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A B S T R A C T

A high-statistics determination of the differential cross section of elastic muon-electron scattering as a function of
the transferred four-momentum squared, dσelðμe→ μeÞ=dq2, has been argued to provide an effective constraint to
the hadronic contribution to the running of the fine-structure constant, Δαhad, a crucial input for precise theo-
retical predictions of the anomalous magnetic moment of the muon. An experiment called ‘‘MUonE’’ is being
planned at the north area of CERN for that purpose. We consider the geometry of the detector proposed by the
MUonE collaboration and offer a few suggestions on the layout of the passive target material and on the place-
ment of silicon strip sensors, based on a fast simulation of elastic muon-electron scattering events and the
investigation of a number of possible solutions for the detector geometry. The employed methodology for detector
optimization is of general interest as it may be applied to the design of task-specific detectors for high-energy
physics, nuclear physics, and astro-particle physics applications.
1. Introduction

A clear picture of fundamental physics emerges at the dawn of the
third millennium, after Run 2 of the Large Hadron Collider delivered over
150=fb of integrated luminosity of 13 TeV proton-proton collisions. The
detailed studies of particle phenomenology at high energy by the CMS
and ATLAS experiments, together with the high-intensity and high-
precision studies of heavy quark properties offered by the LHCb and
Belle experiments, and the wealth of additional information collected by
a number of other dedicated facilities, all show that the Standard Model
of electroweak interactions and the theory of Quantum Chromodynamics
jointly provide a completely successful description of the phenomenol-
ogy of elementary fermions and hadrons down to length scales of 10�18

m.
While from a theoretical standpoint the Standard Model is considered

incomplete, and at most an effective theory which is bound to break
down at as of yet untested energy scales, there is no experimental evi-
dence that the theory may eventually fail to describe any of the phe-
nomena we will test with present or future facilities, with one notable
exception.

1.1. The muon anomaly and its uncertanties

At the time of writing, one observable quantity stands out as the only
systematical, persistent discrepancy of theory and experiment in particle
phenomenology: the anomalous magnetic moment g of the muon. As a
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evier B.V. This is an open access
charged elementary particle of half-integer spin, the muon possesses a
magnetic moment which is predicted by classical electrodynamics to be
twice its intrinsic angular momentum, in Bohr magneton units. Quantum
corrections affect that value through virtual loops (see e.g. Fig. 1). The
precise determination of the muon gyromagnetic ratio, or specifically
aμ ¼ ðgμ �2Þ=2 [1–4], performed at the Brookhaven laboratories, has
shown a disagreement with its theoretical prediction [5–8] athμ , at a sig-
nificance level (3:7σ) that deserves serious consideration:

ameasμ � athμ ¼ð116592091� 63� 116591820� 36Þ � 10�11: (1)

The experiment is being repeated with a more intense muon source at
Fermilab by the E989 group, where it is foreseen that the total uncer-
tainty on aμ will eventually be brought down by a further factor of four
[9–11]. Such a result has the potential of offering a conclusive proof that
new physical phenomena need to be accounted for in the calculation of
quantum loop diagrams affecting the muon-photon vertex; however,
uncertainties in the calculation of athμ do limit the severity of the hy-
pothesis test.

A limiting factor in the theoretical calculation of aμ is the precise
evaluation of hadronic loop contributions at the muon vertex. Until
recently, those contributions were estimated through the calculation of a
dispersion integral of the hadronic production cross section for s-channel
electron-positron annihilation. That reaction includes the same loop
contributions that affect the aμ calculation, but is complicated by several
resonant processes, to which correspond poles whose integration limits
2020
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Fig. 1. Schematic Feynman diagram showing how a hadronic quantum loop
may affect the muon-photon vertex, yielding a contribution to the muon mag-
netic moment.
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the overall theoretical precision.
It has been recently noted [12] that the hadronic Leading Order

(HLO) term could alternatively be computed by integration over the
space-like muon-electron elastic scattering process:

aHLOμ ¼ α
π

Z 1

0
dxð1� xÞΔαhadðtÞ;

t ¼ x2m2
μ

x� 1
:

In the above formulaΔαhad is the hadronic contribution to the running
of the fine-structure constant α, which can be determined without the
need of complex integration over resonant states if one is able to measure
the differential cross section of elastic muon scattering on electrons as a
function of four-momentum squared. An experimental determination of
the hadronic loop contributions to that reaction relies on the subtraction
of the theoretically-computed electroweak contributions to the differ-
ential cross section, which are known over the full kinematical range to
three-loop accuracy [13]. As the size of the hadronic contribution is of
only a few percent at most, concentrated in the region of large
four-momentum transfer, from an experimental standpoint one needs to
envision a very precise measurement of the differential cross section as a
function of q2. A shape fit to the distribution, where the electroweak
component constitutes a template with free normalization (the normal-
ization of the electroweak contribution is in fact less precisely known
than its shape [14]) may then enable the extraction of the wanted
parameter.

In order to be able to produce a significant decrease of the total un-
certainty on athμ , the total hadronic contribution to the scattering cross
section must be evaluated with a relative uncertainty of the order of a
percent or less. This poses demanding requirements on a successful
experimental campaign: very high statistics, as well as extreme care in
beating down systematic uncertainties. An intense beam of muons, well
suited for the task at hand, is available at the CERN north area. The muon
beam, originated by secondary decays of hadrons produced by fixed
target collisions of the SpS beam, at an energy of about 150 GeV has a
root-mean-square (RMS) cross section upstream of the COMPASS
experiment [15] of about 2.6 by 2.7 cm2, with small angular divergence
(RMS of 2.0 by 2.7 milliradians in the vertical y direction and the
2

horizontal x direction transverse to the beam, respectively). The MUonE
collaboration [16] plans to instrument 40 m of available space upstream
of COMPASS with 40 1-m-long measuring stations, each composed of a
relatively thin beryllium target followed by three tracking modules. The
latter are each made by coupling two double-sided silicon strip sensors,
respectively reading the x and y coordinates of incoming charged parti-
cles; the proposed arrangement is shown in Fig. 2a.

The envisioned modular arrangement of the detection system en-
ables a straightforward triggering strategy for the scattering events, as
well as simplicity of assembly and independence of the measurement
from systematic effects arising from the imprecise relative positioning
of the stations along the beam axis. An electromagnetic calorimeter
located at the end of the array of stations might complement the
system, providing redundancy in the measurement of the final state
electron, as well as reduction of beam-induced and physics back-
grounds and a removal of the ambiguity in the signal kinematics for
configurations in which the muon and electron emerge from the
interaction with similar divergence.

As already pointed out, the success of the proposed measurement
rests on the control of a number of subtle systematic uncertainties. In this
respect, the resolution (and its uncertainty) with which the parameters of
electron and muon trajectories can be determined, once experimental
biases are accounted for, is the crucial ingredient of the measurement:
the large sample statistics then allow for a precise in-situ calibration and
inter-alignment of the detector components. The choice of silicon strip
modules for the tracking of incoming muon and outgoing muon and
electron is certainly sound and cost-effective, in particular in view of the
good properties of appropriately-sized sensors that are being developed
for the much more massive task of instrumenting the CMS tracker for its
Phase 2 upgrade [17], and which the MUonE collaboration plans to
employ in their detector construction.

1.2. Goal of this study and plan of the document

In this document we consider the issue of what could be the optimal
arrangement of detection elements and target material for the final goal
of a precision measurement of the hadronic contribution to the Δα
parameter, the running of the EM coupling constant. Indeed, the choice
of the position of passive and active material along the beam axis will be
shown to have a significant effect in the precision with which the event
kinematics can be reconstructed. That this is the case can be appreciated
intuitively by considering that, for a given beam energy, the scattering
kinematics are essentially determined by the knowledge of the incident
muon direction and by the angles θe, θμ at which electron and muon
scatter off it. A concentrated target (a 1.5 cm-thick layer of beryllium is
envisioned for each detection station in the submitted design of the
MUonE detector [16]) will cause a small amount of multiple scattering to
incoming and outgoing particles before the incoming muon interacts and
the outgoing pair exits the target. This small smearing in the particles’
directions corresponds to a loss of information on the event kinematics
that is irrecoverable, regardless of the precision of the trajectory mea-
surements upstream and downstream. A distribution of that 1.5 cm
Be-equivalent material into three layers of a third of that thickness, each
one alternating with a trackingmodule, would already allow to obtain for
each track at least two pairs of measurement points ‘‘closer’’ (in radiation
length metric X0) to the interaction point, with a reduction of the un-
certainty on their angles.

In addition, the careful positioning of a large number of thinner target
layers, which could be precisely spaced from one another to uniformly
populate the space between the tracking modules (a spacing by 3 mm
would e.g. do the job if 300 50μ m-thick layers per station were used) if
stacks of target layers interleaved by proper spacing frames were con-
structed, would yield a great benefit through the constraining power of
the scattering position along the beam axis (which we will denote by z
axis in the following) in the fit to the particle trajectories. In fact, since
the scattering takes place only within the layers of target material or



Fig. 2. Top: Proposed layout of a 1m-long tracking station the MUonE detector. Bottom: layout resulting from a distributed target scheme with 18 equally-spaced
layers per station. From top to bottom is shown the arrangement of a detection module into two double-sided silicon strip sensors, the layout of a 1m-long detec-
tion station, and the full apparatus. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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silicon sensors,1 the knowledge of where the layers are placed becomes a
powerful constraint on the z position of the interaction vertex, which in
turn can be used to constrain the event kinematics. We will return to this
important point in Sec. 4.1.1.

In our study we consider a number of possible arrangements of the
target material, with the goal of identifying the design choices mini-
mizing the uncertainty with which Δαhad can be extracted from a sample
of interactions. Of course, an accurate assessment of the overall uncer-
tainty requires in principle a complete model of the detector, of the
physics of the scattering and of electron and muon radiation losses, of the
detection of particle hits in the silicon sensors, and of all relevant back-
grounds. Such a task can only be achieved by a full simulation in GEANT4
[18]. For a quick study, however, which could more nimbly explore the
space of alternative design choices, we produced a simplified description
of the above elements with Cþþ code. We attempted to limit the modeling
to the essential ingredients, creating a fast custom simulation which we
believe is still sufficiently accurate to provide the answers we are looking
for. Those answers restrict the space of advantageous geometries to a
subset on which a full simulation can more narrowly focus, to fine tune
the desired answers. We leave this optional investigation task to the
MUonE collaborators.

The presented studies specifically address the use case of improving
the precision of the measurement of the muon anomalous gyromagnetic
factor, and are as such of admittedly limited interest. However, we sug-
gest that the employedmethodology is potentially useful for the design of
particle detectors developed for application-specific tasks in a wide range
of situations. While the concept of overall optimality of a multi-purpose
particle detector is a very ill-defined one, this need not be the case when a
device is constructed with a single, well-specified objective. We argue
that in these situations, which are not uncommon in several areas of
1 We neglect interactions with electrons from nitrogen or oxygen in the air,
which contribute to the total material budget by up to 3.9% at standard tem-
perature and pressure. More discussion on this detail is provided in Sec. 3.1.3
infra.

3

fundamental physics research, a principled approach such as the one
followed in this work may be truly beneficial.

The contents of this article are as follows. In Section 2 we offer a quick
reminder of the main aspects of the theory of muon-electron scattering
and its relevance for the measurement of the hadronic contribution to g�
2. In Section 3 we describe the simulation code used for the optimization
studies. Section 4 is devoted to describing the event reconstruction and
the likelihood function. In Section 5 we show how a distributed target is
capable of significantly increasing the precision of the event recon-
struction, and we quantify the potential gain in the achievable precision
on the Δα parameter. In Section 6 we further the studies of Section 5 by
considering the effect of additional variations that concern the placement
of the detection modules, the offset of the placement of strips in the two
sides of double-sided sensors, and the angle of stereo strip sensors. In
Section 7 we discuss how the uncertainty in the longitudinal positioning
of sensors as well as their tilt or bow off the plane orthogonal to the z axis,
whose value may affect the precision with which the incoming muon
momentum is determined, can be constrained to arbitrary precision by a
large statistics sample of scatterings. This offers a powerful complement,
or even a cheap alternative, to the laser-based holographic system
envisioned by the MUonE collaboration to constrain those parameters. In
Section 8 we summarize our findings in a set of recommendations on the
most favourable detector geometries and design choices.

2. Elastic muon-electron scattering

The interaction of energetic muons with electrons in a fixed target is
dominated by its elastic scattering part, which at leading order proceeds
through the t-channel exchange of a single virtual photon: indeed, the
determination of the differential rate of that process as a function of q2 is
what motivates the measurement, due to the contributions that the
leading electromagnetic process receives from hard-to-calculate hadronic
loops. Electromagnetic and weak contributions to the running of α are
calculated to very good precision; granted that, one can subtract off the
measured differential cross section the calculated electroweak part,
obtaining an estimate of the hadronic part.
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From a purely experimental point of view, elastic scattering μe events
are quite easy to distinguish from anything else, thanks to stringent ki-
nematic relations binding the scattering angles at which the two bodies
emerge in the final state.2 We will briefly review those relations in what
follows.

In the laboratory frame3 we call pμ and Eμ the four-momentum and
energy of the incoming muon and pe, Ee the four-momentum and energy
of the scattered electron. In that frame the target electron can be
considered to be at rest to good approximation. The following relations
allow to compute the variables s and q2 ¼ � t:

s ¼ m2
μ þ m2

e þ 2meEμ;

q2 ¼ �t ¼ 2meEe � 2m2
e :

For any given value of the incoming muon momentum, there exists a
maximum four-momentum transfer, � tmin ¼ q2max. This can be obtained
as

q2max ¼
s2 þ m2

μ þ m2
e � 2smμ � 2sme � 2mμme

s
: (2)

Since we will consider, in the rest of this document, the specific
experimental conditions of muon-electron scattering produced by the
beam of muons available at the CERN north area, which offers muons of
energies in the ballpark of Eμ ¼ 150 � 160 GeV at high intensities (with
a nominal average rate of 1:3 107 Hz), it is useful to quote in passing the
maximum four-momentum transfer that can be produced in those con-
ditions: taking the reference value Eμ ¼ 150 GeV, we find q2max ¼ 0:143
GeV2.

