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Abstract

The temperature profile of the coffee beans during the roasting phase determines the colour, aroma and flavour of the coffee. In
order to reproduce these desired characteristics, the control of the coffee beans temperature has a key role in the roasting process.
A proper model of the plant is required to design an intelligent control. Recently, several physical models that share the main
physical equations have been proposed, but they have physical parameters specific of each process. In such scenario, each plant
requires an ad hoc identification of the model parameters. This work proposes a model of the roasting chamber that can be used
on plants of different sizes by scaling only geometrical parameters directly measurable on the roasting plant. The proposed model
was identified on a 120 kg plant and then applied to a 360 kg one. The obtained results show in both cases similar accuracy (FIT =
75.49%, MPE=4.66%).
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1. Introduction

Coffee is one of the highest economic value commodity in the global market [8]. The roasting of the coffee beans
is the industrial process mainly responsible for forming the flavour and aroma of a cup of coffee [1]. This process is
suitable to be object of different research projects, so that the growing interest in it is not surprising: energy consump-
tion [10], roasting temperature control [17], taste prediction [14] and even smart design with connected devices [18]
are some examples of the current research applications. Several studies were conducted to model the behaviour of an
industrial roasting chamber since all these applications require a model for their design and testing. A solid physical
model of the whole roasting plant was provided in [13]. Some physical parameters of this model, like specific heats
or transfer coefficients, are closely related to the particular coffee bean quality (like Robusto or Arabica) and the par-
ticular size of the plant (e.g. 120 kg, 360 kg or 600 kg) used to identify the model. Further studies investigated with a
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greater detail the coffee bean reaction in the chamber providing a better description of the coffee beans parameters [6],
[2]. Nevertheless, the strong connection between the coffee beans quality, the size of the plant and the whole model
still stands. Such connections strongly limited the application of the model to different plants, requiring de facto a new
parameter identification phase each time. This is particularly relevant in food industry processes where data collection
requires the consumption of a considerable amount of resources (e.g. several kg of coffee). In order to avoid food
waste several strategies have been investigated, considering also advanced process control techniques [5].
This work proposes a scalable model that can be used on plants of different size. Starting from the model proposed in
[13] and exploiting some considerations from [11], a first group of parameters is defined as function of the chamber
geometry, while the others are identified through non linear identification. In this way the model identified with data
collected on one plant can be used on plants of different sizes simply scaling the first group of parameters, without
requiring a new identification phase. The methodology is validated identifying the model with data collected on a 120
kg plant and simulating the behaviour on a 360 kg one, obtaining satisfactory results.
The paper is structured as follows: Section 2 describes the industrial roasting process, while Section 3 is devoted to
describe the proposed model. Section 4 illustrates the experimental setup used to collect the data. The identification
procedure is described in Section 5 and Section 6 shows the results. Finally the conclusions are drawn in Section 7.

Nomenclature

A Arrhenius equation pre-factor
Agb gas to beans heat transfer area
Agm gas to metal heat transfer area
Abm metal to beans heat transfer area
cb specific heat capacity of coffee beans
cg specific heat capacity of drying air
cm specific heat capacity of the metal
Db bean diameter
Dch chamber diameter
Gg gas mass-flow rate
he gas to beans heat transfer coefficient
hgm gas to metal heat transfer coefficient
hbm metal to beans heat transfer coefficient
Ha activation energy
He reaction heat produced thus far
Het total reaction heat
Hflap flap height
k1, k2 Schwartzberg’s semi-empirical parameters
Kt bean temperature sensor time constant
Lch chamber length
mb bean mass
Mb green beans coffee batch mass
Mbd dry beans coffee batch mass
Mm metal mass
Pbm percentage of bean metal contact area
Qe external sources heat transfer rate
Qgb gas to beans heat transfer rate
Qgm gas to metal heat transfer rate
Qbm metal to beans heat transfer rate
Qr exothermic heat production
R gas constant
S flap flap step

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2021.01.362&domain=pdf
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Tb beans temperature
Tg gas temperature
Tgi gas inlet temperature
Tgo gas outlet temperature
X beans moisture content
λ latent heat of vaporization of beans moisture

