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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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1. Introduction

A robotic dual-arm setup is a workcell layout more and more
used in industrial tasks. Specifically, in many tasks, one robot,
hereafter Robot 1, performs the task on the workpiece (e.g.
welding, machining, painting, etc.) while the second robot,
hereafter Robot 2, is holding the workpiece in a static position.
In such a scenario, the identification of the Robot-2 configura-
tion in term of joint positions is fundamental to achieve a good
final result. Indeed, the robot performance largely changes over
the workspace, making important where to execute the task
within the workspace.

For a single-arm arm setup, this problem is generally tackled
by the maximization of dexterity along the path [3–6]. How-
ever, such indexes do not take into account mechanical task-
dependent problems such as backlashes or transmissions elas-
ticity that cause poor robot accuracy even after static calibra-
tion. To overcome such limitations, many works [1,2,8,9] pro-
pose objective functions tailored on the specific robotic task and
robotic setup. The adopted optimization methods are many and
different: non-linear programming techniques [1], genetic al-
gorithms [7], cycle time minimization methods [8,9], as well as
joint torques/energy minimization [2,7].

In comparison to one-arm application, cooperative robots in-
troduce some issues: (i) high number of degrees of freedom
(DOFs) with many internal constraints; (ii) once the Carte-
sian reference frame of the task is determined (i.e., the pose
of Robot-2 when holding the part), the transformation between
task frame and Robot 1 joint positions is not unique, e.g. for

every task point a set of joint angles is possible (i.e. robot
configurations) since the inverse kinematics is not a bijective
function. Even infinite solutions may be possible if the task is
lazy-constrained (e.g., the tool can rotate around its own axis).
In literature, three different approaches have been presented:

i the two robots are considered as a unique set of variables,
and non-linear optimization methodologies are run over
the complete space of solutions. In [8], the optimization is
performed by a gradient method, that, however, may lead
to the identification of local minima, without the possibil-
ity to span all the alternative robot configurations.

ii velocity constraints are relaxed [1], i.e., the robot is sup-
posed to be able to change configuration between two
consecutive nodes. Pamanes et al. [1] proposes a non-
linear programming technique requiring at the beginning
a candidate solution that satisfies all the constraints. The
following limitations exist: (i) the approach is not full-
automatic and (ii) it is not suitable for dual arm applica-
tions where the problem is computationally complex.

iii one of the Robot-1 configurations is forced [2,7,9], mak-
ing bijective the inverse kinematics function. Specifically,
Santos et al. [2] proposes a tunneling method for searching
the global minimum, but since the algorithm numerically
solves a highly non linear equation many times, it is not
suitable for all those application in which the computa-
tional time is as relevant. In [7], instead, the optimization
is performed by two consecutive genetic algorithms, mak-
ing complex the balancing between exploration and ex-
ploitation. Karamani et al. [9] proposes a response surface
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method but, since the objective function and the output are
interpolated, the optimal solution might be very far from
the global minimum because of the inaccuracy introduced
by interpolation model adopted.

In order to overcome the aforementioned limitations, this work
proposes to split the problem in two sub-problems, and to run
iteratively two nested optimizers: first the problem of the object
positioning is solved (e.g., definition of the Robot-2 holding po-
sition), then, the Robot-1 configurations are optimized. Finally,
an iteration over the two steps is computed. Such method al-
lows a decoupling of the problem in two easier sub-problems,
and the adoption of different optimization methodologies for
each of the two steps. Among the plenty of optimization al-
gorithms, a Whale Optimization Algorithm (WOA) and an Ant
Colony Optimization algorithm (ACO) have been selected for
the first and second optimization steps respectively. Specifi-
cally, the use meta-heuristic algorithms was decided since these
algorithms typically perform well with a large set of mathemat-
ical problems and have a good balance between solution accu-
racy and calculation time. On the one hand, Mirjalili et al. [10]
prove that WOA is among the best-performing meta-heuristic
algorithms on a large set of mathematical problems. On the
other hand, the ACO is extremely efficient when a combinatory
problem has to be solved [12].

The paper is organized as follow: in Section 2, an iterative
two-step optimization methodology to optimize the motion-
coordination of two robots is described; in Section 3, the anal-
ysis of the method performance is shown; finally, in Section 4
conclusions and future developments are pointed out.

2. Whale and Ant Colony Optimization

2.1. Overall strategy

The problem is solved by two nested optimizers: first, a
Whale Optimization Algorithm (WOA) optimizes the starting
node pose, then, an Ant Colony Optimization algorithm (ACO)
finds the best robot configurations at each WOA step.