In the considered frame, where the initial state electron is at rest, the
elasticity condition provides a relation between the polar angles θμ, θe of
the final-state bodies, measured relative to the direction of the incoming
muon:

tanθμ ¼ 2tanθe

ð1þ γ2tan2θeÞ
�
1þ Eμmeþm2

μ

Eμmeþm2
e

�
� 2

: (3)

where we have set γ ¼ Eμþmeffiffi
s

p . The relation corresponds to a characteristic

curve in the ðθμ; θeÞ plane, which has a maximum value of θμ ’ 0:005 (see
Fig. 3) for an incident energy Eμ ¼ 150 GeV. Since the kinematical region
where the hadronic contribution to Δα is the highest corresponds to the
largest values of four-momentum transfer, where θe is of the same order
of magnitude of the muon scattering angle θμ, it is clear that the mea-
surement is quite challenging, since the determination of the q2 of the
corresponding elastic scattering events will have to rely on estimating
track angles to an absolute precision in the 10�4 radians ballpark. This
can, however, be achieved with silicon tracking detectors, as will be
described in Sec. 3.2.

3. Fast simulation of elastic muon-electron scattering and event
reconstruction

3.1. Generalities and generation of the scattering

For our study we produced a software description of the physics and
of the detector, as well as a reconstruction of the event kinematics, based
on Cþþ code, wherein we made use of several libraries from the ROOT
analysis software [19]. ROOT offers a random number generator of good
2 Of course, in a strict sense elastic scattering is an idealization of the physics
of muon-electron interactions, as the emission of arbitrarily soft photons, e.g.,
has to be considered beyond leading order; we neglect this aspect in what fol-
lows, although we do note its power to slightly modify some of the conclusions
of this study.
3 The frames of reference used in this document are described infra, Sec. 3.2.4.
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quality, TRandom3 [20], which is based on the Mersenne Twister
Generator; its periodicity is of about 106000. We use four different se-
quences of random numbers: one to simulate the scattering kinematics,
one to simulate the multiple scattering effects to particles propagation in
the material, one to deal with noise in the silicon strips of the tracking
modules, and one to simulate a non-perfect efficiency of the sensors. In
this way, by properly reusing the same random sequences we can subject
the very same scattering events to different detector geometries,4 mini-
mizing the effect of random sampling of their physical phase space, as
will be clarified in the following.

The formulas of the previous section allow a complete description of
the scattering kinematics. However, we need to define a range of q2 for
the events we wish to simulate, since from an experimental standpoint
the extraction of the value of Δαhad requires to consider events in a
restricted kinematical region. The MUonE collaboration suggests that the
region θe < 0:02 radians be used; in any case, larger scattering angles for
the electron correspond to very small values of q2, where the hadronic
contribution to the running of α is completely negligible. Since the cross
section falls very steeply with q2, and we wish to consider unweighted
events in our study to simplify the statistical treatment, the setting of a
lower threshold on the four-momentum transfer of simulated scatterings
speeds up all calculations. As is shown below, the experimental resolu-
tion on q2 is of about 0.0002 GeV2 at its low end (see Sec. 5.1), so the
simulation must extend to slightly smaller values than those we aim to
study, in order to correctly model the shape of the measured distribution
after accounting for experimental smearing. We found that generating
interactions in the q2=GeV2 range ½0:006;0:143� is appropriate for our
study. This corresponds to θel values up to 0.0132 radians.

3.1.1. Incoming muon beam
In the following we discuss the generation of the scattering kine-

matics and the propagation of particles through the material. First an
incoming muon is generated, sampling from a Gaussian bivariate distri-
bution in x; y the particle position at the z ¼ 0 coordinate we take as the
origin of the detector along the beam line (see Sec. 3.2.4, infra), and
sampling another Gaussian bivariate distribution in θx; θy to model its
initial direction, where the two angles correspond to the particle diver-
gence from the z axis. We consider the following nominal parameters of
the CERN muon beam [16], assumed to operate at an energy of 150 GeV:

� average muon energy 〈Eμ〉¼ 150 GeV;
� energy spread 3.5% (assumed Gaussian), so σEμ ¼ 5:25 GeV;
� beam transverse cross section: σx ¼ 2:6 cm, σy ¼ 2:7 cm (profile
assumed Gaussian);

� beam divergence: σðθxÞ ¼ 0:00027 rad, σðθyÞ ¼ 0:00020 rad (profile
assumed Gaussian).

In this work we assume that it is possible to extract an arbitrarily
precise measurement of the average beam energy5 by inverting the ki-
nematics for scattering events where final state muon and electron
emerge with the same angle; this has been demonstrated by the pro-
ponents of theMUonE experiment [16]. We do not assign any uncertainty
to the average muon beam energy 〈Eμ〉; the same is done with the above
parameters, which model much less crucial aspects of the incoming
muons kinematics. For studies of the effects of different detector geom-
etries on the resolution achievable on the scattering kinematics we set to
zero the energy spread σðEμÞ, which eliminates that nuisance parameter
from the point estimation problem. This corresponds, in statistical terms,
to the factoring out of that ancillary statistic, effectively conditioning to a
4 Of course final state particles with identical initial direction will undergo
different scattering, even in an average sense, if different detector assemblies are
considered, hence the correlation is imperfect.
5 The procedure requires limited statistics to be carried out, so even relatively

unstable beam conditions can be coped with.



Fig. 3. Relation between the divergence of final state muon (θμ, on the y axis) and the divergence of final state electron (θe, on the x axis) for elastic muon scattering of
150 GeV on a fixed target.

6 The functional form and the fitted parameter values were provided by C.
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subspace of the measurement space where the statistical inference is
more precise. The parameter is ancillary on the derivative of resolution
with respect to detector geometry parameters, which is the focus of some
of our investigations.

3.1.2. Modeling of multiple scattering in the material
The incoming muon is propagated through the material of the de-

tector apparatus (whose description is given below, Sec. 3.2) as a straight
line in regions devoid of material, broken by deviations and shifts due to
the multiple scattering effects that the particle undergoes in crossing each
material layer. To model the latter we follow the description proposed by
the PDG [21]. The model suggests that the crossing of a layer of thickness
Δz and of radiation length X0 (both properly modified by the factor 1=
cosðθμÞ to account for the divergence of the incident particle off the z axis)
by a particle of momentum p produces an angular deviation ΔθMS and a
transverse offset ΔhMS, the latter distributed uniformly in ½0;2π� around
the original particle trajectory. Following [21] we sample from a
Gaussian distribution two numbers g1 and g2, and then we compute:

θ0 ¼ 0:0136
p

ffiffiffiffi
X

p
0ð1þ 0:038 log X0Þ;

ΔθMS ¼
ffiffiffi
2

p
g2θ0;

ΔhMS ¼ 1ffiffiffi
1

p
2
g1Δz sin θ0 þ 0:5g2Δz sin θ0;

ΔxMS ¼
ffiffiffi
2

p
ΔhMS cosΔφMS;

ΔyMS ¼
ffiffiffi
2

p
ΔhMS sinΔφMS;

where ΔxMS and ΔyMS above are the resulting offsets from the x; y posi-
tion where the particle hits the layer. ΔθMS and ΔφMS are then combined
with the incident particle direction to obtain the emerging particle di-
rection.

3.1.3. Generation of elastic μe scattering
The fast simulation we produced is unsuitable to handle the gener-

ation of backgrounds and their effect on tracking resolution and other
beam-related effects. We note that these degradation effects have
arguably no large impact on the determination of the relative merits of
different geometries. In our study all of the simulated incoming muons
undergo elastic scattering with an electron, and therefore constitute our
‘‘signal’’. In particular, we do not attempt to include a simulation of the
complex process of inelastic scattering in our data. It must be noted that
5

physical process does have a potential impact in a geometry optimiza-
tion, as its presence ‘‘thickens’’ the curve describing the functional
θμðθeÞ relation of Fig. 3 and thus potentially contaminates the cross
section determination if the q2 resolution is not very high. We believe
that our focus on the precise determination of q2 in our optimization
study does indirectly account for it, but acknowledge that indeed more
studies are necessary to understand the impact of this neglected
ingredient.

The q2 ¼ �t value of the scattering interaction is sampled from the
formula

dσ
dt

¼ 4πα2

�
m2

μ þ m2
e

�2 � suþ t2
.
2

λt2
½1þ 2ΔαðtÞ�; (4)

where λ and s; u are defined by

s ¼ m2
μ þ m2

e þ 2meEbeam;

u ¼ 2m2
μ þ 2m2

e � s� t;

λ ¼ s2 þ m4
μ þ m4

e � 2sm2
μ � 2sm2

e � 2m2
μm

2
e :

The hadronic part of the function ΔαðtÞ is modeled by the following
two-parameter ‘‘fermion-like’’ form6:

p1 ¼ 0:00239479;
p2 ¼ 0:0523448;

ΔαðtÞ¼ p1
3

0BB@� 5
3
� 4

p2
t
þ 8 p22

t2 þ 2 p2
t � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4 p2
t

p log
����1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4p2t
p

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4p2t

p
����
1CCA: (5)

The scattering is generated in the second section of an array of four 1-
m-long sections of equal shape. This arrangement allows the modeling of
the interaction of the incoming muonwith at least one full station, and its
detection in the corresponding siliconmodules; as well as the study of the
effect of at least two full stations and their material distribution on the
reconstruction of the final state kinematics.

The position along z at which the interaction is simulated to occur is
sampled from a uniform distribution in radiation length metric within
Carloni Calame, to whom we are indebted.
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each of the layers of beryllium-equivalent or silicon material of which the
station is chosen to be composed (see infra), in such a way that the total
number of simulated interactions distributes exactly evenly along the
material depth, but retains stochasticity within the thickness of each
material element. So, for instance, if the station is composed of a single
1.5 cm-thick beryllium layer (corresponding to 0:0425X0

7) followed by
twelve 320-μm silicon sensors (corresponding to 0:003415X0 each) ar-
ranged in three modules of two double-sided detection units, the total
thickness of the station is of 0:08348X0. At the start of the simulation we
determine howmany interactions to generate in each layer from the total
number of requested scatteringsNtot , enforcing that all of them take place
within the same station (see infra, Sec. 3.2, for a description of the
simulated detector): 0:509Ntot of them evenly distributed among the
beryllium targets, and 0:0409Ntot of them in each of the 12 silicon sensor
layers. Within each layer, the actual z position of each of the required
interactions is generated at random from a uniform distribution. This
arrangement allows to reduce the stochasticity of the simulated dataset,
in the sense that the z-vertex distribution of the dataset is the same as
those of all other datasets produced to test alternative geometries; the
same random number sequences are also used for the other stochastic
parameters in these scattering events, for the same reason. The
randomness within each layer is necessary to avoid annoying discrete-
ness effects that would occur for a completely fixed spacing of the in-
teractions along z, because the interplay of a uniform spacing of the
scatterings with the discrete placement of silicon detector strips would
produce non-smooth resolution maps as a function of the muon and
electron angles.

The attentive reader will no doubt have noticed that above we have
neglected to discuss the presence of a medium between the layers of
beryllium and silicon along the particles’ paths. At standard pressure and
temperature, air filling the 98.118 cm of empty space within each station
corresponds to a non-negligible addition of 0:03229X0, i.e. an increase of
about 3:9% of the material thickness provided by target and detection
layers. Due to its distribution along the station, the effect of air goes in the
same direction we are advocating in this article –that of distributing the
scattering interactions along the stations width. However, it also worsens
the power of the z vertex constraint, as one must account for the possi-
bility of scatterings taking place where there is no solid material of
exactly known position. Simulating interactions in air requires a doubling
of the layers described in the code, both in the propagation of particles
(with the resulting need to model multiple scattering in air) ad in the
likelihood fit; we found this too taxing for the CPU consumption of our
studies, so we omitted the description of air in our fast simulation. We
believe that for the scope of this document the approximation of
neglecting the effect of scatterings in air can be accepted, although it
should be kept in mind as an improvement for a more precise study. Here
we limit ourselves to point out that if the target layers of each station are
assembled into three rigid 31.5-cm-long structures, as seems opportune
(see infra), these can easily be filled with low-pressure helium and sealed.
The resulting layout of a station then consists of 94.5 cm of target blocks
containing in total 1.5 cm of Be and 93 cm of gaseous He, plus 0.384 cm
of Si in 12 layers, plus a remaining 5.116 cm of air. The equivalent X0 of
such a setup is of 0:8348X0ðBeþSiÞ þ 0:00163X0ðHeÞ þ 0:00168X0

ðairÞ ¼ 0:8528X0 for standard pressure filling, i.e. an increase of less than
0:4% of total radiation length from that due to beryllium and silicon
alone. If straightforward to implement, this is a simple and advantageous
remedy to the worsening effect of scatterings with no z-vertex constraint.

3.1.4. Rate of scattering events
A calculation of the rate of the interactions in the station, and a

corresponding determination of the equivalent integrated luminosity and
run time of a simulated data set of Ntot scatterings, is not necessary for a
7 All the constants used in this work, unless otherwise noted, are taken from
Ref. [21].
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study focusing on relative differences in the resolution of the measurable
quantities. In any case, given a total widthWBe ¼ 1:5 cm of beryllium and
WSi ¼ 0:384 cm of silicon material per station, the following calculation
provides those numbers:

USi ¼ 28:0855 gr=mol
UBe ¼ 9:0122 gr=mol
ρSi ¼ 2:33 gr

�
cm3

ρBe ¼ 1:85 gr
�
cm3

Ne� ;Si ¼ ρSiZSiNA

�
USi ¼ 6:994 1023 cm�3

Ne� ;Be ¼ ρSiZSiNA

�
USi ¼ 4:945 1023 cm�3

σμe;el: ¼ 245μb ¼ 2:45 10�28 cm2

Ne� tot ¼ WBeNe� ;Be þWSiNe� ;Si ¼ 10:103 1023 cm�2

Nel: sc:

�
μ ¼ σμe;elNe� tot ¼ 2:475 10�4;

from which one obtains

Nel: sc:tot ¼RμNel: sc:=μ ¼ 3217:87 Hz; (6)

where we have used the nominal average rate of muons of the CERN
beam at 150 GeV running energy, Rμ ¼ 1:3 107 Hz. Therefore a simula-
tion of 106 incident muons, all of which are forced to produce an elastic
scattering interaction within a station, corresponds to a running time of
about 5 min for the considered station.

The scattering q2 determines uniquely the emerging angles of the
electron and muon. In a reference system where the incoming muon
travels exactly along the z axis, the divergences from the z axis of the two
outgoing particles, θe and θμ, follow the distributions determined by the
equations of the previous section. The azimuthal angles of the two par-
ticles in the orthogonal plane xy are generated such that θe has a uniform
distribution in ½0;2π� and, to respect momentum conservation, φμ ¼ φe þ
π. The generated three-vectors of electron and muon are then rotated to
obtain their value in the laboratory frame, accounting for the incoming
muon direction; for the transformation of coordinates see infra, Sec.
3.2.4.