2. Roasting process

The roasting of green coffee beans is a complex process that involves several chemical reactions fundamental to
determinate the coffee colour, flavour and aroma. In particular, these characteristics are determined by the temperature
profile of the coffee beans during the roasting.
The roasting process is composed by three major phases: drying, roasting and cooling. During these phases the coffee
bean is subjected to heat and mass transfers. The heat transfer occurs both by convection and conduction, and increases
the bean temperature with consequent physical and chemical changes, such as a mass transfer due to the evaporation
of water inside the bean and exothermic reactions.
Several roaster architectures are available on the market, this work considers a batch roaster: a plant that treats only
a fixed amount of coffee, called batch, throughout a single operating cycle (see Fig. 1). Each cycle is characterized
by an initial phase where no coffee is loaded in the machine and both the air stream and the drum walls are heated
up to the desired temperature. The process starts with a batch of green coffee beans at the environmental temperature
loaded to the roaster drum through a conical funnel (7 in Fig. 1). Then, the drying phase starts when the air flow (9 in
Fig. 1) heated by the furnace (1 in Fig. 1) is aspirated in the drum chamber (2 in Fig. 1) via a fan. The drum rotates
at a uniform speed to ensure a uniform effect and to avoid the beans to adhere to the drum walls. The chamber is
equipped with spiral blades in the internal surface to mix the beans in the axial direction. During this phase, the hot
air flow dries the beans, then the beans are heated up until exothermic reactions near the end of roasting cause a rapid
increase in the bean temperature rise (roasting phase). The gases leave the chamber through a cyclone (3 in Fig. 1)
that removes the chaff released by the beans during the roasting process. These gases can be either collected in a stack
after be passed in a afterburner (6 in Fig. 1) to be discharged (5 in Fig. 1) or in part sent back to the roaster furnace
(4 in Fig. 1). Once the end-of-roast temperature is reached, the gas supply is turned off and the roasting process is
stopped by spraying cool water on the beans to evaporatively cool them (8 in Fig. 1). The cooling phase proceeds in
the cooling tank, where the beans are transferred to be stirred and further cooled through cold air input. Finally, the
beans are unloaded and the system is prepared for the next roasting cycle. It is worth to be noted that the machine
warming up phase particularly influences the roasting of the first batch [2].

Tgi

Tgo

Z - Direction of gas flow

Fig. 1: Rotating-drum roaster with solid wall: 1 furnace, 2 roaster drum, 3 cyclone, 4 gas recycle line, 5 gas discharge stack, 6 catalytic afterburner,
7 green bean bin, 8 cooler, 9 fresh air. Figure from [13].
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3. Model

In recent years, several models have been proposed to investigate the roasting process of the green coffee beans.
In the following, the one proposed by [13] is considered and extended using considerations published in [11]. This
work is focused on the adaptation of this model for a batch roaster and defines some of the model parameters on the
base of the chamber geometry in order to create a new scalable model. Starting from the machine where the data were
collected on, this model will be able to describe the behaviour of new different unseen machines.

3.1. Hot gas heat transfer

During the roasting process hot gas is introduced in the roasting chamber. Considering a uniform flow in a single
direction and a convective heat transfer between gas and beans, a temperature balance in the Z-direction (see Fig. 1)
can be expressed as:

−Ggcg
dTg

dZ
= he

dAgb

dZ
(Tg − Tb) (1)

where Gg is the gas mass-flow rate, cg is the specific heat capacity of drying air, he is the gas to beans heat transfer
coefficient, Agb is the gas to beans heat transfer area, Tg and Tb are known gas and beans temperatures.
In particular, cg is defined in [16] considering the thermophysical properties of drying air obtained from [7] as:

cg =

6∑
i=0

αi(Tgi + 273.15)i (2)

where α0 = 1.0839 · 103, α1 = −7.2075 · 10−1, α2 = +2.1034 · 10−3, α3 = −2.3267 · 10−6, α4 = 1.3621 · 10−9,
α5 = −4.1550 · 10−13, α6 = 5.3091 · 10−17. In [13], he is considered a fixed parameter, on the contrary in this work it
depends on the moisture quantity X, as defined in [11]:

he = 0.49 − 0.443exp−0.206X (3)

Integrating Equation (1) between the gas inlet and outlet temperatures (Tgi and Tgo) and rearranging, Equation (4) is
obtained:

Tgi − Tgo = (Tgi − Tb)
(
1 − exp−

heAgb
Ggcg
)

