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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract  

Recent advancements in Industry 4.0 key enabling technologies allow for the dynamic sharing of additive manufacturing services 
in a cloud manufacturing context, with great potential on resource efficiency improvement at network level.  
This paper proposes the conceptualization and development of a modular-structured cloud platform to match users’ instances 
generating feasible solutions according to various manufacturing scenarios. 
The proposed cloud manufacturing platform includes a service modelling and dynamic matching module, an intelligent resource 
distribution optimization module and a decision-making support module to assist users in characterizing the generated solutions. 
A simulated case study is reported to exemplify technical and economic advantages for industrial resource efficiency improvement. 
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1. Introduction 

During the last years, due to progress in computation power 
and systems technology, laser based additive manufacturing 
(AM) has advanced to a technology with high potential for 
industrial application [1]. Laser based AM processes share the 
same manufacturing principle, although each process might 
have its own range of usable materials, procedures, and 
applicable situations. The principle behind laser based AM 
technologies lies in the use of a laser beam to provide thermal 
energy for the melting and consolidating of the additive 
materials, or to provide light quanta of a certain wavelength to 
initiate a chemical curing reaction in vat polymerization [1]. 

Additively produced parts exhibit innovative shapes, 
complex features and lightweight structures that are difficult or 
even impossible to produce with conventional processes. In this 
framework, ensuring the quality and repeatability of additively 
produced parts is a fundamental need to meet the stringent 
requirements and certification constraints imposed by leading 
sectors, like medical and aerospace [2].  

Among AM processes, Laser Powder-Bed Fusion (LPBF) is 
receiving increasing interest in the industry since it offers a 
number of advantages in comparison with other freeform 
fabrication techniques [3]. The process is based on laser 
irradiation of a pre-laid bed of metal powder [4]: depending on 
the processing parameters, either sintering (Selective Laser 
Sintering - SLS) or complete melting (Selective Laser Melting 
- SLM) of the metal particles can be achieved.  

The original field of application for this process is rapid 
prototyping, but it is expanding in areas such as  the medical or 
aerospace industry, which take advantage of the high degree of 
freedom in design offered by AM processes [5]. Generally, AM 
is employed for manufacturing of small series or single parts. 
This could negatively affect the efficiency of the process, in 
terms of time, energy and material efficiency. To improve 
resource efficiency, the combination of several parts within the 
same building volume represents an interesting solution. 

As regards the time efficiency, the laser scanning time 
depends on the area to be scanned, therefore it increases with 
the number of parts simultaneously built on the platform. 
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However, the time for powder recoating, performed by the 
brush on each scanned layer, is the same independently from 
the number of parts present on the platform. Hence, the overall 
processing time for each AM part is reduced by increasing the 
number of parts simultaneously built.  

Energy efficiency is strongly related to time efficiency: the 
reduction of the overall processing time for each AM part has 
a positive impact also on the machine power consumption. 

As regards material efficiency, it is essentially related to the 
amount of waste metal powder, i.e. the powder which is laid on 
the bed but is not scanned by the laser. As a matter of fact, after 
each layer scan, only a portion of the powder bed is scanned 
and melt by the laser for part construction, while the rest 
remains unmelt. To reduce the waste of material, recycling can 
be performed on this portion of unmelt metal powder in order 
to be reused.  

However, the powder material properties may change due to 
repeated recycling, affecting the mechanical behavior of parts 
[6]. Studies recently conducted on recycling and reuse of 
powder in SLM processes showed that, especially for 
lightweight alloys, a substantial change occurs in the particle 
size distribution, which considerably affects the flowability [7]. 
Due to the change of material properties, the metal powder is 
only reused for a given number of cycles, after which it is 
disposed. By producing more parts simultaneously on the same 
platform, the proportion between scanned and unmelt powder 
at each cycle increases, thus reducing the amount of powder to 
be recycled or disposed. 