Following the interaction, the two final state particles are propagated
through the detector. Besides the multiple scattering effects already
mentioned above, we account for radiative losses of the electron mo-
mentum, so that the description of the electron trajectory correctly ac-
counts for that effect (the multiple scattering formula (see Sec. 3.1.2)
includes the dependence on momentum for the tracked particles).

3.2. Detector description

In order to study the effect of different design choices for the MUonE
apparatus, we decided to simulate a set of four contiguous stations –four
meters of apparatus, i.e. a tenth of its full length. The description of four
stations in series allows to fully simulate the relevant inputs to a full-
blown reconstruction of the event kinematics. In particular, by enforc-
ing that all scatterings take place in the second station, we allow for the
complete measurement of incoming and outgoing particles for the
simulated events: the measurement of an incoming muon in three to six
silicon modules (i.e., in up to two contiguous stations) and the accounting
for multiple scattering effects on the measurement precision due to the
chosen material configuration (which is always assumed here to be
identical in all stations); the interaction of the incoming muon with
material in any one of the beryllium targets or within each of the silicon
sensors of the second station of the set of four; and the tracking of the
outgoing muon and electron trajectories in six to nine silicon modules
downstream of the interaction.

3.2.1. General considerations
Since each tracking module is composed of two adjoined double-

sided strip sensors, the first one providing two readings of a coordinate
transverse to the z axis (chosen to be the x coordinate here) and the
second two measurements of the other (y), each module nominally pro-
vides up to four independent measurement points along the trajectory.



9 In truth, a small acceptance loss results from the rotation of one of the
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Following the MUonE reconstruction logic, the two x and the 2 y mea-
surements are combined to create x and y ‘‘stubs’’. Then, particle tracks
considered in this study are constructed from triplets of x and y stubs in
three consecutive modules; one of them is then by construction a stereo
module, where the stubs are created in the rotated x’, y’ local coordinate
set (see infra, Sec. 3.2.4 for the rotation relations).

Here we recall that the original design choice of the MUonE detector
envisions the repeated scheme of 40 independent tracking stations, each
offering a limited X0 thickness, as a way to acquire enough statistics of
muon-electron scatterings (foreseen to carry out the desired measure-
ment in two years of data taking, if a target of 60 cm equivalent of
beryllium is employed) without suffering from large resolution losses due
to the resulting multiple scattering effects that incoming and outgoing
particles would undergo in a single thick target block. The modularity of
the system is also a way to avoid systematic uncertainties related to the
interalignment and positioning of the stations with respect to one
another, as well as to provide for the ideal granularity of a triggering
logic. This implicitly assumes that three tracking modules are sufficient
for an effective reconstruction of the trajectory of the incoming and
outgoing particles. We will see that this assumption is well borne by
simulation studies; on the other hand, the taming of systematic un-
certainties due to longitudinal misplacements, which may come into play
in case one wishes to combine measurements in adjoining stations, is a
very complex issue. We discuss some aspects of the general problem in
Sec. 7. As for the triggering strategy, in this study we waive the constraint
that each station be endowed with self-triggering capabilities. This al-
lows to be free to consider the combination of measurements in different
stations, and to investigate advantageous alternatives to the original
design; of course, the price to pay is that the resulting trigger logic to be
constructed becomes slightly more complicated. In addition, one has to
renounce to the freedom of a non-calibrated positioning of the stations
next to each other, as the tracking becomes sensitive to it.

As an additional point to be noted, we ignore in this study the effect of
the possible addition, at the end of the set of 40 stations, of an electro-
magnetic calorimeter. The calorimeter may be useful for the discrimi-
nation of electron and muon signals when the two particles emerge with
similar angles from the scattering, breaking the kinematic ambiguity; it
may also provide for a stand-alone determination of the electron energy,
which helps the determination of the scattering q2; and it may help
distinguish inelastic scatterings producing photons, μe → μeγ. However,
strictly speaking the calorimetric measurement is not mandatory to carry
out a measurement, as for a well-known incoming muon momentum a
full closure of the scattering kinematics only requires the determination
of the trajectories of incomingmuon and outgoing electron –the outgoing
muon direction is already redundant if one aims to determine just the
event q2. The inclusion in this study of an electron energy measurement,
riddled as it is with complex issues related to the description of the
radiative losses of electrons produced far upstream, as well as with the
effect of beam-induced backgrounds, would make significantly more
complex an already quite extended and multi-parametric problem, and
would ultimately prevent the formulation of very specific optimization
questions, as other considerations –relative cost of the two sub-detectors
being one of them– would then come into play. We leave the study of
combining an optimized tracking system with the most appropriate
calorimetric design to future work.

3.2.2. Description of the stations layout
For each station we retain the general MUonE scheme of three silicon

modules, each comprising two double-sided silicon sensors (the two sides
separated by a gap ranging from 1.8 mm to 5.8 mm,8 each pair reading
8 The CMS modules will be built with a 1.8 mm spacing between the two sides
of double-sided sensors; however, infra (Sec. 6.1) we entertain the possibility
that the sensors be glued together with a wider gap, while keeping the total
width of a module fixed.
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out one coordinate (x the first one, and y the second one, moving from
smaller to larger z values along the beam); the two double-sided elements
are mounted together such that the assembly has a total width of 1.5 cm.
We also keep the proposed scheme of having the second of the three
modules measuring coordinates at a stereo angle, but the rotation angle is
treated as a changeable parameter in our model, such that we may be
sensitive to the effect of a different angular rotation from the default one
of 45� (although we do not expect any, due to approximate azimuthal
symmetry considerations9). We assume, as MUonE does, that these are
1016-strip sensors with a pitch of 90μ m and 320μ m of thickness, ar-
ranged in a 10� 10 cm2 layout: as already mentioned, this conforms to
the assumption that the experiment will be built with the same sensors
used for the Phase-2 upgrade of the CMS tracker, with very considerable
savings of time and money. We do allow for a transverse staggering (in
the [0,45]μ m range) in the placement of the strips on the two sides of a
double-sided module, to study what relative offset of the strips guaran-
tees optimality of the resulting tracking. Intuitively, a 45-μm offset of the
strip of one of the two sides reduces by a factor of two (hence from 90=ffiffiffiffiffiffi
12

p ¼ 26μm to 13μm) the position uncertainty for orthogonally incident
particles which leave a signal in only one silicon strip on each side (see
Fig. 4). Charge sharing in more than one strip, with a resulting multi-strip
cluster, further decrease the position uncertainty, but this is a rare
occurrence for most of the tracks of interest, which travel with very small
divergence (see Fig. 6, Sec. 5.1). In any case, since the fraction of multi-
strip clusters increases in a non-trivial way with the angle of incidence of
the particles, we leave it to our simulation to determine the optimal
configuration10.

We keep the equivalent radiation length of the target material in each
station fixed to the value chosen in the original MUonE design, i.e. 1.5 cm
of beryllium. This allows for an apples-to-apples comparison that factors
out possible differences in the statistical uncertainty resulting from
changes in the total radiation length, a parameter with which the number
of useful scatterings scales linearly. However, there ends our set of as-
sumptions for the layout of the target material. In fact we aim to study,
with the definition of appropriate parameters, the performance of the
measurement resulting from the following choices:

� the number of layers into which an equivalent 1.5 cm Be thickness is
divided;

� their relative placement (i.e., the inter-layer spacing);
� the distance of the set of layers from the closest silicon module
downstream;

� the stereo angle of rotation of the middle module of each station;
� the staggering of strips between the left and right sensor in each
double-sided sensor;

� the spacing between the two double-sided sensors in each tracking
module.

As already noted, it is impractical to construct a device with a large
number of thin beryllium layers. Other materials provide for easier
handling and machining, and offer better rigidity. One such material is
graphene, but there are other possible candidates. As the exact choice of
target material has little or no effect on the measurable features of muon-
electron scattering, in this study we stick with a description which uses
layers of beryllium-equivalent material. If the study should evidence
advantages of some geometrical layout with respect to others, it would
tracking modules, if stubs are requested to be recorded there, as there is then an
imperfect overlap of coverage of the transverse plane; the acceptance loss is
correctly factored in by the quantitative figures of merit discussed in Appendix
A.
10 We note here that our modeling of hit generation in the sensors is rather
crude (see Sec. 3.3), hence this parameter should be subjected to studies using a
full GEANT4 description.



Fig. 4. Effect of vertical staggering of one of the two
arrays of silicon strips of a double-sided sensor with
respect to the other. On the left is shown the case of
no staggering, when a low-divergence track produces
a single-strip hit on both sides. The green band shows
the inferred precision of the vertical position of
passage of the track, which equals the strip pitch. On
the right, a staggering equal to half the strip pitch
produces a reduction by a factor of two of the com-
bined uncertainty in the vertical position of the track
crossing. (For interpretation of the references to
colour in this figure legend, the reader is referred to
the Web version of this article.)
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have to be complemented with a more precise study of similar solutions
employing different materials. The subtlety which requires this addi-
tional step lays in the non-negligible effect on the angular and q2 reso-
lution of varying even by small amounts the thickness (as measured in
length units, by keeping the equivalent X0 fixed and changing the ma-
terial) of thin layers of target material, due to the constraining effect of
the prior on scattering vertex z position that one can impose in a multi-
track fit to the event kinematics. We will discuss this point in detail in
Sec. 4.1.

In our study we assume that the relative precision within which thin
layers of target material can be placed is of 10 μm. While this is also a
parameter in our detector description, whose effect is duly studied, we
believe the quoted figure is a reasonable assumption. In fact, it seems
feasible to construct a stack of thin layers of, e.g., graphene (say, 50 μm-
thick each) alternated with spacing ‘‘frames’’ (which keep the target
layers in place while providing no impedment to the passage of particles
in a 10� 10 cm2

fiducial transverse area) of, say, 3 mm of thickness. A
stack of 100 such layers would form a 30.5 cm long distributed target,
which could be placed with high longitudinal accuracy between two
silicon modules using a laser alignment system such as the one currently
under development by the MUonE collaboration, or by other methods
discussed below (see Sec. 7). A well-built distributed target would
guarantee a very precise relative placement of each of the thin layers,
offering a very tight constraint on the z position of the scattering vertex,
provided that the structure retained sufficient rigidity. While the above is
only a preliminary consideration, we indeed show infra (Sec. 5) similar
arrangements of different thicknesses of target material, in a number of
spacing configurations.

3.2.3. Parametrization of the stations layout
The layout of each station is specified by choosing the following pa-

rameters relative to the placement of the target and sensor layers.
Fixed parameters:

� Number of detection modules per station: 3;
� Pitch ¼ 0:009 cm: strip pitch in silicon sensors;
� WSi ¼ 0:032 cm: width of each element of a double-sided silicon
sensor;

� Wmod ¼ 1:5 cm: total module width;
� Δzmod ¼ 0:2 cm: space left and right of tracking modules;
� Δzst ¼ 0:0 cm: space between stations;
� Wtot

Be ¼ 1:5 cm: total width of beryllium per station;
� Station length: 100 cm.

Variable parameters:

� ΔzSi (default 1.8 mm): spacing between silicon layers in double-sided
sensors;
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� Zmod0: z position of left edge of first detection module in a station;
� Zmod1: z position of left edge of second detection module in a station;
� Zmod2: z position of left edge of third detection module in a station;
� NBe0 (default 1): number of target layers to the left of the first
detection module;

� NBe1 (default 0): number of target layers to the left of the second
detection module;

� NBe2 (default 0): number of target layers to the left of the third
detection module;

� ΔzBeSi (default 3.5 cm): spacing between right edge of rightmost
target and left edge of subsequent detection module;

� Δhstag (default 0μm): staggering of strips on right side of double-sided
sensor with respect to strips on left side of same sensor;

� Φstereo (default π=4): angle of rotation of stereo strips in middle
detection module.

Once a value is defined for the above parameters, the uniform spacing
between the target layers then results to be
ΔzBe ¼ ð100�Δzst �3Wmod �1:5�3ΔzBeSiÞ cm. A possible layout with
eighteen uniformly spaced target layers was shown supra, in the bottom
panel of Fig. 2.

3.2.4. Coordinate systems
In the laboratory system we consider the z axis as oriented along the

nominal center of the muon beam direction. The y coordinate points
upward, and the x coordinate points horizontally and is oriented to make
a right-handed ðxyzÞ system. When orienting positive z directions toward
the right (as we do in all sketches of the detector and in all discussions of
the event topologies in this document), we take the origin of the z axis at
the left edge of the first of the simulated detection stations. Particle
trajectories in this reference system are described by their divergence off
the z axis, θ, and by their azimuthal angle in the xy plane, φ. Throughout
the document we distinguish angles of incoming muons, outgoing
muons, and electrons by using the subscripts in, μ, and e respectively.

Tracking modules have strips oriented along the y axis in the sensor
positioned at smaller z coordinate and along the x axis in the sensor at
larger z, hence these sensors respectively read out x and y positions for
crossing particles. Strip positions and hits on these sensors are measured
in cm from the center of the sensor, where the z axis lays; hence local
module coordinates in the transverse plane coincide with laboratory
coordinates. An exception is the center module of each sensor, which is
rotated by a stereo angle φstereo around the z axis with respect to the other
two modules. In this case the x, y coordinates of hits in the laboratory
system are derived from the local x’, y’ coordinates of the module rotated
by an angle φstereo through the following rotation relations:

x ¼ x’cosφstereo � y’sinφstereo

y ¼ x’sinφstereo þ y’cosφstereo:
(7)
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The elastic scattering reaction results from the incidence along the
direction u!¼ ðux; uy ; uzÞ of a muon from the beam on an electron
considered with very good approximation at rest in the laboratory. In
that frame of reference the incoming muon has a divergence θin ¼
arccosuz and an azimuthal angle φin ¼ arctanuy=ux. It is advantageous to
initially describe the scattering kinematics in a system ðxSC; ySC; zSCÞ
rotated such that the incoming muon direction coincides with the zSC

axis: one may define the direction of xSC and ySC by performing a rotation
of the laboratory frame ðx; y; zÞ by an angle θin around the axis defined by
the vector product of the beam axis versor bz ¼ ð0;0; 1Þ (the z axis in the
laboratory system) with the versor u!:

R
!¼bz � u!:

The rotation is undefined if the incoming muon has zero divergence;
in that case, the two systems coincide. It is worth noting here that nu-
merical instabilities may arise in the calculation of derivatives of the
likelihood function (see Sec. 4.1, infra) in the case of extremely small
incidence angles. These have no effects on the results presented here, but
should be considered with care if more accurate studies are performed.
3.3. Reconstruction of hits and stubs in silicon sensors

As we discussed supra, the silicon sensors considered in this work are
those designed for the inner tracker of the CMS Phase-2 detector upgrade.
These are double-sided, w ¼ 320μ m-thick silicon layers, of approxi-
mately 10� 10 cm2 in size, instrumented with 1024 readout strips
separated by p ¼ 90μ m.11 In order to appreciate the effect of a discrete
layout of silicon micro-strips in the detection elements, the fast simula-
tion must account for the different resolution that results when ionizing
particles deposit a signal above threshold in only one strip or in two or
more adjoining strips. The crude model we constructed involves an
evaluation of the total charge that would be read out by the electronics if
charge migrated along straight paths orthogonally to the silicon surface,
and were entirely collected by the closest strip at the surface (see Fig. 5,
left).