(4)

where the effects due to the heat transfer from gas to the metal part of the chamber are not considered. So an average
value of the metal temperature, Tm, is introduced and Equation (4) is refined taking this heat transfer into account as
follows:

Tgi − Tgo =
(
Tgi −

Tb + FTm

1 + F

)(
1 − exp−

heAgb
Ggcg
)

(5)

The first contribution of this work is the definition of the new parameter F, that is the ratio between the gas-metal and
gas-beans thermal resistances:

F =
hgmAgm

heAgb
(6)

It depends on the gas to metal and gas to beans heat transfer coefficients, hgm and he, and the respective contact areas,
Agm and Agb. In [13] the term F is negligible since for the mentioned roasters (rotating-bowl, scoop-wheel, spouted-
bed, swirling bed roasters) this term is small. On the contrary in this application the term F is significant and so it has
to be considered. Moreover, it is one of the parameters related to the chamber geometry so it is an important term in
order to make the model scalable. Of course it requires the knowledge of both chamber and coffee beans dimensions
in order to reach our purpose.
The contact area between gas and metal, Agm, is then defined as the sum of the inner surface of the chamber and the
total surface of the flaps inside it:

Agm = πDch(Lch + (HflapLch)/S flap + Dch/2) (7)

where Dch and Lch are the diameter and the length of the chamber respectively, S flap and Hflap are the step and the
height of the flap.
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to be considered. Moreover, it is one of the parameters related to the chamber geometry so it is an important term in
order to make the model scalable. Of course it requires the knowledge of both chamber and coffee beans dimensions
in order to reach our purpose.
The contact area between gas and metal, Agm, is then defined as the sum of the inner surface of the chamber and the
total surface of the flaps inside it:

Agm = πDch(Lch + (HflapLch)/S flap + Dch/2) (7)

where Dch and Lch are the diameter and the length of the chamber respectively, S flap and Hflap are the step and the
height of the flap.
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The gas to beans heat transfer area, Agb, depends on the dimensions of the beans, assumed having an average dimension
determined experimentally in [16]. The total surface area of the beans is assumed to be Ab = (Mb/mb)πD2

b, where Mb

is the total weight of the beans loaded in the chamber, mb is the weight of a single bean and Db is the bean diameter.
Since the model considers a rotating drum, it is necessary to define new parameters to determine the contact area
between beans-metal and beans-gas. At each time instant a portion of the beans is in contact with the metal on the
bottom of the drum, while the remaining part is in contact with the gas, pushed by the rotatory movement of the drum.
So, calling Pbm the percentage of contact area of a single bean to the metal, the contact area between metal and beans
Abm is defined as Abm = AbPbm and consequently the contact area between gas and beans as Agb = Ab(1 − Pbm).

3.2. Bean temperature

According to [13] the bean temperature variation is given by the following energy balance:

Ṫb =
Qgb − Qgm + Qbm + Mbd(Qr + λẊ)

Mbd(1 + X)cb
(8)

Briefly, the heat is mainly transferred from the gas to the beans by convection (Qgb), while a small part is transferred
from the gas to the metal of the chamber (Qgm), which in turn transfers heat to the beans by conduction (Qbm). The
final term of (8) represents the heat produced due to exothermic reactions inside the beans: part of energy is lost,
representing the latent heat of vaporisation of the moisture inside the bean.
In the following, each element in Equation (8) is further described. The heat transfer rate between gas and beans is
defined as:

Qgb = Ggcg(Tgi − Tgo) (9)

the heat transfer rate between gas and metal is:

Qgm =
F(heAgb(Tb − Tm) + Qgb)

1 + F
(10)

and the heat transfer rate between metal and beans is:

Qbm = hbmAbm(Tm − Tb) (11)

where hbm is the metal to beans heat transfer coefficient. Moreover, Mbd is the mass of dry beans in the chamber, Qr is
the exothermic heat production, λ is the latent heat of vaporization of beans moisture and cb = (cs + cwX)/(1 + X) is
the specific heat capacity of coffee beans, as expressed in [13], where cs = 1.099+ 0.007Tb is the partial heat capacity
of bean solids, cw is the partial heat capacity of water and X is the beans moisture content.