The input data required by the WOA are the robotic cell ge-
ometry, the kinematic model of the robots, and the task de-
scription (path and execution time), while the output is the
Robot 1 joint position corresponding to the task starting po-
sition. Specifically, the WOA is a meta-heuristic swarm opti-
mization where each agent, called “whale”, evaluates the ob-
jective function from the input data and the candidate solution,
i.e., task starting position.
Given the Robot-1 joint position of the starting node, the task
can be modeled as a set of Cartesian reference frames, here-
after nodes, that the Robot-1 should be follow during the task
execution. Furthermore, once the starting point of the task is
computed, also the holding point pose for Robot 2 is conse-
quently imposed. Once all the nodes and the Robot-2 pose are
determined, it is possible to evaluate the constraints:

1. to check the reachability of each node by Robot 1 with at
least one valid configuration, i.e., at least one joint solution
of the inverse kinematic problem exists;

2. to check the reachability of the task holding point by
Robot 2 with at least one valid configuration, i.e., at least
one joint solution of the inverse kinematic problem exists;

3. to check the existence of at least one continuous path in

Algorithm 1 WACO
1: Load Task and robotic cell kinematics
2: function WOA(Kinematics)
3: while iter ≤WOA max iterations do
4: for (each whale) do
5: Calculate the task starting frame as in (6)
6: Calculate all task frames and holding pose by (7) (8)
7: Verify reachability of the task by Robot 2 (10)
8: Verify reachability of the task by Robot 1 (9)
9: function ACO(Joint points)

10: Calculate optimal Robot 1 configurations
11: end function return Optimal Robot 1 configurations
12: Interpolate joint angles with continuous spline
13: Verify instantaneous joint speed limits (13)
14: Calculate objective function the task with (4)
15: end for
16: iter = iter + 1
17: end while
18: end function return Optimal task position and robot joints

the joint space that grants the dynamics (velocity and ac-
celerations) constraints.

Since each node may have multiple (even infinite) equivalent
joint configurations, the last step consists in finding the shortest
path over an oriented graph using ACO.

Once the optimal path is found, a scalar cost function is cal-
culated over the path. The implemented cost function is a tuple
of four indexes: joint speed, joint acceleration, distance from
joint limits and number of time the speed joint reaches zero,
and it will be described in the next paragraph.

The overall methodology has been called Whale and Ant
Colony Optimization (WACO) and its own pseudo code is in
the table Algorithm 1. The WACO is intended to be computa-
tionally efficient to reach an acceptable trade-off between the re-
quired computation time and the solution accuracy. Therefore,
it is worth to note that the number of the nodes along the path
has to be kept limited. Indeed, a large number of the nodes may
reduce dramatically the performance of the ACO algorithm.
However, this limitation is not critical since the problem of the
minimization of the length of the joint-trajectory is locally lin-
earizable. Therefore, a low discretization of the path (a node
each some centimeters) does not introduce a large error in the
optimal path identification. Finally, to have a more precise eval-
uation of the cost function, the optimal path computed by ACO
can be oversampled through a simple fitting of the approximate
trajectory using the splines.

2.2. Problem Formalization

Referring to Fig 1, denote the following variables:
Ta

b Transformation from frame {b} to {a}.
qRi ∈ Rdo fi vector of joint angles of Robot i-th
{Ri}, {tooli} Base and Tool Frame of Robot i-th
{h} Object Holding Frame, i.e., the pose of the

end-effector of Robot-2, {h} ≡ {tool2}
{tk} Work Object Frame of the k-th node of the

trajectory, i.e., the pose the end-effector of
Robot-1 should match, {tk} ≡ {tool1}.{

Ttk
R1

}
k=0,...,Np

Np ordered nodes that Robot 1 have go trough

Furthermore, denote Ttooli
Ri

= FKRi (qRi ) and QRi =

IKRi (T
Ri
tooli

) as the forward and inverse kinematics respectively.
Specifically, QRi =

{
qR1,s : s = 1, . . . ,Nsol

}
is the set of all the

possible Nsol ∈ N+ solutions of the inverse kinematics. There-
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by interpolation model adopted.

In order to overcome the aforementioned limitations, this work
proposes to split the problem in two sub-problems, and to run
iteratively two nested optimizers: first the problem of the object
positioning is solved (e.g., definition of the Robot-2 holding po-
sition), then, the Robot-1 configurations are optimized. Finally,
an iteration over the two steps is computed. Such method al-
lows a decoupling of the problem in two easier sub-problems,
and the adoption of different optimization methodologies for
each of the two steps. Among the plenty of optimization al-
gorithms, a Whale Optimization Algorithm (WOA) and an Ant
Colony Optimization algorithm (ACO) have been selected for
the first and second optimization steps respectively. Specifi-
cally, the use meta-heuristic algorithms was decided since these
algorithms typically perform well with a large set of mathemat-
ical problems and have a good balance between solution accu-
racy and calculation time. On the one hand, Mirjalili et al. [10]
prove that WOA is among the best-performing meta-heuristic
algorithms on a large set of mathematical problems. On the
other hand, the ACO is extremely efficient when a combinatory
problem has to be solved [12].

The paper is organized as follow: in Section 2, an iterative
two-step optimization methodology to optimize the motion-
coordination of two robots is described; in Section 3, the anal-
ysis of the method performance is shown; finally, in Section 4
conclusions and future developments are pointed out.

2. Whale and Ant Colony Optimization

2.1. Overall strategy

The problem is solved by two nested optimizers: first, a
Whale Optimization Algorithm (WOA) optimizes the starting
node pose, then, an Ant Colony Optimization algorithm (ACO)
finds the best robot configurations at each WOA step.

