed minus predicted values) o
Background; U\\B Urban Background; S\\I Suburban Industrial; U\\I Urban Industrial; S-T
categorical values. Daily data of year 2015.
Conversely, O3 PWE exhibits an opposite geographic gradient with
higher exposure in cities with Mediterranean climate (Bari, Palermo
and Rome) and lower in Turin and Milan characterised by continental
climate andhigher NOx levels leading to thewell-known ozone titration
effect. The higher photochemical activities induced by solar radiation in
these Mediterranean cities produces such an effect. The median ozone
PWE values span from 50 to 70 μg/m3, although hourly values higher
the 100 μg/m3 are detected for all cities. Table 5 shows statistics of
daily observed pollutants concentrations at the local monitoring net-
works compared with the RF estimated ambient concentrations and
the population weighted exposures calculated using FARM and RF pre-
dictions weighted by the amount of population exposed (PWE_FARM
and PWE_RF respectively). This comparison allows to verify towhat ex-
tent the monitoring networks is able to catch the actual population ex-
posure estimated by PWE. At the same time, being the monitoring
stations mainly located in populated areas, their observed values can
be considered as descriptors of actual population exposure, to be com-
pared with its estimation (PWE). Results show that for O3, PM10 and
PM2.5, the RF estimated mean PWE (PWE_RF) concentrations are quite
close to mean observed concentrations, with some differences in the
values of inter quantile range (IQR). As for NO2, the mean observed
and the PWE_RF values are closer for continental cities, like Milan and
f RF model results by type of monitoring station (R-B Rural Background; S\\B Suburban
Suburban Traffic; U-T Urban Traffic). Grey points represent all data spread around the
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Fig. 4. Comparison of yearly (2015) averaged NO2 concentrations, for Turin (upper figure) and Rome (bottom figure), computed by FARM (left) and Random Forest models (right).
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Turin, than for Mediterranean cities (eg. Rome, Bari and Palermo). This
might be attributed to different factors such as local meteorology, loca-
tion of monitoring stations and model's ability to represent the actual
spatial patterns of pollutants concentrations. It can be noticed that
PWE_RF results are in general closer to observed values than RF esti-
mated ambient concentrations, particularly for NO2, the pollutant with
the higher spatial contrast. Thismeans that the use of populationmobil-
ity data, allows to better describe the actual population exposure repre-
sented by the concentrations measured at the monitoring stations.
Significant differences are detected between PWE results calculated
using RF data (PWF_RF) and those obtained with FARM one
(PWE_FARM), particularly for NO2 and PM. The use of RF model esti-
mated concentrations significantly increases the agreement with ob-
served values, out of Ozone results in which computed PWEs from RF
and FARM are quite closer. These results support the use of RF model
for population exposure studies.

To evaluate the effect of population mobility on PWE, we compared
the RF based PWE obtained using the dynamic population data with
those derived by static population data based on place of residence
(census 2011). Results are shown in SM (Fig. S8) as box plots. No
large differences are detected between the two approaches. However,
it should be considered that PWE is an urban spatially averaged variable
and consequently hotspots exposure might be smoothed during the
spatial averaging.

To evaluate the amount of population exposed to a specific pollution
concentration value, hourly cumulative population exposures were cal-
culated according to the method described in Section 2.6.

Fig. 6 shows the results for NO2 and PM10 by city. The presented pol-
lutants concentration values are not weighted for population as PWE,
but just ordered for increasing concentrations and related to cumulated
involved population. Overall, the geographic gradients already seen for
PWE are confirmed. The daily cycle of pollutants concentrations is
clearly detected in these figures (yellow bands followed by red ones in
Fig. 6). For most of the time a large part of population is estimated to
be exposed to concentrations lower than 50 and 40 μg/m3 for NO2 and
PM10 respectively (yellow bands in Fig. 6) regardless of the city. Some



Fig. 5. Boxplots of population weighted exposure calculated using RFmodel results and dynamic population data derived bymobile phone traffic, by pollutants and city (NO2 top left; O3

top right; PM2.5 bottom left; PM10 bottom right). Hourly data from March to April 2015. PWE expressed in terms of μg/m3.