In the above model, orthogonally incident particles producing ioni-
zation charge at less than 45μ m from a strip center in the direction
orthogonal to the strips will yield signal (nominally 21;120 electrons)
only in that strip. Conversely, particles that cross the inter-strip boundary
during their propagation in the silicon material, or particles hitting the
silicon with a large incidence angle, will instead see their produced
ionization charge split into two or more adjacent strips according to their
incidence angle and crossing position. We generate noise in the strips
reading out the ionization charge, as well as in their two closest neighbor
strips on each side, as a Gaussian distribution of zero mean and sigma of
1000 electrons12; then we assume a threshold charge of 3000 electrons
for the readout, dropping from consideration strips that collected a total
charge below that value.13
11 In the designed CMS Phase-2 tracker modules, the strips are broken into two
5-cm-long segments with separate readout. This detail has not been simulated,
as it has no relevance to the resolution of the tracker, but only on the noise in the
sensors and in background rejection, which are not treated here.
12 With the use of these approximated parameter values (courtesy N. Bac-
chetta, private communication) we have chosen to include for the sake of
completeness a rough description of effects of electronic noise in our simulation;
their values have however practically no effect on all the results discussed in this
work.
13 Here we have assumed that the MUonE electronics will be able to read out
analog information on the deposited charge in the strips. This is however not
granted, due to difficulties connected to reading out the strips in an asynchro-
nous way (as the timing of arrival of muons is not fixed). The absence of in-
formation of the deposited charge reduces the resolution of multiple-strip hits,
but does not substantially modify the conclusions of our study, due to the small
fraction of multi-strip clusters.
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Once the total charge above threshold is known, the position of the
track along the local strip coordinate, at a z coordinate corresponding to
half the width of the silicon sensor, is calculated as follows. For one-strip
clusters, the position is defined to coincide with the position of the strip
center, and its uncertainty is given by 90=

ffiffiffiffiffiffi
12

p
μm. For two-strip clusters,

we indicate as q1, q2 the charge in the two adjacent strips, assuming
q2 > q1, and we compute the coordinate as

ξCOG ¼ 0:5p
q2 � q1
q1 þ q2

¼ 0:5pð2ρ� 1Þ (8)

where p is the strip pitch, and where we have defined ρ ¼ q2=ðq1 þ q2Þ.
We set the local coordinate ξ ¼ 0 at the interstrip boundary, and ξ >
0ð< 0Þ around the strip reading more (respectively, less) charge. The
position along z is always calculated as the center of the silicon layer, i.e.
at a z distance of 160μ m from the smaller-z edge of the layer.

In passing we note that, as shown geometrically in Fig. 5 (right), the
COG as defined above is an unbiased estimator of the center of the tra-
jectory (given a sharing of charge in two neighboring strips) only if the
angle of track incidence θ is equal to or larger than the geometry ratio
tanθ ¼ p=w, hence for very large angles, θ > 0:274, which never arise in
the considered setup. For smaller angles, the unbiased position estimator
would rather be

ξunb ¼wtanθ
�
q2 � q1
q1 þ q2

�
: (9)

Equation (9) requires a knowledge of the track angle of incidence θ on
the sensor, which is not available at the time of hit finding. It could still
be used in a more refined likelihood definition than the one we have
adopted here14; we believe the effect of this improvement would be
small, again due to the fact that the vast majority of the tracks of rele-
vance to this study produce single-strip clusters in the modules; on the
other hand, it is a fact that their angles are in all cases very small, such
that the COG definition is, indeed, a biased one in an idealized sensor
where charge drifts in the silicon bulk perfectly orthogonally to the strips.

We assign an uncertainty to the measured position ξ of two-strip
clusters as the propagation of the above-mentioned noise level
(σq ¼ 1000 electron charges) on the center of gravity calculation,

σ2
ξ ¼ p2

�
q21 þ q22

�
σ2
q

ðq1 þ q2Þ4
; (10)

which reduces to

σξ ¼ pρð1� ρÞσq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=q21 þ 1=q22

q
: (11)

For clusters of larger multiplicity (which, because of the small angles
of the involved tracks, may only result from the effect of noise above
threshold in strips adjacent to those receiving ionization charge), we
keep for simplicity the uncertainty calculation above, using the two strips
with highest collected charge. This approximation has no effect, as we
have practically no such cases even considering the largest datasets we
simulated.

Finally, we note that for simulated events where the scattering
interaction takes place within a silicon sensor we do consider the com-
bined effect of ionization by the incoming track and by the two outgoing
tracks, properly accounting for the charge deposition of each track
segment, albeit by applying the same crude charge transport model
14 The hit positions, which are the data upon which the likelihood definition
relies, may be made themselves a function of the polar angles of the tracks. This
in practice means incorporating the hit positions calculation inside the likeli-
hood function, which therefore moves from being defined by hit positions data
to being defined by charge depositions data. We believe this approach should be
investigated for the MUonE experiment.



Fig. 5. Left: model of charge migration in the silicon sensors. Charge is generated in proportion to the particle path in the silicon bulk, and migrates to the strip plane,
where it is then collected by the closest strip. Right: graphical demonstration of the bias of the center-of-gravity calculation for tracks with small divergence from
normal incidence. The sensor is shown in section, with two neighboring readout strips of pitch p on the top surface. The charge read out by the left strip, for the track
shown in red, is one fifth of the total charge, and the charge read out by the right strip is four fifths. The COG calculation produces the position estimate shown in the
figure for the crossing point of the center of the silicon layer by the track, which is displaced to the right of the true point, whose coordinate is correctly computed only
using Eq. 9. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 6. Top left: Elastic scattering cross section as a function of q2. Top right: distribution of incoming muon coordinates in the transverse plane. Bottom left: dis-
tribution of the scattering position along the z axis. The coordinate is in centimeters from the left edge of the first station; one can see the contribution from the target
material as well as from each double-sided sensor in the three tracking modules, for the baseline geometry. Bottom right: strip multiplicity of the clusters.
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15 We warn the reader here that this conclusion only refers to a fit that com-
bines the three tracks in a global determination of the q2; fits that determine
separately the trajectories of each of the three particles may instead benefit from
using information from a larger number of hits for each track; yet what really
matters is the uncertainty at the scattering position along the z axis, once a
constraint of single origin is applied to the three tracks.
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described above. In those cases, the likelihood definition includes the hit
produced by the three tracks as a shared hit of the three trajectories; 60%
of the resulting charge clusters are multiple-strip ones. The scattering
position is thus in general better known than the position of any other hit,
if it takes place inside the silicon.

4. Reconstruction of the event kinematics

4.1. The likelihood function

When dealing with event reconstruction based on hits in tracking
detectors, one usually starts by defining a criterion to construct track
segments from a restricted set of detector components, then iteratively
associates other hits to those segments, and finally refits the full trajec-
tory of charged particles; high-level information on the event charac-
teristics can then be constructed with the latter. Such a bottom-up
strategy works very well even in the most complex environments, and is
robust to noise and other experimental effects. As noted elsewhere,
however, in this work we aim at estimating the best possible performance
that the experimental setup can provide; therefore we want to decouple
from noise and combinatorial effects that, while always present, can be
tamed with tools we have no chance to study with a fast simulation. The
straightforward way to reconstruct the elastic scattering events would
therefore be to fit to straight lines the hit collection of each track, and
then derive, from their relative angles, information on the event q2. In so
doing we would however encounter the issue of having to combine the
information provided by each of the two final state particles: electron and
muon divergences from the incoming muon direction both offer in
principle independent estimates of the event q2, albeit with significantly
different precision (in most of the phase space, in fact, the electron is
measured with a much higher relative precision).

Combining electron and muon post-fit information is possible but not
optimal, as linear approximations to the covariance terms must be used.
A very attractive alternative is offered by the simplicity of the topology
we aim to reconstruct. We can directly fit the event q2 starting from a
univocal association of the hits to the three involved particle tracks. In so
doing, the full information is exploited more effectively and precisely.
Such a procedure, in a real experimental situation, would have to be
preceded by the identification of the signal hits for each track; here its
optimality indicates that we must use it as our baseline q2 determination
in our study.

The likelihood function we aim to define depends on the following
parameters:

1. p0 ¼ q2, the squared four-momentum transfer;
2. p1 ¼ x0, the x coordinate of the scattering interaction;
3. p2 ¼ y0, the y coordinate of the scattering interaction;
4. p3 ¼ z0, the z coordinate of the scattering interaction;
5. p4 ¼ φSC

e , the azimuthal angle of the final-state electron in the scat-
tering frame;

6. p5 ¼ θin, the divergence of the incoming muon with respect to the z
axis, as measured in the laboratory frame;

7. p6 ¼ φin, the azimuthal angle of the incoming muon in the xy plane
orthogonal to the z axis, in the laboratory frame.

As mentioned in Sec. 3.2.4 the scattering frame, in which the scat-
tering is generated, is defined such that the incoming muon travels
aligned with the positive verse of the zSC axis. In that system the
azimuthal angles φSC

e and φSC
μ are related by φSC

e ¼ φSC
μ þ π, i.e. they are

back-to-back. From the parameters defined above one may compute the
final state electron energy Ee, the final state muon energy Eμ, and the
other angles of the outgoing particles (φSC

e , φSC
μ , θSCμ , θSCe ) in the scattering

frame, using the formulas of Sec. 2.
The likelihood can only be defined once we have experimental

(simulated, in our case) data. These come as measurement pairs
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ðxj �σðxjÞ; zj �σðzjÞÞ for the left double-sided sensor of non-rotated
modules, pairs ðy�σðyjÞ; z�σðzjÞ for the corresponding right sensor,
and corresponding pairs ðx’j ;zjÞ, ðy’j ; zjÞ in left and right sensors of stereo
modules. Uncertainties are computed as discussed in Sec. 3.3. For all
results discussed in this document we only consider events for which we
have reconstructable tracks with at least three x and 3 y stubs for each of
the particles involved in the scattering, and we use the three of them
closest to the scattering position in the likelihood calculation; therefore,
the likelihood includes 36 distinct coordinate pairs in its definition. The
rationale of this is to emulate the original choices of the experiment –in
particular, those relative to the idea of triggering on stub triplets. How-
ever, we did study the effect of relaxing the above conditions, finding that
besides a general worsening of the fit quality when larger number of hits
along the tracks are considered,15 there is little wisdom to obtain as far as
geometry optimization is concerned. Of course, this effect should be
explored in more detail with a more precise simulation, once an opti-
mized fit strategy for the particle trajectories is devised (e.g., one which
includes in the likelihood definition the modeling of the multiple scat-
tering on particle trajectories with its non-Gaussian distributions, as well
as background effects causing hit precision degradation, a more precise
modeling of charge deposition in the silicon sensors, knowledge of the
tracks incident angle in the hit position determination, and so on).

We may define our likelihood in a concise form as follows:

log Lð p!Þ ¼ �
"X
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h
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zj
�i2
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yð’Þj

#
þ log Pðp3Þ

Above, true particle coordinates are obtained by propagating as
straight lines the trajectories of the three particles from the scattering
position (defined by x0 ¼ p1;y0 ¼ p2; z0 ¼ p3) to the nominal measure-
ment coordinates zj. The propagation uses the angles parametrized by p4;
p5; p6 as well as those derived from combining the kinematical con-
straints of Sec. 2 and Sec. 3.1.3 and using p0 ¼ q2. Also, in the stereo
layers the x’, y’ coordinates are of course determined by rotating the
laboratory ones by the appropriate stereo angle φstereo (see Eq. (7)). So, for
instance, for a hit in the j-th x-measurement layer assigned to the
incoming muon, we compute the expected particle position as

xin ¼
�
zj � z0

�
tan θin cos φin þ x0;

While for a hit in a stereo layer measuring the y’ coordinate assigned
to the outgoing muon, we compute

x’μ ¼
	
z’j � z0



tan θμ sinðφμ �φStereoÞ þ ð � x0 sin φStereo þ y0 sin φStereoÞ:

As for the measurement uncertainties σðxð’Þ
j Þ;σðyð’Þj Þ, in the likelihood

model they result from the combination of two contributions: the un-
certainty from the strip cluster position reconstruction, and the estimated
uncertainty in the trajectory resulting from the amount of crossed ma-
terial from the interaction point. For the first contribution, we assume



16 Due to numerical precision issues, for large absolute values of the argument
of the Erf ðzÞ functions their value is set to 10�16 in the code (the smallest value
returned by the function TMath::Erf() from the used mathematical functions
library); this apparently creates no convergence issues to the likelihood maxi-
mization, provided that the initial step in the related variable is set to a large
enough value.
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that single-strip clusters have a nominal uncertainty of 90=
ffiffiffiffiffiffi
12

p ¼ 26μm,
and for multiple-strip clusters the position uncertainty along the mea-
surement coordinate is instead determined by propagating the un-
certainties on the center-of-gravity calculation of the deposited charge, as
discussed supra (Sec. 3.3). We do not attempt to model the non-
Gaussianity of the sampling distribution of the position uncertainty
which results from the discreteness of the position measurement for
single-strip clusters, as our studies indicate that it makes no practical
difference on the value of the parameters at the likelihood maximum, nor
on their uncertainty, while it considerably increases the CPU load for the
event reconstruction.