Literature provides a variety of nesting procedures based on 
different algorithms to combine several parts within the 
building volume. Ma et al. proposed a heuristic method for 
efficiently packing irregular objects by combining continuous 
optimization and combinatorial optimization. Starting from an 
initial placement of an appropriate number of objects, the 
positions and orientations of the objects are optimized using 
continuous optimization. In combinatorial optimization, the 
gaps between objects are further reduced by swapping and 
replacing the deployed objects and inserting new objects [8]. 
Lutters et al. [9] developed a 3D nesting of complex shaped 
objects. The algorithm starts with the determination of the 
preferred orientation of a part, and uses a non-deterministic 
approach, closely related to the “Brazil Nut Effect” to do the 
actual nesting. Chen et al. [10] presented Dapper, a global 
optimization algorithm for the DAP problem which can be 
applied to both powder and Fused Deposition Modeling FDM-
based 3D printing. The solution search is top-down and 
iterative. Starting with a coarse decomposition of the input 
shape into few initial parts, a pile is progressively packed in the 
printing volume, by iteratively docking parts, possibly while 
introducing cuts, onto the pile. 

In this framework, the objective of this paper is to propose 
the conceptualization and development of a Smart cloud 
manufacturing platform for resource efficiency improvement 
of AM services. Recent advances in Industry 4.0 key enabling 
technologies allow for the dynamic sharing of AM services in 
a cloud manufacturing context, with great potential on resource 
efficiency improvement at network level [11, 12].  

 

In this research work, a modular-structured cloud platform 
is proposed to match multiple users instances generating 
feasible solutions according to various manufacturing 
scenarios. The proposed cloud manufacturing platform 
includes a service modelling and dynamic matching module, an 
intelligent resource distribution optimization module and a 
decision-making support module to assist users in 
characterizing the generated solutions. 

A simulated case study is reported to exemplify technical 
and economic advantages for industrial resource efficiency 
improvement. 

2. Framework 

A cloud manufacturing framework is developed in this 
research work aimed at enabling the sharing of distributed AM 
resources for efficiency improvement at industrial network 
level. A schematic flowchart is reported in Fig. 1.  

2.1. Users instances 

Cloud manufacturers users, i.e. suppliers and customers 
access to the cloud manufacturing platform through a 
specifically designed graphic user interface (GUI) [11].  

Through such GUI, users input their instances, including 
company and job data. A generic customer instance, 𝐶𝐶!  is 
defined as: 

𝐶𝐶! = {𝐼𝐼𝐼𝐼"!,𝑚𝑚"!, 𝑇𝑇"!, 𝑄𝑄"!, 𝐷𝐷𝐷𝐷"!, 𝐿𝐿"!, 𝑆𝑆𝑆𝑆𝑆𝑆"!, 𝐴𝐴𝐴𝐴"!} (1) 

Where  
• 𝐼𝐼𝐼𝐼"!: progressive instance identification number generated 

by the system 
• 𝑚𝑚"!: material  
• Powder size 

Fig. 1. Framework Flowchart 
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• 𝑇𝑇"!: technology, here the customer can specify the required 
technology from a range of compatible ones, e.g. FDM, 
SLS, SLA, DLP, DMLS, SLM etc. 

• 𝑄𝑄"!: batch quantity (units) 
• 𝐷𝐷𝐷𝐷"!: customer deadline 
• 𝐿𝐿"!: customer location 
• 𝑆𝑆𝑆𝑆𝑆𝑆"! : the 3D model of customer part, including 

geometrical information and tolerances  
Additionally, a customer can specify a number of additional 
requirements, i.e.𝐴𝐴𝐴𝐴"! , such as postprocessing operations, 
painting, assembling etc. (see Rudolph et al. [13]). 

Similarly, a generic supplier instance 𝑆𝑆# is defined as: 

𝑆𝑆# = {𝐼𝐼𝐼𝐼$#,𝑀𝑀$#,𝑚𝑚$#, 𝑄𝑄$#, 𝐷𝐷𝐷𝐷$#, 𝐿𝐿$#, 𝑆𝑆𝑆𝑆𝑆𝑆$#, 𝐴𝐴𝐴𝐴$#} (2) 

Where: 
• 𝐼𝐼𝐼𝐼$#: progressive instance identification number generated 

by the system 
• 𝑀𝑀$# : Machine information, including Technology 𝑇𝑇$# 

Power consumption 𝑃𝑃$# , Box size, 𝑆𝑆$#  and Tolerances, 
𝑇𝑇𝑇𝑇𝑇𝑇$# 

• 𝑚𝑚$#: material 
• 𝑄𝑄$#: batch quantity (units) 
• 𝐷𝐷𝐷𝐷$#: deadline  
• 𝐿𝐿$#: the supplier location 
• 𝑆𝑆𝑆𝑆𝑆𝑆$#: the 3D model of supplier part including geometrical 

information and tolerances 
• 𝐴𝐴𝐴𝐴$#: additional requirements availability. 