Table 5
Statistics of observed pollutants concentrations, RFmodel estimated ambient concentrations, PWEs calculated using either FARM (PWE_FARM)or RF (PWE_RF) by city (μg/m3). Daily data
from March to April 2015.

NO2 O3 PM2.5 PM10

Mean Median IQR Mean Median IQR Mean Median IQR Mean Median IQR

Milan
Observed 43.93 41.40 29.50 50.58 48.90 28.35 26.40 24.30 18.50 36.32 33.60 24.23
RF 31.19 29.86 16.31 53.20 54.94 24.34 23.07 19.72 15.63 33.01 28.08 21.21
PWE_FARM 32.64 30.43 15.97 52.67 57.72 27.33 15.96 12.16 8.40 18.49 14.31 9.88
PWE_RF 42.40 41.29 14.24 50.41 54.32 20.91 24.79 21.94 13.30 34.99 30.15 17.12

Turin
Observed 39.62 36.70 29.98 50.20 48.80 22.70 23.72 18.00 20.00 32.42 27.00 26.00
RF 23.18 20.53 11.44 53.11 54.29 13.39 19.52 14.65 12.03 25.93 20.96 16.65
PWE_FARM 26.16 26.34 8.84 51.70 51.77 17.98 12.81 10.06 6.82 15.31 12.48 7.61
PWE_RF 38.25 38.02 10.11 49.31 50.26 13.98 22.07 17.52 10.58 30.65 24.70 13.05

Rome
Observed 40.17 39.30 28.10 54.65 54.00 23.50 16.71 15.50 10.00 27.34 27.00 14.00
RF 17.65 14.30 11.15 65.26 65.89 12.45 14.57 13.27 8.03 21.47 21.33 8.24
PWE_FARM 21.77 22.42 12.01 61.71 63.18 19.52 13.98 12.76 9.06 16.82 16.35 10.36
PWE_RF 31.53 31.93 9.49 56.98 59.26 13.64 16.75 16.24 7.41 25.95 26.97 7.13

Bari
Observed 26.12 22.10 14.55 72.77 72.80 24.80 17.29 16.70 10.80 25.74 23.20 12.33
RF 13.04 11.38 3.55 74.11 74.05 10.28 14.71 12.82 8.08 20.99 20.52 5.48
PWE_FARM 9.03 8.43 5.10 72.47 71.96 14.49 7.68 6.35 4.45 9.21 8.42 4.43
PWE_RF 18.33 17.93 3.78 73.05 75.76 13.31 15.70 13.98 8.68 22.23 21.38 5.65

Palermo
Observed 42.15 41.15 27.33 64.73 70.00 33.35 – – – 27.42 25.20 16.65
RF 12.13 10.86 2.98 73.41 73.37 8.70 11.94 11.11 3.06 18.67 18.52 4.08
PWE_FARM 14.44 13.68 9.14 71.51 71.52 11.71 9.22 8.88 5.80 11.98 11.26 4.42
PWE_RF 24.60 24.04 5.58 68.83 69.43 12.47 15.93 15.88 5.44 23.10 23.39 3.30
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pollution episodes are identified, particularly for PM10 and for the cities
of Turin, Milan and Rome (red hot spots bands in Fig. 6). During them,
the whole population seems to be affected by PM10 concentrations
higher than 80 μg/m3 (red bands spanning up to values lower than
20% of population). Fig. 6 also shows the range of NO2 and PM10 hourly
concentrations to which at least 50% of population is exposed. Differ-
ences among the cities are observed, with 50% of population of Milan
experiencing the highest concentrations (25–55 μg/m3 and 20–50 μg/
m3 for NO2 and PM10 respectively) and Bari the lowest ones
(10–20 μg/m3 and 15–25 μg/m3 for NO2 and PM10 respectively). NO2

peak values higher than 100 μg/m3 are also predicted for some cities.
Mean values of cumulative population exposed vs NO2 and PM10

concentrations are shown in SM (Fig. S9). The hourly cumulative popu-
lation exposed vs O3 and PM2.5 concentrations are also shown in SM
(Fig. S10). As for ozone, results indicate that about 75% of population
is exposed to concentrations up to 60 μg/m3. Peak values up to 100 μg/
m3 may sometimes affect the remaining part of population.
4. Discussion and conclusions