For the second contribution to the position uncertainties in x and y we
proceed as follows. We first evaluate the expected divergence of a par-
ticle from its initial trajectory caused by multiple scattering in the total
amount of traversed material, also accounting for its estimated mo-
mentum as described in Sec. 3.1.2. The calculation differs for initial and
final state particles, as for the incoming muon the traversed material is
computed as the sum of contributions of all layers from the considered
measurement layer to the scattering position, and the assumed mo-
mentum is the beam momentum; while for final state muon and electron
the traversed material is computed as the sum of contributions of all
layers from the scattering position to the considered measurement layer
downstream it, and the assumed particle momentum is derived from q2

using the formulas of Sec. 2.
We then compute, for e.g. a measurement of the x coordinate of a final

state muon of momentum pμðq2Þ,

θms ¼
ffiffiffi
2

p 0:0136
pμ
�
q2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΔX0

�
zj � z0

�q �
1þ 0:038 log

�
ΔX0

�
zj; z0

���
;

σ
�
xj
�2 ¼ σ

�
xj; hit

�2 þ 	�
zj � z0

� tanðθ þ θmsÞ � tanðθ � θmsÞ
2

cos φμ


2

:

Above, ΔX0ðzj; z0Þ is the estimated radiation length traversed by the
particle in traveling from z0 to zj; it is a function of both coordinates as
different positions along the detector will correspond to different mate-
rial thicknesses for a given Δz. The formula above correctly models the
smearing effect on the particle trajectories due to angular variations. We
instead ignore the less important contribution to the hit position uncer-
tainty of the position shifts ΔxMS, ΔyMS as modeled in Sec. 3.1.2. Due to
the inclusion of the θms effect, the position uncertainty of each hit is itself
indirectly a function of the p3 ¼ z0 and p0 ¼ q2 parameters in the fit, and
duly varies during maximization along with them.

Uncertainties in the z position of the hits are considered only when
studying systematical effects resulting from the precision of the place-
ment of detection and target layers (see infra, Sec. 7); they are instead
ignored (i.e. σðzjÞ ¼ 0 for hit measurements) in the studies of relative
merits of the different geometries, conforming to the general method-
ology adopted in the present optimization study.

In the likelihood definition the hits associated to incoming and out-
going particles are univocally assigned to each of the true particles that
produced them, speeding up the calculation. While this simplifying
assumption looks like some sort of cheating at first sight (as it equates to
assuming, in addition to the absence of background hits, that a perfect
identification of the particle species is available prior to the kinematic
fit), we trust it does not affect the conclusions we can draw in our study,
as we take the ansatz that the relatively rare ambiguous kinematic con-
figurations may be resolved by considering the signal left in the calo-
rimeter by the two particles. In Sec. 6.7 we briefly study the level of
degradation to the resolution in q2 and other measured quantities caused
by a complete ignorance on the identity of the two outgoing particles.

4.1.1. The z-vertex constraint
The last term in the likelihood function above is an important

ingredient. The Pðp3 ¼ zÞ function can be defined as the probability
distribution of the possible z positions of the scattering vertex. It should
be intuitively evident that a precise knowledge of the interaction point
12
benefits the correct reconstruction of the event kinematics, but it is hard
to gauge by back-of-the-envelope calculations how much do angular
measurements depend on applying a constraint that the vertex zmust lay
where there are electrons along the path.

The function PðzÞ must be defined in a way that accounts for mea-
surement precision of the layers placement along the z axis. We take this
number to be 10μ m, as that is the specification originally required, and
considered achievable, by the MUonE collaboration for the placement of
the detection sensors. In truth, we will show in Sec. 7 how elastic scat-
tering data may be used to constrain with much higher accuracy the
placement of target and detection layers along z, but we keep the 10μ m
precision as a baseline in the definition of PðzÞ. Of course, while the
probability should decrease to a negligible value when the scattering z
position falls away from the nominal position of the closest layer, within
the material it should be constant. We chose therefore to model it by
using two back-to-back Erf ðzÞ functions, as follows:

PðzÞ¼
X

i¼i*�3;i*þ3

Xi
0

Xtot
0

�
0:5þ 0:5Erf

�
zþ wi=2� zi

σz

��
Sðzi � zÞ

¼
X

i¼i*�3;i*þ3

Xi
0

Xtot
0

�
0:5þ 0:5Erf

�
zi þ wi=2� z

σz

��
Sðz� ziÞ

where SðzÞ is a step function (Sðz> 0Þ ¼ 1, Sðz< 0Þ ¼ 0), Xi
0 is the total

width in radiation lengths of the considered layer i, and Xtot
0 is the sum of

the radiation lengths of the considered adjacent layers, such that pðzÞ is
correctly normalized. The sum over nearby layers allows for very large
occasional deviations from the true z value to correctly contribute to the
total probability.16

4.1.2. Likelihood maximization
We use Minuit [22] for the search of the likelihood maximum in the

7-parameter space defining the kinematics of every elastic scattering
interaction, and minimize the �log L value computed as discussed supra.
In the initialization phase, Minuit requires the user to specify a range for
every parameter, as well as an initial guess of the steps to be taken in each
direction in search for the minimum.We use the following range and step
values:

1. q2: ½0:;0:15� GeV, step ¼ 0.00001 GeV;
2. x0: ½ �10:; 10:� cm, step ¼ 0.001 cm;
3. y0: ½ �10:;10:� cm, step ¼ 0.001 cm;
4. z0: ½ �10:;410:� cm, step ¼ 0.001 cm;
5. φSC

el : ½ �2π;4π� rad, step ¼ 0.001 rad;

6. θin: ½0:;0:1� rad, step ¼ 0.00001 rad;
7. φin: ½ �2π; 4π� rad, step ¼ 0.01 rad.

To make Minuit work, a starting value for each of the parameters
must also be provided by the user. Although the minimization usually
converges regardless of what initial values are given, CPU consumption is
significantly reduced if we give as starting parameters the true ones –the
true generated q2, the real x; y; z coordinates of the generated scattering
interaction, the true value of the φSC

el angle in the scattering frame, and
the true incoming muon beam divergence and azimuthal angle θin, φin.
This ‘‘illegal’’ procedure –one which we may not apply to real data– does
not invalidate our results, as a careful minimization that considered in
turn the different possible configurations of free parameters would allow
to find the same global minimum. Again, our focus here is to compare
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different geometrical configurations of the detector, and we do it by
voluntarily choosing an idealized situation. In this case, the benefit is in
the speed of the minimization, which translates in the chance of
analyzing larger simulated datasets, obtaining more precise information
on the relative merits of the different considered choices.

One further note has to be made concerning the minimization strat-
egy. In general, convergence is achieved for all configurations, and the
very few pathological cases are negligible. However, we found that in
some event configurations and for values of q2 around 0.084 and 0.13,
the standard minimization strategy invoked by the ‘‘migrad’’ command
does sometimes fail to provide the true likelihood minimum, being
affected by numerical precision issues connected with the vanishing
gradients of the trigonometric functions used in the transformation of
coordinates from the scattering to the laboratory frame. The use of the
less rigorous ‘‘simplex’’ strategy instead is unaffected by those pecu-
liarities. As the performance of the two routines is otherwise undis-
tinguishable in our case, we use the latter.
4.2. What should we optimize on?

In general, the approximations adopted in the present study all go in
the direction of producing an idealized situation. In particular, no
background hits worsen the resolution of track reconstruction; inelastic
scatterings are ignored; no ambiguity is introduced in the identification
of the scatterings (although we do study the issue in Sec. 6.7); no delta
rays affect hit resolutions; no non-Gaussian tails affect the propagation of
particles in the material. Careful studies of the real detector that will
hopefully be built, and analysis of the resulting real data, will no doubt
allow the production of a reconstruction software capable of minimizing
the deteriorating effects of those approximations. Here, on the other
hand, we believe that their consideration would confuse the issue of
pinpointing the relative merits of the different geometry options under
study.

For an end-to-end optimization of the experiment, clearly we should
aim for the smallest possible uncertainty on the value of Δαhad obtained
from a given integrated luminosity collected by the apparatus, such as the
one corresponding to two years of data-taking (e.g., the number used by
the MUonE collaboration in their studies, L ¼ 1:5� 107nb�1) once the
most effective reconstruction of the events is carried out, and once all
systematic uncertainties are considered. Of course, the above is a really
tall order, as we do not have an optimal reconstruction software handy
(while, in fact, we do offer our global likelihood as a bid for the general
direction to take in an optimized reconstruction here, numerous im-
provements should be considered in its definition), nor can we model all
systematic sources in a credible way before real data are collected.17

Hence, we need to consider the various elements separately below, to try
and simplify our task.

From Eq. (4) (Sec. 3.1.3) it follows that Δαhad may be extracted by
performing a shape fit to the distribution of the differential cross section
for elastic scattering, dσ=dq2,

Δα
�
q2
�¼ 0:5

0BB@
R

dσ
dq2 dq

2R
dσLO
dq2 dq2

� 1

1CCA (12)

by integration over q2 and subtracting the electroweak component. The
precise determination of the differential cross section as a function of q2

required to perform that calculation rests on a determination of the q2 of
each scattering event with the smallest possible uncertainty, particularly
17 We nonetheless stress here, in passing, that in our experience most instru-
mental systematic uncertainties can usually be beaten down to smaller values
than originally believed, by careful studies of real data and using techniques not
evident at a design stage.
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in the region of high q2 where the hadronic contribution (and thus the
integrand at the numerator in the equation above) reaches its largest
relative value. This is because, even in presence of a very accurate model
of experimental effects, the worsening of q2 resolution amounts to an
irrecoverable loss of information. In addition, the extraction of Δαhad
from such a shape fit is riddled with very hard to control systematic ef-
fects that modify the shapes of the electroweak and hadronic contribu-
tions from their calculated values. A detector offering the highest
resolution on elastic scattering parameters will improve the constraining
power of the data on the values of the parameters describing those ef-
fects. In this document we do provide, for some sample geometry choices,
the variation of the relative statistical uncertainty onΔαhad resulting from
a template fit as a function of the studied parameters; the fit methodology
is described in Appendix B. In general, those results confirm the results of
the more straightforward optimization measures discussed below, but
they are not as precise, as they are much more affected by stochastic
noise.

A different approach to estimate the hadronic contribution, much
simpler although not necessarily less problematic from the standpoint of
taming systematic uncertainties, has been proposed [23]. It involves the
calculation of the ratio of the cross section integrated in two separate
ranges of q2: one, a ‘‘normalization region’’ (NR), where the hadronic
contribution is expected to be negligible; and another, a ‘‘signal region’’
(SR), where the wanted effect achieves its largest relative size. Having
defined the boundaries of these two regions (½q2min;NR; q

2
max;NR� and ½q2min;SR;

q2max;SR�), one may compute

N ¼ Nobs;SR � f Nobs;NR

f ¼ Nth
EW ;SR

,
Nth

EW ;NR ¼

Z q2max;SR

q2min;SR

dNEW

dq2
dq2Z q2max;NR

q2min;NR

dNEW

dq2
dq2

;

from which one gets

Δαhad ¼N = ðkL Þ: (13)

Above, L is the integrated luminosity of the considered data, k is a
theoretical estimate of the fraction of the hadronic contribution in the
signal region, and NEW ;SR and NEW ;NR are the predicted number of events
expected from the electroweak contribution in the signal and normali-
zation regions, while Nobs;SR and Nobs;NR are the observed event counts in
the corresponding regions. An optimization of the normalization and
signal region can be performed based on the amount of accumulated
statistics. Such a calculation is easier to perform than a fit to the full
differential shape of the measured cross section, but it is riddled by the
same uncertainties, in particular those affecting our knowledge of the
precision of the q2 determination for each event. A systematic effect on
the measured value of Δαhad also results from neglecting the hadronic
contribution to the normalization region, although it is in principle
possible to remove it by an iterative procedure, if the electroweak shape
of the q2 distribution is known with high precision.

The precise impact on the final uncertainty on Δαhad of the theoreti-
cally modeled distributions is hard to assess. Equally hard is to foresee
how well a real experiment may end up determining, after dedicated
studies, the exact model of the resolution in measured q2, and in
particular its non-Gaussian tails, from the event kinematics: that function
is a crucial input to any accurate fit to the cross-section shape. Because of
this, we believe it is better in our study to stick with the intermediate goal
of minimizing the uncertainty in the event q2. A statistic correlated with
that quantity is easy to define and determine directly, using the results of
the global likelihood fit to the hit positions produced by simulated
scattering events. Since the q2 resolution is a function of q2 itself, it is
useful to try and be more specific. In the following we will focus both on
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the full-range RMS of the distribution of relative residuals rq ¼ q2meas�q2true
q2true

,

and on the RMS of residuals in the restricted region q2 > 0:1 which is the
most relevant for the measurement of the hadronic contribution to the
cross section. While the RMS neglects to consider the non-Gaussian shape
of residuals, its minimization should go quite far in the way of optimizing
the measurement potential. Indeed, to make the investigated statistics
even more robust, we have chosen to truncate the positive and negative
5% tails of the distributions before computing their RMS and other
quantities reported in the rest of this document, after verifying that the
residuals have in all cases very close to Gaussian behaviour. This choice
allows to focus on the properties of the bulk of the data, as the truncated
RMS is less dependent on the occasional large residual which can always
occur in pathological configurations.

In an attempt at capturing more precisely the effect on the mea-
surement process of design variations, during our studies we tried un-
successfully to define, in addition to the above two, several alternative
optimization measures related to an appraisal of the distinguishability of
the hadronic component from the electroweak differential cross section
curve. While the statistics we studied appear good choices in general,
they proved to be insufficiently sensitive to the relative variations of
functional shapes caused by the design variations that are the focus of
this work. In the rest of this document we only occasionally show results
of the use of two of them, which are discussed in Appendix A.

5. A look at the main choice: concentrated versus distributed
target

5.1. The baseline geometry

The geometry that we consider as our baseline option for a muon-
electron scattering detector is the one originally proposed by the
MUonE experiment, as our goal is to determine how much one may gain
(in an appropriate metric such as one of those discussed in the previous
Section) by choosing the most proficuous arrangement of detection and
target layers. The exact foreseen positioning of the detection modules
and concentrated target within each station of MUonE is not precisely
stated in public documents, but an approximated layout can be extracted
from the figures in Ref. [16]. We model it by fixing the following pa-
rameters in our simulation (also see Sec. 3.2):

� total number of target layers per station: 1;
� total width of target layer: WBe ¼ 1:5 cm;
� position of the left edge of the three tracking modules in each station:
zmod 0 ¼ 5 cm; zmod 1 ¼ 50 cm, zmod 2 ¼ 95 cm18;

� position of the left edge of the target layer in each station: zBe 0 ¼ 1:5
cm;

� stereo angle in middle tracking module: θstereo ¼ π=4 rad;
� spacing between silicon layers in double-sided sensors: ΔzSi ¼ 0:18
cm;

� transverse staggering between strips on the two sides of a double-
sided sensor: Δhstag ¼ 0μ m.