All the submitted users instances will be stored in a 
dedicated database [11] for further processing. 

2.2. Functional compatibility 

Customer and supplier instances created via cloud user 
interface are subject to a first matching procedure to evaluate 
their compatibility. The Functional Compatibility (FC) 
indicator 𝐹𝐹𝐹𝐹!#  between a single Customer Instance 𝐶𝐶!  and a 
single Supplier Instance 𝑆𝑆! is a Boolean variable defined as: 

𝐹𝐹𝐹𝐹!# = 40 Non	compatible
1 Compatible  (3) 

The Functional Compatibility occurs when a number of 
conditions are satisfied simultaneously, specifically: 
• Material: 𝑚𝑚$# ≡ 𝑚𝑚"!, including powder size 
• Technology: 𝑇𝑇$# ≡ 𝑇𝑇"! 
• Tolerance: 𝑇𝑇𝑇𝑇𝑇𝑇$# < 𝑇𝑇"! 
• Additional requirements, if any: 𝑃𝑃𝑃𝑃$# ≡ 𝑃𝑃𝑃𝑃"! 
Further FC assessment is carried out considering the minimum 
wall size, structural and mechanical characteristics etc. 

2.3. Nesting 

Since the product volume is determined by the product-
design, the total production time can be minimized by 
optimizing the product orientation or nesting efficiency for 
batches with multiple products in order to reduce the batch 
height [14, 15].  

The functionally compatible user instances pairs are 
inputted into a nesting module to obtain an optimized 
configuration  

At this stage of research, in this paper, the instances nesting 
is carried out using a third party software, namely Magics 
Software developed by Materialise ® [16] which performs an 
optimized nesting process based on heuristic approach. 

Depending on the user instances characteristics, the nesting 
algorithm can converge to a solution either as soon as all parts 
are processed and packed inside the build envelope or until a 
predefined nesting density is reached. Moreover, the software 
ensures that none of the parts collides with either another part 
or with the container. 

2.4. Decision Making modules 

Solutions are generated according to the nesting algorithm 
and each solution is consists in a number of nesting 
configurations each of which is characterized by the following 
factors: 
• Number of units: 𝑆𝑆𝑆𝑆% is the number of supplier instance 

units per configuration, 𝐶𝐶𝐶𝐶% is the number of customer(s) 
units per configuration 

• PVU, the platform volume utilization (%) defined as: 

𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉	𝑜𝑜𝑜𝑜	𝑎𝑎𝑎𝑎𝑎𝑎	𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏	𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ∗ 100% (4) 

• ND, the nesting density [9] defined as: 

𝑁𝑁𝑁𝑁 =
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉	𝑜𝑜𝑜𝑜	𝑎𝑎𝑎𝑎𝑎𝑎	𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑝𝑝& ∗ 𝐵𝐵𝐵𝐵
∗ 100% (5) 

where 𝑝𝑝& represents the build platform area, BH is the build 
height (mm)  
• PT, processing time required for the realization of the 

instances pairing, estimated according to the model 
proposed by Rickenbacher et al. [17] as follows: 

𝑇𝑇 = 𝑇𝑇' + 	𝑘𝑘 ∗ 𝑇𝑇(#& + 𝑘𝑘 ∗ 𝑇𝑇) +	\𝑇𝑇*%
%

+ 𝑘𝑘 ∗ 𝑇𝑇+ + 𝑇𝑇,-  (6) 

Where 𝑇𝑇' is the time required to prepare the CAD data, 𝑇𝑇(#& 
is the time required to build the job assembly, 𝑇𝑇) is the time 
required for machine setup, 𝑇𝑇*%  is the build time of the 
configuration k build job, computed according to the linear 
regression model in [17], 𝑇𝑇+ is the time required for removing 
parts from the machine and 𝑇𝑇,- is the time required to change 
material.  
• Energy consumption: a basic economic estimation of the 

energy consumption was obtained as follows: 