3.3. Metal temperature

The metal temperature variation is defined as [13]:

Ṫm =
Qgm − Qbm + Qe

Mmcm
(12)

Basically, Tm increases thanks to the heat transfer from the gas while it decreases transferring heat to the beans. The
heat transfer from sources external to the chamber, Qe, in this case is negligible since the model assumes that there is
no leak in the roasting chamber. Mm and cm are the mass and specific heat capacity of the metal, respectively.

3.4. Moisture loss

A semi-empirical relation between X and Tb is defined to model water evaporation during the roasting process,
through an Arrhenius-type equation [13], where k1 and k2 are semi-empirical parameters:

Ẋ = − k1

D2
b

exp−
k2

Tb+273.15 (13)
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3.5. Exothermic roasting reactions

After the evaporation, heat is generated by exothermic reactions as reported in [12]. This effect is modelled as
follows [13]:

Qr = A
Het − He

Het
exp−

Ha
R(Tb+273.15) (14)

where Het is the total reaction heat, He is the reaction heat produced thus far, Ha is the reaction activation energy
and R is the gas costant. Reactants are consumed during the process and the concentration of the remaining ones is
proportional to (Het − He)/Het, called H̄. The rate of the reactions is proportional to H̄ and to the coefficient of the
Arrhenius equation, called A.

3.6. Model equations

Starting from these considerations, the model dynamic is represented by four states, two inputs and one output, as
listed below:

• x1 = Tb: temperature of the coffee bean inside the roasting chamber in Celsius;
• x2 = Tm: temperature of the metal chamber;
• x3 = X: moisture content of the coffee bean;
• x4 = He: amount of heat produced per kilogram of dry coffee thus far;
• u1 = Gg: mass flow rate of the gas at the inlet of the roasting chamber;
• u2 = Tgi: temperature of the gas at the inlet of the roasting chamber;
• y = Tgo: temperature of the gas at the outlet of the roasting chamber.

The differential equations representing the model are:

ẋ1 =
Qgb − Qgm + Qbm + Mbd(Qr + λẋ3)

Mbd(1 + x3)cb
(15a)

ẋ2 =
Qgm − Qbm + Qe

Mmcm
(15b)

ẋ3 =
k1

D2
b

exp−
k2

x1+273.15 (15c)

ẋ4 = A
Het − x4

Het
exp−

Ha
R(x1+273.15) (15d)

y =
(
u2 −

x1 + Fx2

1 + F

)(
1 − exp−

heAgb (1+F)
u1cpg

)
(15e)

It is important to notice that Mbd has been defined is this work by Mb/(1+ x3(0)), where Mb is the weight of the green
beans coffee batch, so that also this parameter contributes to the scalability of the model.

4. Experimental setup

The standard equipment of an industrial roasting plant can provide only one of the signals described by the proposed
model: the inlet gas temperature Tgi ≡ u2. In order to collect the data required for the model identification, the inlet
gas mass flow rate Gg ≡ u1 has to be measured.
The bean temperature is the main measure of the whole process, so every plant is equipped with a temperature sensor
that tries to measure the bean temperature. Of course this should be modelled to consider delays due to the sensor. So
a well known sensor model proposed in [13] is included in order to allow an input-output identification.
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where Het is the total reaction heat, He is the reaction heat produced thus far, Ha is the reaction activation energy
and R is the gas costant. Reactants are consumed during the process and the concentration of the remaining ones is
proportional to (Het − He)/Het, called H̄. The rate of the reactions is proportional to H̄ and to the coefficient of the
Arrhenius equation, called A.
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Starting from these considerations, the model dynamic is represented by four states, two inputs and one output, as
listed below:
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Mbd(1 + x3)cb
(15a)
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It is important to notice that Mbd has been defined is this work by Mb/(1+ x3(0)), where Mb is the weight of the green
beans coffee batch, so that also this parameter contributes to the scalability of the model.