The accuracy of the estimates of atmospheric pollution concentra-
tions is relevant for the assessment of health risk, in particular in
urban areas where errors of prediction and incorrect classification can
occur for pollutants that are spatially uneven.

Differentmethodswere used, based on different approaches, such as
ambient measurements, regression analysis and deterministic numeri-
cal models, achieving different level of accuracy (Hoek, 2017; Hoek
et al., 2008; Cesaroni et al., 2012; Zhang et al., 2012; Kukkonen et al.,
2012, 2016; Gariazzo et al., 2007; Parvez and Wagstrom, 2019). Re-
cently, statistical machine learning methods were used to predict par-
ticulate matter at national or continental wide scales (Chen et al.,
2018a, 2018b; Stafoggia et al., 2019). Other authors (de Hoogh et al.,
2019) applied the same methods to predict NO2 at high resolution
across Switzerland using OMI satellite data. There are very few studies
(eg. Araki et al., 2018) dealing with machine learning methods to esti-
mate pollutant concentrations in urban areas with enough accuracy.
The availability of good quality predictors able to describe the relevant
processes occurring in such areas, and the number of enough monitor-
ing stations capable to provide information on the actual spatial hetero-
geneity of pollutants concentration, limited the use of these methods.

In the present study, we applied a random forest machine learning
method to predict daily urban concentrations of the main pollutants
(NO2, O3, PM10 and PM2.5) at high spatial resolution (200 m) in six Ital-
ian metropolitan areas, chosen for their different climate conditions.
The former machine learning applications used AOD/OMI satellite and
other spatial-temporal data to predict nation-wide PM andNO2 concen-
trations (Chen et al., 2018a, 2018b; Stafoggia et al., 2019; de Hoogh
et al., 2019).We extended for thefirst time the application to O3 and ap-
plied the method at urban scale using a novel approach in which rele-
vant urban scale phenomena (eg. emission, dispersion, transformation
and deposition)were simulated by a CTM (FARM) run at 1 km horizon-
tal resolution. FARM computed concentrations were used as a predictor
for the RF model. To consider sub-grid effects not considered by FARM
simulations (eg. road structure and street effects), other spatial predic-
tors (eg. population, daily traffic flows on two road classes, etc.) avail-
able at higher spatial resolution were considered. This combined
approach allowed to improve the spatial resolution (200 m) of pre-
dicted urban pollutants concentrations. In addition, the RF training pro-
cedure by involving all the six urban areas at the same time, increased
the number of the training data (observed values) with respect to a sin-
gle city approach. As stated by Harrison (2018), this improvement can-
not be achieved by simply increasing the CTM spatial resolution since
many relevant processes differ from rural to street-level scale (eg.
heat fluxes, turbulence and mixing effects, emission resolution, chemi-
cal and street processes).
Wewere able to capture 57–62%, 72–76%, 73–78% and 71–79% of the
overall variability in left-out monitors of NO2, PM10, PM2.5 and O3 re-
spectively without large differences among the three years. Improve-
ments in model performance were also observed with respect to
FARM results when used without combination with RF. Good perfor-
mance was achieved in predicting day-to-day variability as well as spa-
tial contrasts in annual averages (except for ozone), justifying the use of
predictions for the analysis of short-term and long-term health effects.
Small biases and underestimations of daily observations were also de-
tected in estimated concentrations, particularly for NO2 at urban-
traffic stations, addressing for further improvements at this spatial res-
olution, if better predictors will be identified and made available. An
analysis of model residuals by different type of monitoring stations
demonstrated that the model is accurate across a range of land-use
types, particularly for largely represented type of stations like urban-
traffic stations and urban/suburban background ones. These results
are comparable with LUR results achieved for the city of Rome in former
studies. Cesaroni et al. (2012) obtained a R2 of 0.61 and RMSE of 5.38
when urban NO2 exposure was estimated. Recently, Cattani et al.
(2017) achieved an R2 of 0.64 in a leave one out cross-validation, in es-
timating ultrafine particles in the same city. Weissert et al. (2018) de-
veloped a micro-scale LUR model to estimate NO2 in a portion of the
city of Auckland (NZ), obtaining a R2 of 0.66 and RMSE of 3.88 μg/m3.