𝐸𝐸 = 𝐸𝐸." ∗\(𝑃𝑃 ∗ 𝑇𝑇*%)
%

 (7) 

Where 𝐸𝐸." is the unitary energy cost for the supplier (CNY) 
which depends on the supplier location, and 𝑃𝑃 is the maximum 
nominal machine power (kW). 𝑇𝑇*% takes into account the time 
required for the preheating, the creation of inert atmosphere, 
the laser scanning, the powder spreading, the cooling down and 
machine cleaning [18]. 
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• 𝑇𝑇"!: technology, here the customer can specify the required 
technology from a range of compatible ones, e.g. FDM, 
SLS, SLA, DLP, DMLS, SLM etc. 

• 𝑄𝑄"!: batch quantity (units) 
• 𝐷𝐷𝐷𝐷"!: customer deadline 
• 𝐿𝐿"!: customer location 
• 𝑆𝑆𝑆𝑆𝑆𝑆"! : the 3D model of customer part, including 

geometrical information and tolerances  
Additionally, a customer can specify a number of additional 
requirements, i.e.𝐴𝐴𝐴𝐴"! , such as postprocessing operations, 
painting, assembling etc. (see Rudolph et al. [13]). 

Similarly, a generic supplier instance 𝑆𝑆# is defined as: 

𝑆𝑆# = {𝐼𝐼𝐼𝐼$#,𝑀𝑀$#,𝑚𝑚$#, 𝑄𝑄$#, 𝐷𝐷𝐷𝐷$#, 𝐿𝐿$#, 𝑆𝑆𝑆𝑆𝑆𝑆$#, 𝐴𝐴𝐴𝐴$#} (2) 

Where: 
• 𝐼𝐼𝐼𝐼$#: progressive instance identification number generated 

by the system 
• 𝑀𝑀$# : Machine information, including Technology 𝑇𝑇$# 

Power consumption 𝑃𝑃$# , Box size, 𝑆𝑆$#  and Tolerances, 
𝑇𝑇𝑇𝑇𝑇𝑇$# 

• 𝑚𝑚$#: material 
• 𝑄𝑄$#: batch quantity (units) 
• 𝐷𝐷𝐷𝐷$#: deadline  
• 𝐿𝐿$#: the supplier location 
• 𝑆𝑆𝑆𝑆𝑆𝑆$#: the 3D model of supplier part including geometrical 

information and tolerances 
• 𝐴𝐴𝐴𝐴$#: additional requirements availability. 

All the submitted users instances will be stored in a 
dedicated database [11] for further processing. 

2.2. Functional compatibility 

Customer and supplier instances created via cloud user 
interface are subject to a first matching procedure to evaluate 
their compatibility. The Functional Compatibility (FC) 
indicator 𝐹𝐹𝐹𝐹!#  between a single Customer Instance 𝐶𝐶!  and a 
single Supplier Instance 𝑆𝑆! is a Boolean variable defined as: 

𝐹𝐹𝐹𝐹!# = 40 Non	compatible
1 Compatible  (3) 

The Functional Compatibility occurs when a number of 
conditions are satisfied simultaneously, specifically: 
• Material: 𝑚𝑚$# ≡ 𝑚𝑚"!, including powder size 
• Technology: 𝑇𝑇$# ≡ 𝑇𝑇"! 
• Tolerance: 𝑇𝑇𝑇𝑇𝑇𝑇$# < 𝑇𝑇"! 
• Additional requirements, if any: 𝑃𝑃𝑃𝑃$# ≡ 𝑃𝑃𝑃𝑃"! 
Further FC assessment is carried out considering the minimum 
wall size, structural and mechanical characteristics etc. 

2.3. Nesting 

Since the product volume is determined by the product-
design, the total production time can be minimized by 
optimizing the product orientation or nesting efficiency for 
batches with multiple products in order to reduce the batch 
height [14, 15].  

The functionally compatible user instances pairs are 
inputted into a nesting module to obtain an optimized 
configuration  

At this stage of research, in this paper, the instances nesting 
is carried out using a third party software, namely Magics 
Software developed by Materialise ® [16] which performs an 
optimized nesting process based on heuristic approach. 