We show infra (Figs. 6–8) some of the results of the simulation of 107

muon interactions in the second station, when the detector is arranged as
detailed above. Not all simulated interactions result in a well-
reconstructed scattering event, as the divergence of the beam and the
limited extension of tracking modules (in particular, the effect of the
transverse rotation of the stereo module with respect to the others)
reduce the acceptance. A further minor reduction comes from enforcing
18 Shortly before submission G. Venanzoni indicated that the space between
target and first tracking module of the proposed MUonE detector is actually of
15 cm. This difference has only a minor impact; we provide some results for the
different configuration infra.
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that each of the three particles (incoming muon, outgoing muon and
electron) produces valid two-hit stubs in each of three consecutive
modules. The total reduction of statistics amounts to about 21% and is
practically independent on the alternative geometry choices we discuss
in the remainder of this article. A further fraction of less than 0.1% of the
events is removed because the likelihood maximization fails to converge.
The failures are concentrated in the low- q2 region of phase space; we do
not consider them further in this study.

The simulation of ten million scattering events with the baseline ge-
ometry of the MUonE apparatus19 results in the estimates reported in
Table 1 for the figures of merit discussed in Sec. 4.2.

5.2. Distributed target options

We compare the baseline geometry with a set of alternative ar-
rangements where the 1.5 cm-thick beryllium target of each section is
divided into a number of thin layers. To gauge the effect of different
possible choices we perform several studies, all based on a uniform
placement of the tracking modules along each station (zmod 0 ¼ 31:9 cm;
zmod 1 ¼ 65:2 cm, zmod 2 ¼ 98:5 cm); other parameters not mentioned
below are for now kept at their default values listed in Sec. 3.2.3.

1. We consider a geometry with one target layer of WBe ¼ 0:5 cm width
placed between each pair of tracking modules. We then vary the
distance of each target layer to its downstream tracking moduleΔzBeSi
from 0 to its maximum value of 31.0 cm in ten equal intervals, to see
what effect this simple rearrangement has on resolutions (see Fig. 9).
In this setup we observe that the placement of the target with respect
to the tracking modules upstream and downstream must be chosen
with care, as one may get modifications of five percent or higher in
the relative resolutions of reconstructed tracks by simply changing
that construction choice.

2. We consider twelve target layers per station, forming three sections
with four layers positioned between each pair of tracking modules.
Each layer has initially a width WBe ¼ 0:125 cm; the layers are
positioned such that the spacing between the tracking module to the
left and right of the closest target layer is half of the spacing between
two adjacent layers. We then iteratively double the number of layers,
retaining the above requirement; as much as the spacings, the width
of each target layer is of course halved at each iteration, keeping the
material budget constant. This exercise shows the effect of increasing
the number of layers alone, in a symmetric configuration. The
advantage of a distributed target is significant, as for the high- q2

events most important for the determination of Δαhad, the resolution
increases by about five percent in going from the baseline geometry to
one with 384 layers per station.

3. We repeat the study of the effect of varying ΔzBeSi, for the case of N ¼
300 target layers per station, divided in three 1.49 cm-long stacks of
100 layers, each of width WBe ¼ 0:005 cm and spaced by 0.01 cm
from its neighbors. The issue of where to place the stacks of targets is
a complex problem, as the resolution on particle trajectories is
influenced by several factors; one of them is the interplay between the
length of the extrapolation arms from silicon hits to scattering vertex
and the constraint coming from the positioning of the target layers;
another is the discreteness of the silicon readout, which may cause a
periodicity in the precision of the silicon hits positions (as tracks
incident on the sensors in na favourable position will have their po-
sition measured in two adjacent strips, with a much smaller resulting
uncertainty) and a dependence of that parameter on the track inci-
dence angle. Furthermore, these effects have an opposite valence for
19 For the larger ΔzBeSi ¼ 15 cm spacing of the target and the first station
downstream mentioned supra (with positions zmod0 ¼ 18 cm, zmod1 ¼ 56:5 cm,
zmod2 ¼ 95 cm) the all-range (q2 > 0:1 GeV2) q2 resolution results instead equal
to 1:9891ð5Þ (0:6514ð12Þ).



Fig. 7. Top: Difference between estimated and true θ angles in the laboratory frame for incoming muons (left), outgoing muons (center), and outgoing electrons
(right) as returned by the likelihood fit, for the baseline geometry. Bottom: Difference between estimated and true φ angles in the laboratory frame for incoming muons
(black), outgoing muons (blue), and outgoing electrons (red) as returned by the likelihood fit, for the baseline geometry. (For interpretation of the references to colour
in this figure legend, the reader is referred to the Web version of this article.)
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incoming and outgoing particles. The general conclusions seen for the
case of only one layer per section appear to be robust with respect to
the increase of number of target layers: relatively packed stacks as
those considered here appear to be most proficuously positioned
closer to their upstream tracking module than otherwise.

4. We again consider N ¼ 300 target layers per station, each of width
WBe ¼ 0:005 cm, again divided in three 100-layer stacks placed be-
tween the pairs of tracking modules (the first one has at its left the
rightmost module of the previous station). We now vary the ΔzBe
15
spacing between adjacent layers from 0.0 cm to 0.3 cm in regular
intervals. Once ΔzBe is defined, the positioning of the stacks of target
layers is determined by the smallest gap between the rightmost target
layer and the silicon tracking module to its right, ΔzBeSi; we fix this
parameter to 0.5 cm here. We observe that a wider spacing of target
layers produces a significant improvement (about five percent) in the
relative resolution of particle divergences. This is understood to be
due to the higher effectiveness of the z constraint, as more widely
spaced thin targets help the fit converge to the correct solution.



Fig. 8. Relative resolution on kinematic quantities for the baseline geometry, obtained from 107 elastic scattering events. Top left: Relative resolution σðq2Þ= q2 as a
function of q2; top right: relative resolution σðθinÞ=θin on incoming muon divergence as a function of incoming muon divergence; bottom left: relative resolution σðθμÞ=
θμ in outgoing muon divergence as a function of outgoing muon divergence; bottom right: relative resolution σðθeÞ=θe in electron divergence as a function of elec-
tron divergence.

Table 1
Average relative resolution on particle divergences from the z axis, on q2 in the full investigated range (½0:006;0:143�GeV2) and in the restricted range ½0:1; 0:143�GeV2,
for the baseline geometry. See the text for details.

Configuration 〈σðθinÞrel〉 〈σðθμÞrel〉 〈σðθeÞrel〉 〈σðq2Þrel〉 〈σðq2Þrel〉0:1
% % % % %

Baseline 5:745ð16Þ 2:1143ð5Þ 1:2764ð3Þ 2:1222ð5Þ 0:6637ð13Þ
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The results of these comparisons, performed with the simulation of
106 elastic scatterings in the second station, repeated per each configu-
ration with the random number generation recipe discussed supra, are
shown in Table 2 below, and in Figs. 10–13. Further, Fig. 14 shows the
effect of the z-vertex constraint on the reconstruction of the event for the
case of 300-target stations.

6. Other geometry options

In this section we summarize some of the studies performed on other
parameters describing aspects of the detector geometry not previously
discussed. Their modification produces minor effects on the measure-
ment of Δαhad, with the exception of a non-null vertical staggering of the
strips on the two sides of the double-sided sensors.

The baseline layout of target elements and tracking modules in each
16
station which we use for the studies discussed in this section results from
the insight acquired in Sec. 5, and has 300 50μ m layers divided into
three 30.2 cm-long stacks of 100 layers, with a 0.3 cm gap between
layers; the z coordinates of left edges of the stacks, as read from the left
edge of the station, are z0 ¼ 0:2 cm, z1 ¼ 33:6 cm, z2 ¼ 66:9 cm. The
tracking modules, positioned at coordinates zmod0 ¼ 31:8 cm, zmod1 ¼
65:2 cm, zmod3 ¼ 98:5 cm, provide for an approximately symmetrical
spacing of the three sections of each station, as in the studies of the
previous section. The central module in each station has by default strips
rotated by π=4 with respect to those of the other two modules, except
when that parameter is varied to study the corresponding effect. The
staggering of strips in the right-side element of double-sided sensors with
respect to the corresponding strips in the left-side one is of 0μ m by
default, except when that parameter is varied.



Fig. 9. Ten configurations of three target layers in a station, considered for the study of their positioning. In blue are shown the target layers, and in red are indicated
the tracking modules. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Table 2
Average relative resolutions for the studied configurations of distributed targets. The study numbers refer to those enumerated in the text. In all cases, 106 elastic
scattering have been simulated for each geometry. See the text for more detail.

Study Parameter 〈σðθinÞrel〉 〈σðθμÞrel〉 〈σðθeÞrel〉 〈σðq2Þrel〉 〈σðq2Þrel〉0:1
1 ΔzBeSi(cm) % % % % %

0.0 5:6952ð49Þ 2:0585ð17Þ 1:1209ð9Þ 1:8893ð15Þ 0:6780ð42Þ
3.48 5:7034ð49Þ 2:0304ð16Þ 1:0930ð9Þ 1:8738ð15Þ 0:6542ð40Þ
6.96 5:7039ð49Þ 2:0274ð16Þ 1:0894ð9Þ 1:8523ð15Þ 0:6487ð40Þ
10.43 5:6993ð49Þ 2:0201ð16Þ 1:0583ð8Þ 1:8191ð15Þ 0:6203ð38Þ
13.91 5:7144ð49Þ 2:0177ð16Þ 1:0558ð8Þ 1:8148ð15Þ 0:6278ð39Þ
17.39 5:7113ð49Þ 2:0170ð16Þ 1:0547ð8Þ 1:8277ð15Þ 0:6237ð38Þ
20.87 5:7146ð50Þ 2:0161ð16Þ 1:0519ð8Þ 1:8248ð15Þ 0:6263ð38Þ
24.34 5:7200ð50Þ 2:0176ð16Þ 1:0762ð8Þ 1:8352ð15Þ 0:6065ð37Þ
27.82 5:7252ð50Þ 2:0171ð16Þ 1:0757ð8Þ 1:8604ð15Þ 0:6085ð37Þ
31.30 5:7630ð50Þ 2:0181ð16Þ 1:1025ð9Þ 1:8891ð15Þ 0:6171ð38Þ

2 Nlayers % % % % %
12 5:6852ð49Þ 1:9822ð16Þ 1:0579ð8Þ 1:7922ð15Þ 0:6254ð38Þ
24 5:6836ð49Þ 1:9769ð16Þ 1:0266ð8Þ 1:7732ð14Þ 0:5995ð37Þ
48 5:6714ð49Þ 1:9748ð16Þ 1:0218ð8Þ 1:7515ð14Þ 0:6244ð38Þ
96 5:6219ð49Þ 1:9462ð16Þ 0:9891ð8Þ 1:7431ð14Þ 0:6072ð37Þ
192 5:6492ð49Þ 1:9463ð16Þ 0:9841ð8Þ 1:7053ð14Þ 0:5889ð36Þ
384 5:6037ð48Þ 1:9423ð16Þ 0:9790ð8Þ 1:6823ð14Þ 0:5923ð36Þ

3 ΔzBeSi(cm) % % % % %
0.0 5:5980ð48Þ 1:9855ð16Þ 1:0564ð8Þ 1:8272ð15Þ 0:6452ð40Þ
7.58 5:6109ð48Þ 1:9527ð16Þ 1:0176ð8Þ 1:7563ð14Þ 0:6167ð38Þ
15.16 5:6465ð49Þ 1:9443ð16Þ 0:9845ð8Þ 1:7055ð14Þ 0:5875ð36Þ
22.73 5:6444ð49Þ 1:9417ð16Þ 0:9815ð8Þ 1:7020ð14Þ 0:5840ð36Þ
30.31 5:6886ð49Þ 1:9431ð16Þ 1:0062ð8Þ 1:7287ð14Þ 0:5817ð36Þ

4 ΔzBe(cm) % % % % %
0.00 5:5996ð48Þ 1:9836ð16Þ 1:0549ð8Þ 1:8249ð15Þ 0:6101ð38Þ
0.06 5:6018ð48Þ 1:9555ð16Þ 1:0497ð8Þ 1:7888ð14Þ 0:6252ð38Þ
0.12 5:6045ð48Þ 1:9500ð16Þ 1:0167ð8Þ 1:7547ð14Þ 0:6030ð37Þ
0.18 5:6062ð48Þ 1:9473ð16Þ 0:9860ð8Þ 1:7217ð14Þ 0:6100ð37Þ
0.24 5:6036ð48Þ 1:9429ð16Þ 0:9821ð8Þ 1:7029ð14Þ 0:5985ð37Þ
0.30 5:6050ð48Þ 1:9411ð16Þ 0:9821ð8Þ 1:7019ð14Þ 0:5929ð36Þ
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6.1. Relative spacing of sensors in double-sided silicon modules

The nominal geometry of the silicon modules for the proposed
MUonE experiment foresees that the two 320μm-thick silicon layers of a
double-sided sensor be spaced by 0.18 cm from one another, and that two
such sensors be mounted together, forming a wafer of four detection
elements, the two left ones reading one coordinate (here taken as the x
coordinate) and the two right ones reading the other coordinate
17
orthogonal to the beam direction (y). The assembly is 1.5 cm thick, hence
in the original design there is a 1.012 cm gap between the two double-
sided sensors.