4. Experimental setup

The standard equipment of an industrial roasting plant can provide only one of the signals described by the proposed
model: the inlet gas temperature Tgi ≡ u2. In order to collect the data required for the model identification, the inlet
gas mass flow rate Gg ≡ u1 has to be measured.
The bean temperature is the main measure of the whole process, so every plant is equipped with a temperature sensor
that tries to measure the bean temperature. Of course this should be modelled to consider delays due to the sensor. So
a well known sensor model proposed in [13] is included in order to allow an input-output identification.
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4.1. Flow sensor

The measure of Gg was originally not available so that a Pitot tube and a thermocouple were placed in the centre
of the inlet pipe of the roasting chamber to obatin the needed measure. Further detail of the placement of the sensor
can be found in [4] and [19]. As described in [15], the required measure is given by:

Gg = S

√
2ρ0∆p

273.15
T + 273.15

(16)

where S is the section of the pipe, ρ0 is the air density (assumed 1.275 kg/m3), ∆p is the pressure difference measured
by the Pitot tube and T is the thermocouple measurement expressed in Celsius degrees.

4.2. Measured bean temperature

The bean temperature is usually measured through thermocouples. Since coffee beans are not good conductors,
there is a difference between the effective bean temperature Tb and the measured one Ta. In [13] this difference is
modelled as:

Ṫa = Kt(Tb − Ta) (17)

5. Parameters estimation

Most of the model parameters described in Section 3 are specific of the roasting plant and directly measurable on
it or can be obtained from well known physical expressions. On the contrary, three parameters, hgm, hbm and Pbm, are
not measurable and have to be identified from the data. In this work, an automatic identification procedure to define
the optimal values of these parameters, h∗gm, h∗bm and P∗bm, is proposed.

5.1. Data collection

Through the setup described in Section 4, two datasets were collected from two plants of different sizes. The first
dataset, dataset-I, was collected on a 120 kg roaster and composed of N = 5 batches; the second one, dataset-V, was
collected on a 360 kg roaster and composed of 2 batches. Dataset-I was selected as identification set and dataset-V as
validation set. In particular, each dataset is composed by the inlet gas temperature (u1), inlet gas mass flow rate (u2)
and the measured bean temperature (Ta).

The extended model (15a)-(15d), (17) is used to generate the bean temperature prediction T̂a in all the batches
of the two datasets. In particular, all the simulations share the same initialization: x1(0) = 30 since the beans are at
environmental temperature, x2(0) = 121 as defined in [13], x3(0) = 0.1 by hypothesis, x4(0) = 0 since at the beginning
there is no evaporation heat and T̂a(0) = Ta(0).

5.2. Optimization problem

The goal of the optimization is to find the optimal parameters to match as much as possible the real measure of the
coffee bean temperature with the simulated one. In order to do this, the cost function is defined as the Sum of Square
Residuals (S S R) between the simulated data vector (Ŷ = T̂a) and the real one (Y = Ta). S S R is a function of the
vector θ = [hgm hbm Pbm]′ used to generate the predictions:

S S Rj(θ) =
n j∑

i=1

(Ŷ j
i (θ) − Y j

i )2 (18)

where Ŷ j
i (θ) and Y j

i are the ith samples of the predicted data obtained with a specific θ and of the real measurements
respectively, and n j is the length of the j-th batch of the dataset-I.
The optimization problem is then defined as:

θ∗ = arg minθ
∑N

j=1 S S Rj(θ)
subject to θLB ≤ θ ≤ θUB

(19)
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Table 1: Parameters identified on Dataset-I with the boundary conditions used in the optimization.

Parameter Unit θLB θUB Optimized value

hgm [W/m2K] 0.01 0.35 0.0100
hbm [W/m2K] 0.01 0.35 0.0254
Pbm [%] 0.5 0.8 0.5793

Table 2: Performance indexes.

MAE MPE FIT ρ

∑n
i=1 |Yi−Ŷi |

n
100
n
∑n

i=1

( Yi−Ŷi
Yi

)
100·
(
1 − ‖Ŷ−Y‖

‖Y−Y‖

) ∑n
i=1(Yi−Y)(Ŷi−Ŷ)

‖Yi−Y‖·‖Ŷi−Ŷ‖

Table 3: Performance obtained during training on Dataset-I (120 kg) used
to calculate the model parameters.

Batch n SSR [°C2] MAE [°C] MPE [%] FIT [%] ρ

1 26 53.481 4.623 3.722 85.826 0.991
2 25 60.618 5.318 4.422 81.337 0.986
3 26 70.059 8.049 5.846 77.007 0.987
4 26 89.223 10.805 7.661 69.183 0.982
5 33 98.574 8.326 6.979 70.953 0.990

Average 74.391 7.424 5.726 76.861 0.987

Table 4: Performance obtained during validation on Dataset-V (360 kg)
used to validate the scalability property of the model.