Depending on the user instances characteristics, the nesting 
algorithm can converge to a solution either as soon as all parts 
are processed and packed inside the build envelope or until a 
predefined nesting density is reached. Moreover, the software 
ensures that none of the parts collides with either another part 
or with the container. 

2.4. Decision Making modules 

Solutions are generated according to the nesting algorithm 
and each solution is consists in a number of nesting 
configurations each of which is characterized by the following 
factors: 
• Number of units: 𝑆𝑆𝑆𝑆% is the number of supplier instance 

units per configuration, 𝐶𝐶𝐶𝐶% is the number of customer(s) 
units per configuration 

• PVU, the platform volume utilization (%) defined as: 

𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉	𝑜𝑜𝑜𝑜	𝑎𝑎𝑎𝑎𝑎𝑎	𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏	𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ∗ 100% (4) 

• ND, the nesting density [9] defined as: 

𝑁𝑁𝑁𝑁 =
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉	𝑜𝑜𝑜𝑜	𝑎𝑎𝑎𝑎𝑎𝑎	𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑝𝑝& ∗ 𝐵𝐵𝐵𝐵
∗ 100% (5) 

where 𝑝𝑝& represents the build platform area, BH is the build 
height (mm)  
• PT, processing time required for the realization of the 

instances pairing, estimated according to the model 
proposed by Rickenbacher et al. [17] as follows: 

𝑇𝑇 = 𝑇𝑇' + 	𝑘𝑘 ∗ 𝑇𝑇(#& + 𝑘𝑘 ∗ 𝑇𝑇) +	\𝑇𝑇*%
%

+ 𝑘𝑘 ∗ 𝑇𝑇+ + 𝑇𝑇,-  (6) 

Where 𝑇𝑇' is the time required to prepare the CAD data, 𝑇𝑇(#& 
is the time required to build the job assembly, 𝑇𝑇) is the time 
required for machine setup, 𝑇𝑇*%  is the build time of the 
configuration k build job, computed according to the linear 
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• Energy consumption: a basic economic estimation of the 

energy consumption was obtained as follows: 
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%

 (7) 

Where 𝐸𝐸." is the unitary energy cost for the supplier (CNY) 
which depends on the supplier location, and 𝑃𝑃 is the maximum 
nominal machine power (kW). 𝑇𝑇*% takes into account the time 
required for the preheating, the creation of inert atmosphere, 
the laser scanning, the powder spreading, the cooling down and 
machine cleaning [18]. 
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• Distance cost, to be calculated for each instance pair based 
on the customer and supplier locations adopting a distance 
cost coefficient taking	 into	account	batch	volume	and	
weight.  

• Supplier Rating: a score ranging from 1 to 5 based on the 
historical feedback 

Decision-making modules are developed within a solution 
management system described in the next section. 

2.5. Solutions Management System 

Following a generic supply entry 𝑆𝑆#, the supplier allowance 
time is computed as the difference between the planned 
production start and the 𝑆𝑆#  entry date. During this time, the 
customers instances are considered for matching as follows: 
when a customer instance 𝐶𝐶!  is submitted, the system will 
evaluate the FC and the nesting as per sections 2.3 and 2.4. 

When a solution is generated, the customer is allowed to pre-
select one of the available solutions from various suppliers, 
subsequently the instance is queued to allow for the supplier to 
wait for new customer instances submissions to evaluate which 
customer instance(s) to accept or reject.  

If a new customer instance, e.g. 𝐶𝐶!/0, is submitted during the 
𝐶𝐶! queueing time, then the system will compute and generate a 
new solution including 𝐶𝐶!  and/or 𝐶𝐶!/0  to incorporate one or 
both customers. Once the solutions are updated a deadline 
evaluation is carried out to verify the solutions feasibility. At 
this point the procedure is repeated: the new customer pre-
selects a solution and join the queue.  

Once the supplier allowance time is expired, eventually the 
supplier will select the customer(s) instances to be incorporated 
and those to be rejected. The timeline flowchart for the 
scheduling management procedure is reported in Fig. 2.  