The input data required by the WOA are the robotic cell ge-
ometry, the kinematic model of the robots, and the task de-
scription (path and execution time), while the output is the
Robot 1 joint position corresponding to the task starting po-
sition. Specifically, the WOA is a meta-heuristic swarm opti-
mization where each agent, called “whale”, evaluates the ob-
jective function from the input data and the candidate solution,
i.e., task starting position.
Given the Robot-1 joint position of the starting node, the task
can be modeled as a set of Cartesian reference frames, here-
after nodes, that the Robot-1 should be follow during the task
execution. Furthermore, once the starting point of the task is
computed, also the holding point pose for Robot 2 is conse-
quently imposed. Once all the nodes and the Robot-2 pose are
determined, it is possible to evaluate the constraints:

1. to check the reachability of each node by Robot 1 with at
least one valid configuration, i.e., at least one joint solution
of the inverse kinematic problem exists;

2. to check the reachability of the task holding point by
Robot 2 with at least one valid configuration, i.e., at least
one joint solution of the inverse kinematic problem exists;

3. to check the existence of at least one continuous path in

Algorithm 1 WACO
1: Load Task and robotic cell kinematics
2: function WOA(Kinematics)
3: while iter ≤WOA max iterations do
4: for (each whale) do
5: Calculate the task starting frame as in (6)
6: Calculate all task frames and holding pose by (7) (8)
7: Verify reachability of the task by Robot 2 (10)
8: Verify reachability of the task by Robot 1 (9)
9: function ACO(Joint points)

10: Calculate optimal Robot 1 configurations
11: end function return Optimal Robot 1 configurations
12: Interpolate joint angles with continuous spline
13: Verify instantaneous joint speed limits (13)
14: Calculate objective function the task with (4)
15: end for
16: iter = iter + 1
17: end while
18: end function return Optimal task position and robot joints

the joint space that grants the dynamics (velocity and ac-
celerations) constraints.

Since each node may have multiple (even infinite) equivalent
joint configurations, the last step consists in finding the shortest
path over an oriented graph using ACO.

Once the optimal path is found, a scalar cost function is cal-
culated over the path. The implemented cost function is a tuple
of four indexes: joint speed, joint acceleration, distance from
joint limits and number of time the speed joint reaches zero,
and it will be described in the next paragraph.

The overall methodology has been called Whale and Ant
Colony Optimization (WACO) and its own pseudo code is in
the table Algorithm 1. The WACO is intended to be computa-
tionally efficient to reach an acceptable trade-off between the re-
quired computation time and the solution accuracy. Therefore,
it is worth to note that the number of the nodes along the path
has to be kept limited. Indeed, a large number of the nodes may
reduce dramatically the performance of the ACO algorithm.
However, this limitation is not critical since the problem of the
minimization of the length of the joint-trajectory is locally lin-
earizable. Therefore, a low discretization of the path (a node
each some centimeters) does not introduce a large error in the
optimal path identification. Finally, to have a more precise eval-
uation of the cost function, the optimal path computed by ACO
can be oversampled through a simple fitting of the approximate
trajectory using the splines.

2.2. Problem Formalization

Referring to Fig 1, denote the following variables:
Ta

b Transformation from frame {b} to {a}.
qRi ∈ Rdo fi vector of joint angles of Robot i-th
{Ri}, {tooli} Base and Tool Frame of Robot i-th
{h} Object Holding Frame, i.e., the pose of the

end-effector of Robot-2, {h} ≡ {tool2}
{tk} Work Object Frame of the k-th node of the

trajectory, i.e., the pose the end-effector of
Robot-1 should match, {tk} ≡ {tool1}.{

Ttk
R1

}
k=0,...,Np

Np ordered nodes that Robot 1 have go trough

Furthermore, denote Ttooli
Ri

= FKRi (qRi ) and QRi =

IKRi (T
Ri
tooli

) as the forward and inverse kinematics respectively.
Specifically, QRi =

{
qR1,s : s = 1, . . . ,Nsol

}
is the set of all the

possible Nsol ∈ N+ solutions of the inverse kinematics. There-

2 G. Nicola et al. / Procedia CIRP 00 (2018) 000–000

method but, since the objective function and the output are
interpolated, the optimal solution might be very far from
the global minimum because of the inaccuracy introduced
by interpolation model adopted.

In order to overcome the aforementioned limitations, this work
proposes to split the problem in two sub-problems, and to run
iteratively two nested optimizers: first the problem of the object
positioning is solved (e.g., definition of the Robot-2 holding po-
sition), then, the Robot-1 configurations are optimized. Finally,
an iteration over the two steps is computed. Such method al-
lows a decoupling of the problem in two easier sub-problems,
and the adoption of different optimization methodologies for
each of the two steps. Among the plenty of optimization al-
gorithms, a Whale Optimization Algorithm (WOA) and an Ant
Colony Optimization algorithm (ACO) have been selected for
the first and second optimization steps respectively. Specifi-
cally, the use meta-heuristic algorithms was decided since these
algorithms typically perform well with a large set of mathemat-
ical problems and have a good balance between solution accu-
racy and calculation time. On the one hand, Mirjalili et al. [10]
prove that WOA is among the best-performing meta-heuristic
algorithms on a large set of mathematical problems. On the
other hand, the ACO is extremely efficient when a combinatory
problem has to be solved [12].

The paper is organized as follow: in Section 2, an iterative
two-step optimization methodology to optimize the motion-
coordination of two robots is described; in Section 3, the anal-
ysis of the method performance is shown; finally, in Section 4
conclusions and future developments are pointed out.
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The problem is solved by two nested optimizers: first, a
Whale Optimization Algorithm (WOA) optimizes the starting
node pose, then, an Ant Colony Optimization algorithm (ACO)
finds the best robot configurations at each WOA step.