We study the effect of a wider spacing of the two sides in double-sided
sensors on the angular and q2 resolution of the scattering fit, by varying
that parameter from 0.18 cm to 0.58 cm in 0.1 cm steps. All other pa-
rameters are kept to their baseline value as discussed earlier in this
Section. The results of this exercise are summarized graphically in Fig. 15



Fig. 10. Relative resolution on relevant quantities for ten configurations of three target layers discussed in point (1) (supra). Top left: average relative q2 resolution as
a function of the layer positioning in each of the three section of each station. Top right: average relative resolution on incoming muon divergence, θin. Bottom left:
average relative resolution on outgoing muon divergence, θμ. Bottom right: average relative resolution on electron divergence, θe.
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and listed in Table 3 below. A wider space between each pair of coor-
dinate measurements seems to help the determination of the particle
directions, with gains of five to ten percent in the q2 resolution.
6.2. Offset in pitch position of strips on the two sides of double-sided silicon
modules

In the application of precision tracking of ionizing particles for the
CMS experiment there is no need for an optimization of the relative
positioning of the strips in the two sides of double-sided sensors. There
are two reasons for this: first, particles incide on the sensors surface with
a wide variety of angles; second, the magnetic field in the tracker pro-
duces a transverse effect on the drift of the charge in the semiconductor.
These two effects guarantee that a large fraction of the particles deposit
ionization signal over more than a single strip, with considerable gains in
the resulting position resolution along the coordinate orthogonal to the
strips. The situation is quite different for MUonE, where there is no
magnetic field providing a Lorentz force on the charges, and where
18
particles incide on the sensors with typical angles of thousandths of a
radian. We believe this calls for a modification of the relative positioning
of the sensors for the double-sided modules which would be produced for
MUonE, and we show evidence for the benefits that a staggering would
provide.

Fig. 16 clearly demonstrates how q2 resolution improves with the
relative staggering of silicon strips. In Fig. 17 is shown the effect of a half-
pitch staggering of the right-side strips of a double-sided sensor on the
resolution of the relevant variables: such a choice is clearly optimal. The
improvement in q2 resolution when going from zero to 45 μm staggering
in the most sensitive q2 region amounts to a very significant 44:7% for
the considered case of 300-layer stations detailed supra (see Table 4);
similar gains however persist in different geometries and setups.

A makeshift alternative to the relative staggering of the strips, in case
the construction of the double-sided modules could not provide the
wanted relative positioning of the sensors, or in case the modules were
already produced with no staggering, consists in positioning each double-
sided sensor rotated with an opportune tilt angle with respect to the axis



Fig. 11. Average relative resolution on q2 determination (left: full range; right: average restricted to true q2 values in the ½0:1;0:143� GeV2 range) of scatterings as a
function of the number of target layers considered for the configuration (2) above; from left to right, in each graph the six bins describe the results of having four,
eight, sixteen, 32, 64, and 128 layers in each of the three sections of a station.

Fig. 12. Average relative q2 resolution in the full range (left) and in the restricted ½0:1;0:143� GeV2 range, as a function of the distance between the stack of 100 target
layers and the tracking module to its right. From left to right, the distance is sampled in five uniform intervals from 0 to 30.31 cm.
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parallel to the strips, such that particles inciding on the sensor with no
divergence from the z axis have a large chance of leaving ionization
signal on two adjacent strips. However, such a setup is quite considerably
more complex20, and it has also the drawback of reducing the acceptance
of the whole apparatus by a factor cos2φtilt . We did not study this pos-
sibility in detail, as we believe it is impractical to implement.
6.3. Reprise: a further look at ΔzSi for staggered sensors

As a side effect, the application of a 45 μm staggering of the strips on
the right-side sensor of double-sided modules turns out to completely
20 To be fully effective, the tilt angle φtilt should be large, i.e. of the order of the
arctangent of the p

w ratio discussed in Sec. 3.3, and thus of about 15�. Further-
more, the two double-sided sensors reading the x and y coordinate should be
rotated along orthogonal directions, making the tracking modules look like
pieces of modern art.

19
change the conclusions we had reached on the advisability of a wider
spacing between the sensors in Sec. 6.1, which had been obtainedwith no
staggering. Indeed, the two parameters play together in affecting the
precise estimate of particle trajectories through the discreteness of the
silicon strip measurements, and together they conjure a warning that a
true optimization can only be achieved by considering all parameters
together –something we cannot afford to do in a study of this kind. Below
(Fig. 18 and Table 5) we show how the ΔzSi parameter affects resolutions
in case strips are staggered by half the pitch width.
6.4. Stereo angle variations

The rotation by 45� of the central module of each station, with respect
to the orientation of the other two, provides measurements along the
diagonal of the xy plane. This arrangement does not improve the infor-
mation offered by the hits, but it simplifies the tracking in some config-
urations, and it improves background discrimination. We study the effect
of the rotation angle of the central module on the performance of the



Fig. 13. Top: average relative q2 resolution in the full range (left) and in the restricted ½0:1;0:143� eV2 range, as a function of the distance between target layers, for a
configurationith 100 50μ m layers in each section of a station. The spacing varies between 0.0 cm and 0.3 cm in regular intervals. Bottom: average relative resolution
on the incoming muon, outgoing muon, and electron divergences from the z axis. See the text for more detail.
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measurement, scanning the angle in 5-degree intervals from 0 to 45�

(larger angles produce the same effect, mirrored around the 45� point).
Results are shown in Fig. 19 and Table 6. We observe no appreciable
variations in the relative resolution of the relevant kinematic quantities,
although the considered figures of merit all indicate a very slight wors-
ening of the measurement potential.21 One effect of to the rotation of the
stereo modules which is easy to understand is the slight reduction in
acceptance due to the reduction of nominal coverage (for tracks with zero
21 We have chosen to show in this graph, as an example, the behavior of the
two test statistics described in Appendix A, as well as the relative resolution on
Δαhad achievable with template fits as discussed in Appendix B. The very limited
changes of detector geometry produced by a rotation of the central tracking
module in this case do not introduce elements of stochasticity, making those
figures of merit effective in this particular case.

20
divergence) from a square to an octagonal surface as the stereo angle
changes from zero to 45�. The effect, for the considered definition of
‘‘reconstructable’’ events (i.e. ones where all three particles yield at least
three x and 3 y stubs in consecutive modules), is a decrease by less than a
percent, given the nominal beam parameters and incoming muon di-
vergences considered in our study.

6.5. An additional option: square-mesh targets

One of the take-away points discussed in the previous sections is the
advantage of dividing the target material up into many thin layers: one is
then capable of acquiring information on the z position of the scattering
vertex, if this takes place in the target. The precise positioning along the
beam axis of thin target layers is, we believe, a not so difficult problem to
solve in practice, if rigid structures are produced with target layers
spaced by appropriate frames: relatively small amounts of data are



Fig. 14. Residuals in the measured z of the scattering vertex as a function of residuals in the divergence from the z axis of the electron track (left), muon track (center)
and initial muon track (right), for a detector with 300 target layers (see text for details). In the top panels a z-vertex constraint has been used in the likelihood fit to the
event kinematics; in the bottom panels the z-vertex constraint has been removed.
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anyway sufficient to monitor it (see Sec. 7).
The next logical step might be the following: provided that their ac-

curate machining and production is practical, target layers built of a
lattice of material alternated to holes should capture our attention. A
square lattice such as the one shown in Fig. 20 might provide an addi-
tional useful constraint to the scattering vertex along the x or y coordi-
nate, depending on where this is located –provided, of course, that the
interaction does take place in the target and not in the silicon sensors.

The effect of lattice-shaped targets on the simulated interactions is
CPU-consuming and cumbersome to model if one insists that the multiple
scattering of each particle perfectly conforms to the effective amount of
material crossed in target layers depending on the crossing position and
angle; however, this is a minor effect which does not impact the
21
optimization problem. For the limited purpose of a first appraisal of the
beneficial effect on the precision of kinematic reconstruction we may
ignore it. At simulation stage, we only insist that the scattering interac-
tion does take place only if the position in the beryllium targets does not
coincide with the assumed location of the square voids, by simply
dropping from consideration events failing that criterion. We can then
model the added piece of information in our fitting procedure by adding
to the likelihood function a term accounting for the x and y probability of
the scattering interaction in the layer.

We model the mesh as a repeated square pattern of holes distributed
with an equal step wgap in x and y, taking a fraction f of the step in both
coordinates. We do not attempt an optimization of the f parameter,
allowing for once our intuition to pick a reasonable value for it: f ¼



Fig. 15. Top row: average relative resolution on the beam divergences of incoming (left), outgoing muon (center), and electron (right) for the five considered spacing
configurations between the two sides of double-sided sensors in tracking modules. The five measurement points refer to a spacing of 0.18–0.58 cm. Bottom row:
average relative resolution in event q2 in the full studied range (left) and in the high- q2 range ½0:1;0:143� GeV2 (right).

Table 3
Effect of the spacing ΔzSi between the sensors in double-sided modules on relative resolutions. In each case 106 elastic scattering events were simulated. See the text for
detail.

Configuration 〈σðθinÞrel〉 〈σðθμÞrel〉 〈σðθeÞrel〉 〈σðq2Þrel〉 〈σðq2Þrel〉0:1
ΔzSi(cm) % % % % %
0.18 5:6058ð48Þ 1:9418ð16Þ 0:9819ð8Þ 1:7011ð14Þ 0:5943ð36Þ
0.28 5:5948ð48Þ 1:9347ð16Þ 0:9741ð8Þ 1:6579ð13Þ 0:5862ð36Þ
0.38 5:5775ð48Þ 1:9266ð16Þ 0:9666ð8Þ 1:6337ð13Þ 0:5536ð34Þ
0.48 5:5641ð48Þ 1:9200ð16Þ 0:9351ð7Þ 1:6109ð13Þ 0:5558ð34Þ
0.58 5:5235ð48Þ 1:9150ð15Þ 0:9342ð7Þ 1:6072ð13Þ 0:5401ð33Þ
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Table 4
Effect on relative resolutions of the staggering Δhstag of strips in the right-side sensor, with respect to the left-sided one, in double-sided tracking modules. In each case
106 elastic scattering events were simulated.

Configuration 〈σðθinÞrel〉 〈σðθμÞrel〉 〈σðθeÞrel〉 〈σðq2Þrel〉 〈σðq2Þrel〉0:1
Δhstag (μm) % % % % %
0.00 5:6091ð48Þ 1:9428ð16Þ 0:9807ð8Þ 1:6987ð14Þ 0:5969ð37Þ
11.25 5:0266ð43Þ 1:6911ð14Þ 0:9681ð8Þ 1:6525ð13Þ 0:5022ð31Þ
22.50 4:4339ð37Þ 1:4472ð12Þ 0:8936ð7Þ 1:5621ð13Þ 0:4115ð25Þ
33.75 4:0008ð34Þ 1:3042ð10Þ 0:8759ð7Þ 1:5058ð12Þ 0:3512ð22Þ
45.00 3:8224ð32Þ 1:2330ð10Þ 0:8423ð7Þ 1:4843ð12Þ 0:3358ð21Þ

Fig. 16. Top: average relative resolution on the event q2 in the full investigated range (left) and in the restricted ½0:1;0:143� GeV2 range, as a function of the amount of
staggering of strips in the right-sided element of a double-sided sensor. Bottom: average relative resolution on tracks divergence from the z axis, as a function of the
same quantity; the graphs refer to incoming muons (left), outgoing muon (center) and electron (right). In all graphs, the six bins correspond to staggerings varying
from 0 to 45 μm in 9 μm intervals.
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Fig. 17. Top left: Relative resolution in q2 as a function of q2; top right: relative resolution on the incoming muon divergence θin as a function of θin; bottom left:
relative resolution on outgoing muon divergence θμ as a function of θμ; bottom right: relative resolution on electron divergence θe as a function of θe. The six curves
correspond to increasing staggering of strips in the right-sided element of double-sided sensors, from 0 to45μ m in 9 μmintervals.

Fig. 18. Average relative resolution in event q2 in the full studied range (left) and in the high- q2 range ½0:1;0:143� GeV2 (right) as a function of the spacing of sensors
in double-sided sensors when the right-hand strips have been staggered transversally by 45 μm. See the text for detail.
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Table 5
Effect on relative resolutions of the changing of ΔzSi parameter if a Δhstag ¼ 45μm has been applied to strips in the right-side sensor with respect to the left-sided one, in
double-sided tracking modules. In each case 106 elastic scattering events were simulated.

Configuration 〈σðθinÞrel〉 〈σðθμÞrel〉 〈σðθeÞrel〉 〈σðq2Þrel〉 〈σðq2Þrel〉0:1
ΔzSi(cm) % % % % %
0.18 3:8224ð32Þ 1:2330ð10Þ 0:8423ð7Þ 1:4843ð12Þ 0:3358ð21Þ
0.28 3:8252ð32Þ 1:2365ð10Þ 0:8752ð7Þ 1:5088ð12Þ 0:3473ð21Þ
0.38 3:8534ð32Þ 1:2392ð10Þ 0:8817ð7Þ 1:5330ð12Þ 0:3482ð21Þ
0.48 3:8323ð32Þ 1:2429ð10Þ 0:8866ð7Þ 1:5551ð12Þ 0:3495ð21Þ
0.58 3:8575ð32Þ 1:2456ð10Þ 0:8888ð7Þ 1:5597ð13Þ 0:3511ð22Þ

Fig. 19. Top left: average relative resolution on event q2 as a function of the stereo angle of rotation of middle tracking modules; bins 1 to 5 refer to rotation of 0 to π=
2 in π=8 increments. Top right: values of Q test statistic (see Appendix A for details) as a function of the rotation angle. Bottom left: KL test statistic values as a function
of the rotation angle. Bottom right: Relative uncertainty in the fitted Δαhad component from a two-component fit, where the hadronic component has been increased by
a factor of 2000; see Appendix B for details.
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Table 6
Variation of angular and q2 resolutions with the angle of rotation of the second tracking module in each station. In each case 106 elastic scattering events were simulated.
In addition to the other geometry options of results of this Section, a 45 μm staggering was considered for this simulation.

Configuration 〈σðθinÞrel〉 〈σðθμÞrel〉 〈σðθeÞrel〉 〈σðq2Þrel〉 〈σðq2Þrel〉0:1
φstereo(μm) % % % % %
0. 3:8098ð32Þ 1:2291ð10Þ 0:8421ð6Þ 1:4729ð12Þ 0:3351ð20Þ
π= 8 3:8115ð32Þ 1:2314ð10Þ 0:8680ð7Þ 1:4834ð12Þ 0:3434ð21Þ
π= 4 3:8224ð32Þ 1:2330ð10Þ 0:8423ð7Þ 1:4843ð12Þ 0:3358ð21Þ
3π= 8 3:8165ð32Þ 1:2333ð10Þ 0:8685ð7Þ 1:4830ð12Þ 0:3482ð21Þ
π= 2 3:8117ð32Þ 1:2292ð10Þ 0:8417ð6Þ 1:4725ð12Þ 0:3473ð21Þ

Fig. 20. Possible microscopic structure of a target layer. A periodic xy lattice
such as the one shown effectively provides one additional measurement point in
either x or y if the scattering takes place in the layer material, except when it is
located at the crossing of vertical and horizontal sheets.
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ffiffiffi
2

p
=2. With such a choice, 50% of the target area is devoid of material.