3. Case study 

With the aim of exemplifying the proposed framework, a 
simulated case study was setup with 3 Suppliers and 3 
Customers. The case study data are reported in Tables 1 and 2. 

To reduce the case study complexity, the following 
assumptions were taken into account: 
• All the processes mentioned in the case study are Direct 

Metal Laser Sintering (DMLS) 
• Both customers and supplier instances are submitted 

simultaneously to avoid complex scheduling management 
• No support needed for the realization of any of the 

suppliers and customers instances 
• All the instances are submitted in the same day, i.e. 24 June 

2019 
• Both customers and supplier instances have the same 

powder size 

 

Table 1. Suppliers instances data 

Supplier ID M m P  Q DL L STL [max size, mm] 

𝑆𝑆! EOS M290 EOS MaragingSteel MS1 8.5 80 10 December 2019 Guangzhou 

[40 50 75] 

𝑆𝑆" M2 Cusing CL 31AL Aluminium alloy (AlSi10Mg) 10 50 11 November 2019 Wuhan 

[123 123 50] 

𝑆𝑆# EOS M400 EOS MaragingSteel MS1 20.2 80 1 January 2020 Hangzhou 

[53 118 135] 

 

Fig. 2. Solutions management system timeline 
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Table 2. Customers instances data. 

Customer ID m Q DL L STL [max size, mm] 

𝐶𝐶! CL 31AL Aluminium alloy (AlSi10Mg) 120 10 October 2019 Shanghai 

[64 24 20] 

𝐶𝐶" EOS MaragingSteel MS1 50 15 November 2019 Shenzhen 

[100 100 25] 

𝐶𝐶# EOS MaragingSteel MS1 100 1 December 2019 Shantou 

[168 26 27] 

 

4. Results and discussion 

With reference to the case study data reported in Tables 1 
and 2 and according to the FC criteria described in Section 2.2, 
the FC matrix for this case study, evaluated by the cloud 
platform, is reported in Table 3. Nesting results are summarized 
in Table 4, for all the compatible instances pairings. Based on 
the results shown in Table 4 and comparing the deadline 
requirements reported in Tables 1 and 2, the supplier will select 
their most suitable pairings according to the processing time 
and a resource utilization criterion, i.e. 𝑃𝑃𝑃𝑃𝑃𝑃g  defined as the 
weighted sum of the 𝑃𝑃𝑃𝑃𝑃𝑃% over the 𝐵𝐵𝐻𝐻%: 

𝑃𝑃𝑃𝑃𝑃𝑃g =
∑ (𝑃𝑃𝑃𝑃𝑃𝑃% ∗ 𝐵𝐵𝐵𝐵%)%

∑ 𝐵𝐵𝐵𝐵%%
 (8) 

Table 3. Functional Compatibility Matrix. 

 𝐶𝐶! 𝐶𝐶" 𝐶𝐶# 

𝑆𝑆! 0 1 1 

𝑆𝑆" 1 0 0 

𝑆𝑆# 0 1 1 

Table 4. Nesting results for all the compatible pairings 

Instances 
pairing 

Conf. 𝑆𝑆𝑆𝑆%  𝐶𝐶𝐶𝐶%  
PVU 
(%) 

ND 
(%) 

BH 
(mm) 

PT (h) 

𝑆𝑆! + 𝐶𝐶" 
K1 27 50 7.23 7.46 314.92 99.90 
K2 53 0 4.74 9.55 161.20 113.87 

𝑆𝑆! + 𝐶𝐶# 
K1 69 48 8.69 9.58 294.75 226.32 
K2 11 52 3.71 9.59 125.91 106.83 

𝑆𝑆! + 𝐶𝐶" + 𝐶𝐶# 
K1 14 50+29 7.59 7.84 314.92 117.26 
K2 66 0+52 8.63 9.36 299.80 227.08 
K3 0 0+19 1.00 8.59 37.73 29.93 

𝑆𝑆" + 𝐶𝐶! 
K1 20 116 28.22 29.15 333.85 973.90 
K2 22 4 23.5 28.75 286.14 818.80 
K3 8 0 8.46 26.21 112.94 294.84 

𝑆𝑆# + 𝐶𝐶" 
K1 43 38 18.65 19.28 348.35 1647.01 
K2 37 12 15.35 22.8 242.30 1405.12 

𝑆𝑆# + 𝐶𝐶# 
K1 43 100 19.21 20.15 343.30 1776.10 
K2 37 0 14.94 23.95 224.6 1399.64 

𝑆𝑆# + 𝐶𝐶" + 𝐶𝐶# 
K1 43 12+100 19.62 20.28 348.35 1780.44 
K2 37 38+0 16.23 19.46 300.35 1418.78 

Table 5. Supplier Decision-Making indicators. 