According to a review on LUR model studies (Hoek et al., 2008), for
NO2 the percentage of explained variation from the prediction models
is typically about 60–70%, depending on the variability in themeasured
concentrations, quality of the predictor variables, the modelling ap-
proach and the complexity of the city. According to the same review,
the performance on variability of PM2.5 contrasts between 0.17 and
0.82 depending from the limited variability of measured PM2.5 concen-
trations in the small study areas. However, it should be considered that
LUR applications are part of dedicated studies, like the ESCAPE (Cesaroni
et al., 2014), in which proper time limited field campaigns are carried
out to collect data to be used for model reconstruction of pollutant con-
centrations. The present study achieved the same performance using
conventional monitoring station data used by the machine learning
model as target values. Multi-year studies can be performed providing
concentrations data for short- and long-term health effects studies,
overcoming the lack of temporal variability of LURs models.

Another advancement of this study is themulti-pollutants approach.
The availability of gaseous and aerosol pollutants concentrations pro-
vided by the CTM at urban scale (1 km), gave the possibility to use
them as predictors for pollutant specific random forest models properly
customized to reproduce observed concentrations. To our knowledge,
there are no other studies approaching a high-resolution multi-
pollutants exposure analysis at urban scale using a combined CTM/RF
approach. Ozone exposure at urban scale was never estimated using
LUR or RF models, although CTM study provided such data but at
lower spatial resolution (Gariazzo et al., 2007). In addition, the multi-
city approach allowed training the random forest models using more
representative data, getting the different peculiarities among monitor-
ing stations, as location, type (eg. rural, urban, suburban, and industrial)
and climate conditions. Finally, the multi-city method provided pollut-
ants maps that are used for comparison.

As far as the number and quality of spatial-temporal parameters
used in RF models are concerned, the FARM model results were the
most important predictors. This was expected as it embedded all rele-
vant processes involved in the determination of pollutants concentra-
tions. The FARM model was found to underestimate the observed
concentrations, particularly for PM2.5 and PM10. In fact, it is well
known that aerosol models are unable to reproduce correctly PM size
fractions due to the limited number of aerosol processes included in
the models, particularly the secondary process driven by organic com-
pounds (Kukkonen et al., 2012). RF model corrected this underestima-
tion. The daily traffic volumes data provided by Open Transport Map
were also one of the best predictors, particularly for spatially



Fig. 6.Hourly cumulative percentage of population exposed vsRFNO2 (upperfigure) andPM10 (bottomfigure) concentrations by city based ondynamic population data derived bymobile
phone traffic. Lower right boxplots refer to hourly concentrations to which at least 50% of population is exposed. Data from March to April 2015.
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inhomogeneous pollutants as NO2. Theywere effective in adding spatial
details to thepredictedmaps, particularly for NO2.When traffic volumes
data were verified with a direct authors' knowledge in selected roads,
they were found not highly accurate in estimating the actual values.
However, the relative differences in volumes among roads were
described quite well, addressing to their use as a proxy of traffic vol-
umes to add spatial contrast in the final maps. Other spatial parameters
were less important as predictors of pollutants concentrations. The re-
maining amount of variability not explained by the model addresses
for use of additional spatial parameters able to describe small-scale
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urban effects such as hotspots, busy intersection roads and canyon ef-
fects. Proxy of such effects are hard to be obtained for largemetropolitan
areas and their use remain challenging.