The input data required by the WOA are the robotic cell ge-
ometry, the kinematic model of the robots, and the task de-
scription (path and execution time), while the output is the
Robot 1 joint position corresponding to the task starting po-
sition. Specifically, the WOA is a meta-heuristic swarm opti-
mization where each agent, called “whale”, evaluates the ob-
jective function from the input data and the candidate solution,
i.e., task starting position.
Given the Robot-1 joint position of the starting node, the task
can be modeled as a set of Cartesian reference frames, here-
after nodes, that the Robot-1 should be follow during the task
execution. Furthermore, once the starting point of the task is
computed, also the holding point pose for Robot 2 is conse-
quently imposed. Once all the nodes and the Robot-2 pose are
determined, it is possible to evaluate the constraints:

1. to check the reachability of each node by Robot 1 with at
least one valid configuration, i.e., at least one joint solution
of the inverse kinematic problem exists;

2. to check the reachability of the task holding point by
Robot 2 with at least one valid configuration, i.e., at least
one joint solution of the inverse kinematic problem exists;
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1: Load Task and robotic cell kinematics
2: function WOA(Kinematics)
3: while iter ≤WOA max iterations do
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5: Calculate the task starting frame as in (6)
6: Calculate all task frames and holding pose by (7) (8)
7: Verify reachability of the task by Robot 2 (10)
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9: function ACO(Joint points)

10: Calculate optimal Robot 1 configurations
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13: Verify instantaneous joint speed limits (13)
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18: end function return Optimal task position and robot joints
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Since each node may have multiple (even infinite) equivalent
joint configurations, the last step consists in finding the shortest
path over an oriented graph using ACO.

Once the optimal path is found, a scalar cost function is cal-
culated over the path. The implemented cost function is a tuple
of four indexes: joint speed, joint acceleration, distance from
joint limits and number of time the speed joint reaches zero,
and it will be described in the next paragraph.

The overall methodology has been called Whale and Ant
Colony Optimization (WACO) and its own pseudo code is in
the table Algorithm 1. The WACO is intended to be computa-
tionally efficient to reach an acceptable trade-off between the re-
quired computation time and the solution accuracy. Therefore,
it is worth to note that the number of the nodes along the path
has to be kept limited. Indeed, a large number of the nodes may
reduce dramatically the performance of the ACO algorithm.
However, this limitation is not critical since the problem of the
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earizable. Therefore, a low discretization of the path (a node
each some centimeters) does not introduce a large error in the
optimal path identification. Finally, to have a more precise eval-
uation of the cost function, the optimal path computed by ACO
can be oversampled through a simple fitting of the approximate
trajectory using the splines.

2.2. Problem Formalization
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fore the map
{QR1,k

}
k=0,...,Np

stores all the feasible Robot-1 con-
figurations along the Np points of the path. The dimension of
such map may be large, accordingly to the number of the points
Np and the feasible IK solutions in each point Nsolk .
Finally, within the map

{QR1,k
}
k=0,...,Np

it is possible to iden-
tify a large number Nf eas of different feasible path Pl ={
qR1,s,k : s ∈ 1, . . . ,Nsolk

}
k=0,...,Np

with l = 1, . . . ,Nf eas, such
that the Robot-1 can move from the first point of the trajectory
to the last one without any change of the configuration.

2.3. Objective function

In this work only three parameters have been considered
as proxies of the robot execution accuracy: (i) Transmission
elasticity; (ii) Backlashes; (iii) Distance from joint limits.
Extension to more parameters is however simple, and it can be
customized on the actual performance and characteristics of
the robotic setup.

Transmission elasticity. To reduce its effect, it is necessary to
minimize the inertial torques on the joints. However, the use
of a physical model of the robot can be computationally too
expensive. As consequence, joints acceleration and speed (for
non-linear torques) are used as torques estimators. Therefore,
given a feasible path P, quality indexes are introduced.

ispeed =

Np∑
k=0

do f1∑
j=1

(
q̇ j

R1,k

)2
iacc =

Np∑
k=0

do f1∑
j=1

(
q̈ j

R1,k

)2
. (1)

Backlashes. Backlashes decrease the accuracy whenever a joint
speed changes sign. Therefore, the number of times the joint
speed reaches zero can be used as a proxy to estimate the effects
of the backlashes. Denoting ν as a function counting the veloc-
ity inversions along the robot path P, the backlashes-quality
index results:

iinv = ν (P) . (2)

Distance from joint limits. In general, industrial manipulators
have lower performances in proximity of joint limits. There-
fore, given a feasible path P, we introduce the quality index

i j =

Np∏
k=0

do f1∏
j=1

(
1 +
( q j

R1,k
− q̄ j

R1(
q j

R1,k
− q j+

R1

)(
q j

R1,k
− q j−

R1

)
)2)
. (3)

q j+
R1

and q j−
R1

are the upper and lower joint limits of the j-th joint
of Robot 1 while q̄ j

R1
is the mean joint range value.