Batch n SSR [°C2] MAE [°C] MPE [%] FIT [%] ρ

1 28 74.967 8.675 5.416 70.250 0.990
2 28 57.631 5.818 3.910 80.727 0.991

Average 66.299 7.246 4.663 75.489 0.991

with θ∗, θ ∈ R1×3, where N is the number of datasets used in identification, θLB, θUB ∈ R1×3 are the boundary conditions
(see Table 1) defined by practical experience interviewing company experts.
During the optimization, the SSR is minimized through an optimization algorithm solved in MATLAB using the
GlobalSearch function initialized with θ0 = [0.01 0.01 0.5]′.

6. Results

The optimization has been run on dataset-I and validated on dataset-V. The optimized parameters are reported in
Table 1 along their boundaries.

6.1. Model validation

The validation is performed simulating the model and comparing the obtained results with the real data of
dataset-V. Then, the quality of the model is evaluated using the performance indexes in Table 2 [9], where Y are the
real data, Ŷ the predicted ones of length n and Y , Ŷ are their respective mean values. The index calculation is made
on two batches and the results are shown in Tables 3 and 4.

6.2. Discussion

The main goal of this work is to verify whether the proposed model, identified on data collected from a 120 kg
plant, can be used to describe the temperature profile acquired on a different plant with a good level of approximation.
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real data, Ŷ the predicted ones of length n and Y , Ŷ are their respective mean values. The index calculation is made
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Fig. 2: Temperature profiles a) dataset-I batch 4, b) dataset-I batch
1, c) dataset-V batch 1, d) dataset-V batch 2. The simulated values
Ysim (green line) are compared with the real ones Y (pink dashed
line). For both the datasets the worst (left) and the best (right) cases
are reported.

Fig. 3: Absolute error distribution over identification and valida-
tion datasets.

Table 5: Parameters of the model. On the left, fixed parameters depending on the process. On the right, scalable parameters depending on the
machine geometry.

Fixed Parameter Value Unit

A 116200 [kJ/kg]
cm 0.418 [kJ/(kg °C)]
cw 5 [kJ/(kg °C)]
Db 7.65 · 10−3 [m]
Ha/R 5500 [K]
Het 232 [kJ/kg]
k1 4.32 · 10−9

k2 9889
Kt 0.01 [1/s]
mb 1.5 · 10−4 [kg]
λ 2790 [kJ/kg]

Scalable Parameter Value Unit

Mb 120 360 [kg]
Dch 1.24 1.90 [m]
Hflap 0.3 0.3 [m]
Lch 1.335 2.04 [m]
Mm 2000 7000 [kg]
S tpflap 0.1 0.1 [m]

As reported in Table 3, the model obtained good results in term of FIT (75.49%) and MPE (4.66%). Comparing the
validation results with the identification ones, reported in Table 4, the two sets showed similar performances. In Fig.
2 the worst (left) and the best (right) case obtained in identification (top) and validation (bottom) are reported. To
further investigate the portability of the proposed model, the absolute prediction error (ε) observed in the two datasets
can be considered. Fig. 3 reports its distribution along the batches in hand. Even if the variability of the identification
set seems bigger (as expected taking in hand the different number of batches) the average values look definitely close.
A possible way to address this empirical consideration is to compare the overall error distribution occurred over the
dataset-V (εV ) with the one over dataset-I (εI). The first sample moments are really close (εI = 7.4 and εV = 7.2)
while the second ones show some distance (s2(εI) = 31 , s2(εV ) = 17)) that can be likely due to the different number
of batches.
Although the limited number of batches used in validation, it can be reasonably assumed that the proposed model,
identified on the 120 kg plant, produced satisfying results once scaled on a 360 kg plant via the parameters reported
in Table 5. It is important to note that in this kind of application the data collection is not a trivial aspect due to the
huge dimension of the plant that requires not negligible time and resources (360 kg of coffee).
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7. Conclusion