Supplier Instances pairing 𝑃𝑃𝑃𝑃𝑃𝑃'  Deadline Conflict 

𝑆𝑆! 
𝑆𝑆! + 𝐶𝐶" 6.3870 None 
𝑆𝑆! + 𝐶𝐶# 7.1994 None 

𝑺𝑺𝟏𝟏 + 𝑪𝑪𝟐𝟐 + 𝑪𝑪𝟑𝟑 7.6868 None 
𝑆𝑆" 𝑺𝑺𝟐𝟐 + 𝑪𝑪𝟏𝟏 23.3324 None 

𝑆𝑆# 
𝑆𝑆# + 𝐶𝐶" 17.2963 None 
𝑆𝑆# + 𝐶𝐶# 17.5213 None 

𝑺𝑺𝟑𝟑 + 𝑪𝑪𝟐𝟐 + 𝑪𝑪𝟑𝟑 18.0504 None 

Table 5 reports the	𝑃𝑃𝑃𝑃𝑃𝑃g  computed for each solution, and 
considering that no deadline conflicts are reported, a likely 
scenario for supplier decision-making in terms of solution 
selection is: 

• 𝑆𝑆0 → [𝑆𝑆0 + 𝐶𝐶1 + 𝐶𝐶2] 
• 𝑆𝑆1 → [𝑆𝑆1 + 𝐶𝐶0] 
• 𝑆𝑆2 → [𝑆𝑆2 + 𝐶𝐶1 + 𝐶𝐶2] 

An example of nesting configuration in reported in Fig. 3 
with reference to the solution [𝑆𝑆2 + 𝐶𝐶1 + 𝐶𝐶2] selected by 𝑆𝑆2. 

To allow for the selection of the most suitable solution by 
the customer, the Customer Decision-Making Support Module 
provides a detailed visual report of the solutions to identify an 
appropriate match for the realization of the desired 
manufacturing tasks. The spider web chart shown in Fig. 4 
shows the solution characterization criteria for the supplier. 
With reference to 𝐶𝐶2, the two alternatives are represented by 
[𝑆𝑆0 + 𝐶𝐶1 + 𝐶𝐶2] and [𝑆𝑆2 + 𝐶𝐶1 + 𝐶𝐶2]. 

(a)  (b) 
Fig. 3. Nesting configurations for [𝑆𝑆# + 𝐶𝐶" + 𝐶𝐶#] 
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• Distance cost, to be calculated for each instance pair based 
on the customer and supplier locations adopting a distance 
cost coefficient taking	 into	account	batch	volume	and	
weight.  

• Supplier Rating: a score ranging from 1 to 5 based on the 
historical feedback 

Decision-making modules are developed within a solution 
management system described in the next section. 

2.5. Solutions Management System 

Following a generic supply entry 𝑆𝑆#, the supplier allowance 
time is computed as the difference between the planned 
production start and the 𝑆𝑆#  entry date. During this time, the 
customers instances are considered for matching as follows: 
when a customer instance 𝐶𝐶!  is submitted, the system will 
evaluate the FC and the nesting as per sections 2.3 and 2.4. 

When a solution is generated, the customer is allowed to pre-
select one of the available solutions from various suppliers, 
subsequently the instance is queued to allow for the supplier to 
wait for new customer instances submissions to evaluate which 
customer instance(s) to accept or reject.  

If a new customer instance, e.g. 𝐶𝐶!/0, is submitted during the 
𝐶𝐶! queueing time, then the system will compute and generate a 
new solution including 𝐶𝐶!  and/or 𝐶𝐶!/0  to incorporate one or 
both customers. Once the solutions are updated a deadline 
evaluation is carried out to verify the solutions feasibility. At 
this point the procedure is repeated: the new customer pre-
selects a solution and join the queue.  