Finally all these indexes are combined in the following scalar
multi-objective function fob j:

fob j = ispeediacciinvi j (4)

2.4. The optimization problem

The objective function fob j depends only on Robot 1 joints
values along a feasible pathPl, while the starting node pose Tt0

R1
is defined accordingly to the Robot-2 tool pose TR2

h .
Given the physics of the problem, h is rigidly connected to t0 if
existing. Therefore, the optimization problem can be reduced
to a two-step optimization of the Robot-1 configuration: first, a
feasible qR10 granting the reachability limits of the Robot-2 is
computed, then, it is possible to calculate the path Pl |Th

R2
that

minimizes the objective function.
Summarizing, the mathematical formulation of the problem is:

minimize fob j

subject to



qR10 : ∃ qR1,k = IKR1

(
Ttk

R1

)
, ∀k ∈ 1, . . . ,Npoint

qR10 : ∃ qR2 = IKR2

(
Th

R2

)

q j−
R1
≤ q j

R1,k
≤ q j+

R1
∀ j ∈ 1, . . . , do f1

q̇ j−
R1
≤ q̇ j

R1,k
≤ q̇ j+

R1
∀ j ∈ 1, . . . , do f1

q j−
R2
≤ q j

R2
≤ q j+

R2
∀ j ∈ 1, . . . , do f2

(5)

2.5. The method

For each WOA member, the starting Robot 1 joint positions
qR1,0 is evaluated and the task starting frame is calculated as:

Tt0
R1
= FKR1

(
qR1,0
)

(6)

Thus, each node Ttk
R1

of the path and Th
R2

can be referred to the
starting pose as:

Ttk
R1
= Tt0

R1
Ttk

t0 k ∈ 1, 2, . . . ,Np (7)

Th
R2
= TR1

R2
Tt0

R1
Th

t0 (8)

with Ttk
t0 and Th

t0 constant transformation given by the geometry
of the tools. After the calculation of all the nodes, the analytic
inverse kinematics is computed for each node and all the solu-
tions are stored,

QR1,k = IKR1

(
Ttk

R1

)
k ∈ 1, 2, . . . ,Np (9)

QR2,h = IKR2

(
Th

R2

)
(10)

So, if all the nodes are reachable with at least one valid
configuration and the holding point is reachable by Robot 2,
it is possible to continue to the next step (the optimization of
Robot 1 configurations). Otherwise, the starting joint position
qR1,0 is discarded.
The problem of finding the optimal combination of robot con-
figurations is essentially a “shortest path problem” on a oriented
graph [11]. Indeed, all the solutions of the IK about nodes
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Extension to more parameters is however simple, and it can be
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the robotic setup.

Transmission elasticity. To reduce its effect, it is necessary to
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configuration and the holding point is reachable by Robot 2,
it is possible to continue to the next step (the optimization of
Robot 1 configurations). Otherwise, the starting joint position
qR1,0 is discarded.
The problem of finding the optimal combination of robot con-
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Np and the feasible IK solutions in each point Nsolk .
Finally, within the map
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it is possible to iden-
tify a large number Nf eas of different feasible path Pl ={
qR1,s,k : s ∈ 1, . . . ,Nsolk

}
k=0,...,Np

with l = 1, . . . ,Nf eas, such
that the Robot-1 can move from the first point of the trajectory
to the last one without any change of the configuration.

2.3. Objective function

In this work only three parameters have been considered
as proxies of the robot execution accuracy: (i) Transmission
elasticity; (ii) Backlashes; (iii) Distance from joint limits.
Extension to more parameters is however simple, and it can be
customized on the actual performance and characteristics of
the robotic setup.

Transmission elasticity. To reduce its effect, it is necessary to
minimize the inertial torques on the joints. However, the use
of a physical model of the robot can be computationally too
expensive. As consequence, joints acceleration and speed (for
non-linear torques) are used as torques estimators. Therefore,
given a feasible path P, quality indexes are introduced.
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Backlashes. Backlashes decrease the accuracy whenever a joint
speed changes sign. Therefore, the number of times the joint
speed reaches zero can be used as a proxy to estimate the effects
of the backlashes. Denoting ν as a function counting the veloc-
ity inversions along the robot path P, the backlashes-quality
index results:

iinv = ν (P) . (2)

Distance from joint limits. In general, industrial manipulators
have lower performances in proximity of joint limits. There-
fore, given a feasible path P, we introduce the quality index
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are the upper and lower joint limits of the j-th joint
of Robot 1 while q̄ j

R1
is the mean joint range value.

Finally all these indexes are combined in the following scalar
multi-objective function fob j:

fob j = ispeediacciinvi j (4)

2.4. The optimization problem

The objective function fob j depends only on Robot 1 joints
values along a feasible pathPl, while the starting node pose Tt0

R1
is defined accordingly to the Robot-2 tool pose TR2

h .
Given the physics of the problem, h is rigidly connected to t0 if
existing. Therefore, the optimization problem can be reduced
to a two-step optimization of the Robot-1 configuration: first, a
feasible qR10 granting the reachability limits of the Robot-2 is
computed, then, it is possible to calculate the path Pl |Th

R2
that

minimizes the objective function.
Summarizing, the mathematical formulation of the problem is:

minimize fob j

subject to
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2.5. The method

For each WOA member, the starting Robot 1 joint positions
qR1,0 is evaluated and the task starting frame is calculated as:

Tt0
R1
= FKR1

(
qR1,0
)

(6)