Cities located in the Po valleywere estimated to be highly exposed to
both PM and NO2. This is consistent with a large body of literature
(Pernigotti et al., 2012; Bigi and Ghermandi, 2014; Perrino et al.,
2014). Ozone was found to increase in cities located in the Mediterra-
nean area and this result was expected due to the higher photochemical
activity.

The availability of dynamic populationmobility data, derived bymo-
bile phone traffic, in five of six studied cities, allowed to obtain dynamic
population weighted exposure by coupling, in space and time, popula-
tion mobility with RF model estimated pollutants concentration. With
respect to the former study conducted for the city of Rome by
Gariazzo et al. (2016), the current study extends the analysis to other
important Italianmetropolitan areas having different geographical loca-
tion and climate, and improves the accuracy of exposure estimations by
using more accurate and detailed air quality data. Recent studies have
incorporated mobility of population for dynamic exposure assessment
(Gariazzo et al., 2016; Nyhan et al., 2016; Dewulf et al., 2016; Chen
et al., 2018a, 2018b; Yu et al., 2018; Picornell et al., 2019). Nevertheless,
the short-term availability of mobility data and the lack of information
on individual mobility patterns, limited their application to epidemio-
logical studies.

This study found that, although on average the population was ex-
posed to values of pollutants concentrations lower than limit values
(even though peoplewere exposed to values above theWHOguidelines
published in the year 2005), for some cities, short time-periods episodes
were identifiedwith very high concentrationswhere thewhole popula-
tion is involved. The comparison of PWEswith observed pollutants con-
centrations, results in the ability of the local monitoring networks to
represent the population exposure, particularly for urban diffuse pollut-
ants like PM2.5, PM10 andO3, but in a lesser extent for spatial inhomoge-
neous pollutants as NO2. With respect to RF estimated ambient
concentrations, the use of population mobility data in evaluating expo-
sure allows to better describe the actual population exposure repre-
sented by the concentrations measured at the monitoring stations.
Significant differences are detected between PWE results calculated
using RF (PWF_RF) and FARM data (PWE_FARM), outlining a better
agreement with observed NO2 and PM concentrations using the former.
This result can be ascribed to the better estimations of ambient concen-
trations obtained by RF approach. The hourly cumulative population ex-
posure results allow to assess the amount of population exposed to
specific concentration values. A large part of population was found to
be exposed to concentrations lower than 50 and 40 μg/m3 for NO2 and
PM10 respectively regardless of the city. In particular, the 50% of popula-
tion is exposed to NO2 concentrations between 12 and 38 μg/m3 and be-
tween 20 and 35 μg/m3 for PM10, as median value, depending on the
city. Pollution episodes were identified in which the whole population
is exposed to PM10 concentrations higher than 80 μg/m3. As population
data were provided in aggregate form, it was not possible to track indi-
vidualmobility and assess individual exposure. Availability of such data,
provided the protection of privacy with proper anonymization proce-
dures, would be very useful for population exposure assessment and
health effects studies.

In conclusion, the adopted approach combining CTMandMLmodels
improved CTM's estimations adding spatial details in thefinal air quality
maps. Machine learningmethods in combination with multiple param-
eters data, can be a valid tool for predicting level of air pollutants con-
centrations at fine spatial and temporal resolution. Further details on
population exposure were provided by coupling RF model results with
dynamic population data.

However, more research is needed to catch urban effects not still re-
solved, like hotspots and accumulation of pollutants in urban canyon.
New parameters and proxy data, able to describe such urban effects
should be identified and collected.
Finally, the air pollutants predictionsmade available from this study
will provide novel evidence on the short-term and long-term health ef-
fects in main Italian metropolitan areas.
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