Once the supplier allowance time is expired, eventually the 
supplier will select the customer(s) instances to be incorporated 
and those to be rejected. The timeline flowchart for the 
scheduling management procedure is reported in Fig. 2.  

3. Case study 

With the aim of exemplifying the proposed framework, a 
simulated case study was setup with 3 Suppliers and 3 
Customers. The case study data are reported in Tables 1 and 2. 

To reduce the case study complexity, the following 
assumptions were taken into account: 
• All the processes mentioned in the case study are Direct 

Metal Laser Sintering (DMLS) 
• Both customers and supplier instances are submitted 

simultaneously to avoid complex scheduling management 
• No support needed for the realization of any of the 

suppliers and customers instances 
• All the instances are submitted in the same day, i.e. 24 June 

2019 
• Both customers and supplier instances have the same 

powder size 

 

Table 1. Suppliers instances data 

Supplier ID M m P  Q DL L STL [max size, mm] 

𝑆𝑆! EOS M290 EOS MaragingSteel MS1 8.5 80 10 December 2019 Guangzhou 

[40 50 75] 
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Table 2. Customers instances data. 
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[64 24 20] 

𝐶𝐶" EOS MaragingSteel MS1 50 15 November 2019 Shenzhen 

[100 100 25] 

𝐶𝐶# EOS MaragingSteel MS1 100 1 December 2019 Shantou 

[168 26 27] 

 

4. Results and discussion 

With reference to the case study data reported in Tables 1 
and 2 and according to the FC criteria described in Section 2.2, 
the FC matrix for this case study, evaluated by the cloud 
platform, is reported in Table 3. Nesting results are summarized 
in Table 4, for all the compatible instances pairings. Based on 
the results shown in Table 4 and comparing the deadline 
requirements reported in Tables 1 and 2, the supplier will select 
their most suitable pairings according to the processing time 
and a resource utilization criterion, i.e. 𝑃𝑃𝑃𝑃𝑃𝑃g  defined as the 
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Table 3. Functional Compatibility Matrix. 
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Table 5 reports the	𝑃𝑃𝑃𝑃𝑃𝑃g  computed for each solution, and 
considering that no deadline conflicts are reported, a likely 
scenario for supplier decision-making in terms of solution 
selection is: 

• 𝑆𝑆0 → [𝑆𝑆0 + 𝐶𝐶1 + 𝐶𝐶2] 
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To allow for the selection of the most suitable solution by 
the customer, the Customer Decision-Making Support Module 
provides a detailed visual report of the solutions to identify an 
appropriate match for the realization of the desired 
manufacturing tasks. The spider web chart shown in Fig. 4 
shows the solution characterization criteria for the supplier. 
With reference to 𝐶𝐶2, the two alternatives are represented by 
[𝑆𝑆0 + 𝐶𝐶1 + 𝐶𝐶2] and [𝑆𝑆2 + 𝐶𝐶1 + 𝐶𝐶2]. 

(a)  (b) 
Fig. 3. Nesting configurations for [𝑆𝑆# + 𝐶𝐶" + 𝐶𝐶#] 
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The first solution shows more favorable conditions in terms 
of user rating, distance-related cost, energy cost per customer 
unit, and processing time, while the second solution shows 
favorable conditions in terms of volume utilization and nesting 
density. The final choice is let to the customer who is enabled 
to select the most suitable manufacturing solution. 

5. Conclusions 

This paper reported the conceptualization and the 
development of an intelligent cloud platform to allow for a 
dynamic sharing of AM services. 

The platform is built with a modular structure for an 
effective handling and management. 

A database module is dedicated to the acquisition and the 
storage of users instances. An intelligent computation module 
firstly assesses the functional compatibility amongst users 
instances, then performs a nesting operation to generate 
geometrical configurations finally computes a number of 
attributes to generate and characterize solutions.  

A decision-support module is then developed to assist both 
suppliers and customers in the choice of the best solutions, 
based on specific solution characterization factors such as 
processing time, energy consumption, volume utilization, 
distance cost and user rating. 

Further work will be focused on the management of 
conflicting solutions as well as on a more accurate energy and 
processing time modelling possibly by using real-time sensor 
data. 
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