Thus, each node Ttk
R1

of the path and Th
R2

can be referred to the
starting pose as:
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t0 k ∈ 1, 2, . . . ,Np (7)
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with Ttk
t0 and Th

t0 constant transformation given by the geometry
of the tools. After the calculation of all the nodes, the analytic
inverse kinematics is computed for each node and all the solu-
tions are stored,
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(
Ttk
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)
k ∈ 1, 2, . . . ,Np (9)

QR2,h = IKR2
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Th
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So, if all the nodes are reachable with at least one valid
configuration and the holding point is reachable by Robot 2,
it is possible to continue to the next step (the optimization of
Robot 1 configurations). Otherwise, the starting joint position
qR1,0 is discarded.
The problem of finding the optimal combination of robot con-
figurations is essentially a “shortest path problem” on a oriented
graph [11]. Indeed, all the solutions of the IK about nodes
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can be arranged on a graph. Each graph layer corresponds to
a task point and each graph node is a valid configuration for
a task point. Then, all nodes belonging to the same layer are
linked unidirectionally with all nodes of the successive layer.
So, ACO (Ant Colony Optimization) was used as optimization
algorithm. This formulation allows the robot to change config-
uration along the path, even if it is not convenient because it
would require joint trajectories with high levels of speed satu-
ration. Remarkably, when the Robot-1 has to follow complex
Cartesian path, it might be necessary to change Robot-1 config-
uration to successfully complete the task. However, the chosen
heuristic discourages these changes of configurations unless not
strictly necessary. The chosen heuristic is the inverse of joint
squared distance between each point, as shown in (11).

heuristic
(
k
)
=

1
∑do f1

i=1

(
q j

R1,k
− q j

R1,k−1

)2 k ∈ 1, . . . ,Np (11)

The cost function for the pheromone deposition is the total
squared joints distance along the path. Moreover, at each seg-
ment is verified that the joints mean speed is not above the joints
speed limits. The cost function at every point is shown in (12).


cost(k) =

∑do f1
i=1

(
q j

R1,k
− q j

R1,k−1

)2
q̇−R1
≤ ˙̄q ≤ q̇+R1

cost(k) = in f ˙̄q > q̇+R1
∨ ˙̄q < q̇−R1

(12)

Then the output of the ACO is Q the optimal set of Robot 1
joint positions for all the k-th nodes k ∈ 1, . . . ,Np.
In order to use instantaneous values of speed and accelerations
in the evaluation of the objective function, the joints positions at
each nodes are interpolated with a set of continuous smoothing
splines (i.e. 3rd grade polynomial curves). Finally, it is possible
to verify that even the joints speed are within the acceptable
range (13) and it is possible to calculate the objective function,
as in Section 2.3.

q̇ j−
R1
≤ q̇ j ≤ q̇ j+

R1
j = 1, 2, . . . , do f1 (13)

3. Performance Analysis

3.1. Experimental setup

The setup is composed by two ABB IRB4600 20.5 (Fig.1 )
and it is configured for cooperative welding application.
The results of two benchmark tasks are here reported: Task 1
(Fig. 2) consists on performing a circular trajectory of radius
200 mm with a constant linear speed of 100 mm/s discretized in
20 nodes; Task 2 (Fig. 3) consists on a 3D L-shaped trajectory
with a linear speed of 100 mm/s discretized in 20 nodes.
Furthermore, different optimization slots have been launched

with different parameters. Specifically,
- WOA iterations [50, 100, 200, 300, 400, 500, 600]
- Whales number [20, 30, 40, 50, 60]
- WOA “optimization/exploration” Alim = 1, 0.5, 0.2, 0.1

The parameters of ACO are instead kept constant for every
combination because it has been noticed that they are not criti-
cal for the convergence. The chosen parameters are:

Fig. 2: Task 1

Fig. 3: Task 2

- ACO iterations 30
- Ant number 10

For each combination of the parameters, a set of 10 optimiza-
tions has been performed in order to have a statistic sample. For
every set of optimizations, mean value and standard deviation
of the optimal solution is calculated. Moreover, the mean value
of the computational time and the mean value of the objective
function are calculated. The analysis has been performed on
Matlab R2017a with a desktop computer with a CPU Intel i7-
7700 (3.8 GHz) and 8 GB RAM.

3.2. Results analysis

In Fig. 4a, the mean optimum value of the optimization in-
dex for the task position is shown together with the mean value
of the computational time. Comparing the results, it can be eas-
ily noticed that better performances are achieved by decreasing
the value of Alim, i.e. increasing the amount of iterations spent
exploring the research domain. Indeed, the research domain is
limited only by the joint limits, although, the “feasible” domain,
where the trajectory is feasible, is much smaller. As a conse-
quence, many trials are necessary to find a feasible solution and
in particular a good solution to be optimized. Moreover, the ob-
jective function, as designed in Section 2.3, has a low gradient
far away from the joint limits. So, the variation of the objective
function is low and the optimization is hard to perform.
Then, it is possible to analyse the required computation time,
shown in Fig. 4a with black lines representing “iso-computation
time” simulations. It can be noticed that the computational time
decrease as Alim decreases. Indeed, the greatest part of the com-
putation time is spent by ACO and by the evaluation of the ob-
jective function, including the interpolation of joints trajecto-
ries. Although these two step are performed only when there is
a high possibility that the evaluated trajectory is feasible. The
simulations with low optimization/exploration ratio (i.e. Alim

low) have the highest ratio of infeasible trajectories over total
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a task point and each graph node is a valid configuration for
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∨ ˙̄q < q̇−R1