The model of a roasting chamber proposed in this work proves to be usable on plants of different size by scaling
only geometrical parameters directly measurable on the roasting plant. The proposed model was obtained merging two
detailed models into a well-known physical framework and defining new parameters in order to correlate the model
to geometrical characteristics of the plant, making it scalable. The model parameters were identified from a 5-batches
dataset collected on a 120 kg plant with reasonable performance. The portability, that represents the main result of
this work, was addressed by predicting the behaviour of a different size plant. In particular, the scaled model is able
to predict a 2-batches dataset collected on a 360 kg plant with a good performance (FIT = 75.49%, MPE = 4.66%).
Future developments currently under study include the modelling of the other components of the plant that influence
the chamber process. Once the whole plant is modelled in detail, new intelligent control approaches (e.g. hybrid con-
trol) could be explored in order to optimize the roasting process both in terms of efficiency (ecological and productive),
predictive maintenance and analytic. Final goal is to build a simulator in order to synthesize and test new complex
control approaches [3].
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Fig. 2: Temperature profiles a) dataset-I batch 4, b) dataset-I batch
1, c) dataset-V batch 1, d) dataset-V batch 2. The simulated values
Ysim (green line) are compared with the real ones Y (pink dashed
line). For both the datasets the worst (left) and the best (right) cases
are reported.

Fig. 3: Absolute error distribution over identification and valida-
tion datasets.

Table 5: Parameters of the model. On the left, fixed parameters depending on the process. On the right, scalable parameters depending on the
machine geometry.

Fixed Parameter Value Unit

A 116200 [kJ/kg]
cm 0.418 [kJ/(kg °C)]
cw 5 [kJ/(kg °C)]
Db 7.65 · 10−3 [m]
Ha/R 5500 [K]
Het 232 [kJ/kg]
k1 4.32 · 10−9

k2 9889
Kt 0.01 [1/s]
mb 1.5 · 10−4 [kg]
λ 2790 [kJ/kg]

Scalable Parameter Value Unit

Mb 120 360 [kg]
Dch 1.24 1.90 [m]
Hflap 0.3 0.3 [m]
Lch 1.335 2.04 [m]
Mm 2000 7000 [kg]
S tpflap 0.1 0.1 [m]

As reported in Table 3, the model obtained good results in term of FIT (75.49%) and MPE (4.66%). Comparing the
validation results with the identification ones, reported in Table 4, the two sets showed similar performances. In Fig.
2 the worst (left) and the best (right) case obtained in identification (top) and validation (bottom) are reported. To
further investigate the portability of the proposed model, the absolute prediction error (ε) observed in the two datasets
can be considered. Fig. 3 reports its distribution along the batches in hand. Even if the variability of the identification
set seems bigger (as expected taking in hand the different number of batches) the average values look definitely close.
A possible way to address this empirical consideration is to compare the overall error distribution occurred over the
dataset-V (εV ) with the one over dataset-I (εI). The first sample moments are really close (εI = 7.4 and εV = 7.2)
while the second ones show some distance (s2(εI) = 31 , s2(εV ) = 17)) that can be likely due to the different number
of batches.
Although the limited number of batches used in validation, it can be reasonably assumed that the proposed model,
identified on the 120 kg plant, produced satisfying results once scaled on a 360 kg plant via the parameters reported
in Table 5. It is important to note that in this kind of application the data collection is not a trivial aspect due to the
huge dimension of the plant that requires not negligible time and resources (360 kg of coffee).
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7. Conclusion

The model of a roasting chamber proposed in this work proves to be usable on plants of different size by scaling
only geometrical parameters directly measurable on the roasting plant. The proposed model was obtained merging two
detailed models into a well-known physical framework and defining new parameters in order to correlate the model
to geometrical characteristics of the plant, making it scalable. The model parameters were identified from a 5-batches
dataset collected on a 120 kg plant with reasonable performance. The portability, that represents the main result of
this work, was addressed by predicting the behaviour of a different size plant. In particular, the scaled model is able
to predict a 2-batches dataset collected on a 360 kg plant with a good performance (FIT = 75.49%, MPE = 4.66%).
Future developments currently under study include the modelling of the other components of the plant that influence
the chamber process. Once the whole plant is modelled in detail, new intelligent control approaches (e.g. hybrid con-
trol) could be explored in order to optimize the roasting process both in terms of efficiency (ecological and productive),
predictive maintenance and analytic. Final goal is to build a simulator in order to synthesize and test new complex
control approaches [3].
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