(12)

Then the output of the ACO is Q the optimal set of Robot 1
joint positions for all the k-th nodes k ∈ 1, . . . ,Np.
In order to use instantaneous values of speed and accelerations
in the evaluation of the objective function, the joints positions at
each nodes are interpolated with a set of continuous smoothing
splines (i.e. 3rd grade polynomial curves). Finally, it is possible
to verify that even the joints speed are within the acceptable
range (13) and it is possible to calculate the objective function,
as in Section 2.3.

q̇ j−
R1
≤ q̇ j ≤ q̇ j+

R1
j = 1, 2, . . . , do f1 (13)

3. Performance Analysis

3.1. Experimental setup

The setup is composed by two ABB IRB4600 20.5 (Fig.1 )
and it is configured for cooperative welding application.
The results of two benchmark tasks are here reported: Task 1
(Fig. 2) consists on performing a circular trajectory of radius
200 mm with a constant linear speed of 100 mm/s discretized in
20 nodes; Task 2 (Fig. 3) consists on a 3D L-shaped trajectory
with a linear speed of 100 mm/s discretized in 20 nodes.
Furthermore, different optimization slots have been launched

with different parameters. Specifically,
- WOA iterations [50, 100, 200, 300, 400, 500, 600]
- Whales number [20, 30, 40, 50, 60]
- WOA “optimization/exploration” Alim = 1, 0.5, 0.2, 0.1

The parameters of ACO are instead kept constant for every
combination because it has been noticed that they are not criti-
cal for the convergence. The chosen parameters are:

Fig. 2: Task 1

Fig. 3: Task 2

- ACO iterations 30
- Ant number 10

For each combination of the parameters, a set of 10 optimiza-
tions has been performed in order to have a statistic sample. For
every set of optimizations, mean value and standard deviation
of the optimal solution is calculated. Moreover, the mean value
of the computational time and the mean value of the objective
function are calculated. The analysis has been performed on
Matlab R2017a with a desktop computer with a CPU Intel i7-
7700 (3.8 GHz) and 8 GB RAM.

3.2. Results analysis

In Fig. 4a, the mean optimum value of the optimization in-
dex for the task position is shown together with the mean value
of the computational time. Comparing the results, it can be eas-
ily noticed that better performances are achieved by decreasing
the value of Alim, i.e. increasing the amount of iterations spent
exploring the research domain. Indeed, the research domain is
limited only by the joint limits, although, the “feasible” domain,
where the trajectory is feasible, is much smaller. As a conse-
quence, many trials are necessary to find a feasible solution and
in particular a good solution to be optimized. Moreover, the ob-
jective function, as designed in Section 2.3, has a low gradient
far away from the joint limits. So, the variation of the objective
function is low and the optimization is hard to perform.
Then, it is possible to analyse the required computation time,
shown in Fig. 4a with black lines representing “iso-computation
time” simulations. It can be noticed that the computational time
decrease as Alim decreases. Indeed, the greatest part of the com-
putation time is spent by ACO and by the evaluation of the ob-
jective function, including the interpolation of joints trajecto-
ries. Although these two step are performed only when there is
a high possibility that the evaluated trajectory is feasible. The
simulations with low optimization/exploration ratio (i.e. Alim

low) have the highest ratio of infeasible trajectories over total
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(a) Task 1 (b) Task 2
Fig. 4: Average optimum values for Task 1 and Task 2

Table 1: Dispersion of optimal task starting positions with 600 iterations and 60 whales

Robot 1 Joint 1 2 3 4 5 6

Task 1 Joint
pos.[rad]

mean -0.059 0.697 -0.514 -0.065 -0.848 -0.566
std 0.170 0.079 0.056 0.081 0.053 0.705

Task 2 Joint
pos.[rad]

mean -0.107 0.110 -0.096 -1.145 -0.692 -0.527
std 0.340 0.111 0.125 0.850 0.870 0.410

number of trajectories evaluated. Therefore, comparing simula-
tions with the same number of evaluated trajectories, the simu-
lation with low Alim reach less frequently the phases of the ACO
and of the calculation of the objective function less times. The
we can affirm that the “iso-computation time” curves represent
nothing else than curves with the same number of feasible tra-
jectories evaluated.
Studying instead the optimal solution, e.g. the joints position
in the starting node, we notice that the convergence is less evi-
dent and for some joints the standard deviation is very high. In
Table 1, it is shown the dispersion of the optimal solution for
the following set of parameters: 600 iterations, 60 whales and
Alim = 0.2. It can be easily noticed that for Task 1 the stan-
dard deviation of the 6th joint is more than 10 times higher than
3rd joints standard deviation, this result can be explained by the
low gradient of the objective function. Although, from a phys-
ical point of view this results leads to 2 conclusions, first of all
there is a region of joint space where the task is performed op-
timally instead of a single point. Secondly, depending on the
task trajectory some joints are more relevant than others for op-
timality and feasibility.
Analysing the results for Task 2 we can notice many similari-
ties, first of all as for Task 1 decreasing Alim the performances
increase both as optimality and as computation time. It can
also be noticed that the improvements on both aspect are higher
than for Task 1. Thanks to increased complexity of trajectory
that “feasible” domain is even smaller than for Task 1, so the
ratio of infeasible solutions is higher. Confronting the disper-
sion of the solution obtained with 600 iterations, 60 whales and
Alim = 0.1 in Table 1 we notice higher values of standard de-
viation compared to Task 1. Indeed, having a higher ratio of
infeasible solutions, the optimization with the same number of
trajectories evaluated has worse performance. Although it can
be noticed that, as for Task 1, some joints have much lower

standard deviation because they are the main responsible for
the solution feasibility and optimality.

4. Conclusions and future developments

In this paper a novel method named WACO (Whale and Ant
Colony Optimisation) to optimise task placement for process
planning of multi-robot cells is presented, the optimisation is
performed by 2 nested meta-heuristic algorithms (WOA and
ACO) in order to enhance the overall accuracy of the task. The
method assures the kinematic feasibility of the task trajectory
although the collision avoidance is not implemented yet. The
WACO has proven to converge to an optimal solution but the
calculation time is still not completely satisfying. Although,
the method is highly parallelizable so the calculation time is
expected to decrease.
As future developments the collision avoidance will be imple-
mented, the method’s code will be updated in order to allow the
parallel computation and finally an experimental campaign will
be conducted to verify the objective function goodness.
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Appendix A. WOA Whale Optimization Algorithm

In this section, the Whale Optimization Algorithm (WOA)
is briefly presented. For a deeper analysis refers to [10].
The algorithms, compared to other well established meta-
heuristics algorithms, e.g. the PSO (particle Swarm Optimiza-
tion), is very competitive [10]. It is able to solve a wide range
of optimization problems such as uni-modal and multi-modal or
with a high number of variables. Moreover, the algorithms al-
lows the user set the ratio between exploration and exploitation.
The WOA is a swarm meta-heuristic algorithm that takes inspi-
ration from the hunting strategy of the humpback whales, so 3
heuristics have been developed: the encirclement, the bubble-
net attacking method and the exploration.

At each iteration the algorithm chooses between the heuris-
tics by means of two coefficients A and p. A absolute value de-
crease linearly from 2 to 0, as the WOA iterations reaches the
maximum, meanwhile is modified by a random component, in-
stead p is a random number in [0, 1]. So the heuristic is chosen
as: p < 0.5 and |A| < Alim Encirclement; p ≥ 0.5 Bubble-net
attacking method; p < 0.5 and |A| ≥ Alim Exploration.

The “Encirclement” heuristic mimics the encirclement of the
prey so all the whales will position inside an hypercube, the
number of dimensions of the hypercube are the number of vari-
ables to optimize, whose side is at maximum the distance be-
tween the whales and the best so far solution. Moreover as the
iterations increases the the hypercube will shrink.
The “Bubble-net attacking method” consist in an helix shrink-
ing shaped movement around the prey so the whales will be
positioned on a logarithmic spiral centered on the best so far
solution, even the size of the spiral tends to decrease as the al-
gorithm reaches the maximum iterations.
The “Exploration” is performed similarly to the “Encir-
clement”, although the hypercube instead of being centered on
the best so far solution, is centered on a random chosen whale.
The pseudo code of the WOA is in Alg. 2. The algorithm uses
only two heuristics at the same moment. Essentially it depends
on Alim and the iteration reached by the algorithm. In the firsts
iterations |A| ≥ Alim so the algorithm will be more focused on
the exploration of the search domain, meanwhile close to the

Algorithm 2 WOA
1: Initialize whales positions
2: Calculate fitness of every whale
3: while t < max iteration do
4: for each whale do
5: Update algorithm parameters
6: if p < 0.5 then
7: if |A| < Alim then
8: Encirclement
9: else

10: Exploration
11: end if
12: else
13: Bubble-net attacking method
14: end if
15: end for
16: Check if any whale is beyond the search space and correct it
17: Calculate whales fitness
18: Update fittest whale
19: t = t + 1
20: end while

Algorithm 3 ACO
1: Initialize pheromone on the graph
2: while t < max iterations do
3: for each ant do
4: for each graph layer do
5: Choose next path node with (B.1)
6: end for
7: Calculate cost on path
8: end for
9: Depose pheromone on the graph

10: t = t + 1
11: end while

maximum number of iterations |A| < Alim so the algorithm op-
timize the best solution found. It is possible to set the amount
of iterations spent exploring by setting the value of Alim.

Appendix B. ACO Ant Colony Optimization

Ant Colony Optimization (ACO) is a family of well estab-
lished swarm meta-heuristic algorithms for graph research. In
particular, each ant deposes a certain amount of pheromone
along its path, so that the following ants will be likely to fol-
low the same path. The pheromone has a evaporation rate, so if
the path is not efficient, the pheromone will completely vanish
and the following ants will try a different path. There are many
variants of the ACO [12]. In this application it has been used
the Ant System as described in [13].

At each iteration, each ant chooses a path from the starting
point to the goal point along a graph, and the ants can move
only from one layer to the next one. The path is chosen by
combining an heuristic, the pheromone deposited on the graph
and a casual component:

P = heuristic · pheromon

Pnorm =
P∑
P

node = f ind
(
rand[0, 1] ≤ sum cum

(
Pnorm

)
, closest

)
(B.1)

The pheromone deposition is performed at the end of every it-
eration and is inverse-proportional to a cost function. In Algo-
rithm 3 is shown the pseudo-code of the ACO implemented.
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