Of course this implies that the total effective thickness of 1.5 cm of Be is
actually of 0.75 cm per station, so one would then need to envision a
doubled thickness of the layers to compensate for it. We ignore this
detail, reasoning that a different choice of target material (of doubled
radiation length) may retain the same target layers width; as explained
supra, our simulation is oblivious of the removed target material except
for the scattering position, so our results will remain consistent albeit
approximate.
Table 7
Figures of merit describing the separability of the hadronic contribution to eμ scatterin
with 300 target layers per station, and for a full optimization including target sheets w
scattering events, the third is based on 106 events. See the text for details.

Configuration 〈σðθinÞrel〉 〈σðθμÞrel〉

% %

baseline 5:7450ð16Þ 2:1143ð05Þ
optimized 3:8202ð10Þ 1:2331ð03Þ
etched target 3:8220ð32Þ 1:2308ð10Þ
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The probabilities PðxÞ, PðyÞ of a scattering interaction occurring in a
target layer at coordinates xloc ¼ modðx;wgapÞ, yloc ¼ modðy;wgapÞ can be
modeled as detailed in the table below.
x range y range PðyÞ
g f
it

or the baseline geomet
h a 40 μm square lattice

〈σðθeÞrel〉

%

1:2764ð3Þ
0:8424ð2Þ
0:8394ð6Þ
ry of the MUonE detector, fo
. The first two results are ba

〈σðq2Þrel〉
%

2:1222ð05Þ
1:4833ð03Þ
1:4647ð12Þ
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0:5þ
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�ð1� f Þwgap � yloc

σy

�
� �
yloc 	 ð1 � f =2Þwgap
 0:5þ 0:5Erf
yloc � wgap

σy

y range
 x range
 PðxÞ

yloc < ð1 � f Þwgap
 ½0;wgap �
 1.0 � �
ð1 � f Þwgap � yloc �
wgap
xloc < 0:5ð1 � f Þwgap
 0:5þ 0:5Erf
xloc
σx
0:5ð1 �
f Þwgap � xloc < ð1 �
f =2Þwgap
0:5þ

0:5Erf
�ð1� f Þwgap � xloc

σx

�
� �
xloc 	 ð1 � f =2Þwgap
 0:5þ 0:5Erf
xloc � wgap

σx
Once PðxÞ and PðyÞ are defined, they are combined by taking Pðx; yÞ ¼
min½PðxÞ;PðyÞ� except where PðxÞ < 0:5 and PðyÞ < 0:5, when we define
Pðx;yÞ ¼ max½PðxÞ;PðyÞ�.

We have not considered a more precise optimization of the grid
design, as we believe that in this case construction issues and cost become
the drivers of the available choices for geometry solutions; a full Pareto
optimality [24] can only be studied by factoring in those parameters, to
which we have no access here. We thus limit ourselves to showing, in
Table 7, whether a square mesh like the one of the figure above, with a
spacing of 40 μm between holes, would improve the resolution on the
scattering kinematics. As shown below, there is no real gain apparent
from the use of such a configuration. The simple reason of this conclusion
is that the x; y position of the scattering vertex is already extremely well
constrained by the combined fit of the three particle trajectories, with
uncertainties in each coordinate of the order of 10 μm or less (see
Table 8).
6.6. Summary table

Here we summarize the studies of this section in terms of relevant
quantities of interest. As in the previous tables of this document, we
r a possible improved design
sed on 107 simulated elastic

〈σðq2Þrel〉0:1
%

0:6637ð13Þ
0:3456ð06Þ
0:3366ð21Þ



Fig. 21. Left: True q2 distribution of events for which the fit preferred the ‘‘switched’’ solution (red) to the true one (blue). See the text for details. Right: Difference
between true and measured q2 as a function of true q2 for reconstructed scattering events where the solution of highest likelihood is chosen between the two possible
assignments of final state particles to hit trajectories. A minority population of events for which the measured q2 is biased toward values close to 0.08 extends from true
q2 values of 0.06–0.1. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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consider beryllium as the target material, and a total of 1.5 cm of
beryllium equivalent in the total material of the target in each station. For
different target materials, one should consider the changes in layers
width resulting from the different specific radiation lengths. The pro-
posed alternative geometry we compare to the MUonE baseline here,
labeled ‘‘optimized’’ in Table 7 below, includes all optimal parameter
values discussed in Sec. 5 and in this Section, except the etching of a
lattice on the target layers. We list again the value of the improved pa-
rameters below for the benefit of the reader.

� Total number of target layers per station: 300;
� width of each layer: WBe ¼ 0:005 cm;
� Spacing of rightmost target layer and nearest silicon sensor: ΔzBeSi ¼
0:5 cm;

� interspacing of target layers: ΔzBe ¼ 0:3 cm;
� position of the left edge of the three tracking modules in each station:
zmod0 ¼ 31:8 cm, zmod1 ¼ 65:2 cm, zmod3 ¼ 98:5 cm;

� stereo angle in middle tracking module: θstereo ¼ π=4 rad;
� spacing between silicon layers in double-sided sensors: ΔzSi ¼ 0:18
cm;

� transverse staggering between strips on the two sides of a double-
sided sensor: Δhstag ¼ 45μ m.

The last line in Table 7, labeled ‘‘etched target’’, includes in addition
to the above choices of geometry layout the option of etching 40ð ffiffiðp

2Þ=
2Þ m square holes in the target layers, spaced by 40 μm in x and y, as
discussed supra, Sec.6.5. The relative improvement in q2 resolution over
the already optimized geometry is very small.
22 In passing, we note that the functional relationship depends on the incoming
muon energy, which has a 3:5% spread; as noted supra, the effect of this
nuisance parameter has not been accounted in the studies presented here).
23 Of course a still larger number of target layers would offer further small
gains, but we do find that 300 layers per station constitute an excellent practical
compromise.
6.7. Effect of the identification of final state particles

Here we study what degradation in the determination of the scat-
tering parameters occurs if no identification of the outgoing muon and
electron is provided by the experimental apparatus. In principle, a
combined fit of the event kinematics should be able to determine in all
cases the most likely configuration, and therefore provide indirectly an
assignment of each outgoing track to a final state particle, because the
functional dependence of θμ and θe (see Fig. 3, Sec. 2) does not in general
have a solution for the switch of those two parameters. The exception to
this is the ‘‘confusion’’ region where the outgoing angles in the scattering
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frame are very similar, θμ ’ θe. This region corresponds to angles of
about 2.5 milliradians, for which the nominal angular resolution on the
outgoing particles provided by the multi-layer baseline detector layout
discussed supra sits in the one to two percent range.22

In the likelihood definition of Sec. 4.1 we have implicitly assumed
that we could distinguish the hits due to the final state electron and muon
tracks. This can be done with the help of a calorimeter or some other
particle ID detector (not studied here), or by comparing the ionization
deposits in the sensors (also not discussed in this article), or (if tracks are
measured in many silicon layers) by comparing their multiple scattering
angles from the fit residuals (this option should also be considered in a
future study, and has been neglected here). For the discussion offered in
this Section we instead drop the assumption altogether. The likelihood
we use here is one which determines the maximum of the logL function
for each of the two competing hypotheses (track 1 is the muon and track
2 is the electron, or vice-versa), and picks the best of the two solutions to
the overall topology. The worsening effect of allowing both hypotheses to
compete can be assessed by comparing, in the region of confusion, the
resolution on particle angles and event q2 for the configuration we have
identified as the most promising supra,23 i.e.

� NBe;0 ¼ NBe;1 ¼ NBe;2 ¼ 100 layers, NBe;tot ¼ 300 per station;
� ΔzBeSi ¼ 0:5 cm;
� interspacing of target layers: ΔzBe ¼ 0:3 cm
� position of the left edge of the three tracking modules in each station:
zmod0 ¼ 31:8 cm, zmod1 ¼ 65:2 cm, zmod3 ¼ 98:5 cm

� ΔzSi ¼ 0:18 cm;
� Φstereo ¼ π=4;
� Δhstag ¼ 45μ m.

Fig. 22 shows that the resolutions on q2 and incomingmuon, outgoing
muon, and electron divergences from the z axis do suffer a large wors-
ening in the region of confusion. Further, Fig. 21 highlights the



Fig. 22. Comparison of the relative resolution on q2 (top left) and particle divergences from the z axis θin (top right), θμ (bottom left), and θe (bottom right) when
knowledge of the ID of the final state particles is assumed (black) or ignored (red). (For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)

T. Dorigo Physics Open 4 (2020) 100022
‘‘attractive’’ behavior of true q2 values around 0.08. Away from that
region, however, no significant effect is apparent. The region of highest
sensitivity in the q2 distribution –the one of high four-momentum
transfer– seems to be largely unaffected by the lack of particle ID (see
Fig. 23).

7. Constraints on the relative positioning of detector components

In the proposal of the MUonE experiment [16] a demonstration is
provided of how the average momentum of the muon beam can be
determined with high accuracy by considering elastic scattering events
for which the final state particles emerge with equal angles θSCμ , θSCe from
the incoming muon direction. The method would suffer from a deterio-
rating systematic bias if the position of the detection layers along the z
axis were subjected to an offset from their nominal value. That appears to
be motivation for an effort to secure a precision to better than 10 μm on
the positioning of the sensors, along with a precise placement of the
28
sensors orthogonally to the beam: in fact, a tilt of the sensors by angles of
the order of a few milliradians could also worsen significantly the pre-
cision of the beam momentum measurement. For those reasons, a holo-
graphic system is under development, which would use laser
interferometry to extract a precise determination of the relative place-
ment of the sensors along with their tilts along the x or y axes. However,
we argue in this section that a fully-software-based alternative is avail-
able, as discussed infra Fig. 26.
7.1. Precision of the determination of the z positioning of a module

Here we show how a data-driven measurement of the placement of
silicon sensor layers is easy to carry out, by studying the profile likeli-
hood of the fits to the full scattering kinematics, as a function of the
assumed position of a detection layer. We consider al large set of scat-
tering events (107), which may be collected within less than 2 min of
running time at nominal beam luminosity in a 40-m-long detector (see



Table 9
Estimated value of x- and y-tilt bias parameter of the central
tracking module of the second section in the considered four-
stations assembly, from parabolic fits to the Δχ2 values corre-
sponding to the maximum likelihood returned by fits to 107

generated scattering events.

Geometry Estimated bias in x tilt

baseline �0:000131� 0:000009 rad
optimized 0:000020� 0:000200 rad
Geometry Estimated bias in y tilt
baseline �0:000067� 0:000019 rad
optimized 0:000206� 0:000211 rad

Table 10
Estimated value of bow along z of the central tracking module of
the second section in the considered four-stations assembly, from
parabolic fits to the Δχ2 values corresponding to the maximum
likelihood returned by fits to 107 generated scattering events.

Geometry Estimated bow at layer center

baseline 21:6� 8:0μ m
optimized �87:2� 6:3μ m

Fig. 23. Δχ2 profile as a function of shift in the positioning of tracking module 2 in the second station, for a statistics of 107 generated interactions in the baseline
geometry. On the left a full scan is shown from -0.01 cm to 0.01 cm, on the right a zoom near the minimum of the Δχ2 curve.

24 We have observed that biases of the order of 10 – 20 μm indeed arise due to
the causes mentioned above, for tracks with very small divergence which are the
majority in our case.
25 For a 10-cm-wide sensor, a rotation of 3:46� 10�4 radians around its center
produces, for uniform illumination of its width, the same systematic effect of an
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Sec. 3.1.4). For each event, whose measurements are indicated by x!
below, for simplicity, we.

1. reconstruct the kinematics from a full kinematic fit to the elastic μe →
μe hypothesis, using Eq. 4.1 and the method outlined in Sec. 4.1;

2. store the maximum of the likelihood, Lmaxð x!;bpÞ, where bp is the vector
of parameters maximizing L given data x!;

3. vary the position of the layer under study by Δz, and maximize again

the likelihood, Lmaxð x!; bp’Þ; note that in general, this will happen at
parameter values bp’ differing from the previous ones;

4. store the difference between likelihood maxima as a function of Δz,

Δχ2ðΔzÞ¼ � 2½logLmaxð bp’jΔzÞ� logLmaxðbpj0Þ�
The distribution of total Δχ2, summed over all events, will approxi-

mately take the shape of a parabola with positive quadratic coefficient,
passing by a point of coordinates ðΔz ¼ 0;Δχ2 ¼ 0Þ. It is not guaranteed
that the parabola will have a minimum at ð0;0Þ even when using simu-
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lated data with nominal coordinate values of the considered tracking
module, as the details of the detector geometry (e.g. discreteness of the
hit position determination and z-vertex constraint) do introduce small
biases to the estimated layer position24; however, a robust extraction of
those biases, which are driven by geometry configurations more than
physical details, is possible by using a detailed simulation. Indeed, the
minimum of the Δχ2 distribution calculated as above in a sample of real
data represents a data-driven determination of the true Δz value, i.e. the
offset from the nominal position of the considered tracking module, after
the reconstruction bias for nominal position (obtained from simulation)
is subtracted (see Table 8 and Fig.23).

7.2. Precision in determination of the orthogonality of modules to z axis

Quite similarly to the above determination of z offsets, one may
obtain a determination of possible biases in the orthogonality of the
sensors. A rotation of a detection layer around the axis parallel to the
silicon strips –say, the y axis for the left double-sided sensor of a module,
which measures the x coordinate– and located on the z axis will have an
impact on the measurement of the track hits along x, while it will to first
order produce no bias on the y measurements. Since the modules can be
constructed in rigid structures, both x and y rotations from the nominal
orthogonal position can be detected by studying the distribution of the
total χ2 of the scattering fits as a function of those angles. In Fig. 24 we
show a typical determination of the effect, for detectors that are supposed
to be positioned perfectly, i.e.with no tilts. One observes that the minima
of the parabolas do not exactly correspond to zero tilt (see Table 9), yet
their displacement, mostly due to the discreteness of the detection sys-
tem, are smaller than in the case of linear offsets25; in any case, when
estimating the tilt in real data, a simulation of the apparatus is still
necessary to determine the expectation value for no sensor misplace-
ment, such that an observed departure from those values can be used to
correct the track fits.
offset of 10μ m along z.



Fig. 24. Top: Δχ2 profile as a function of x tilt in the positioning of tracking module two in the second station, for a statistics of 107 generated interactions in the
baseline geometry. On the left a full scan is shown from -0.01 rad to 0.01 rad, on the right a zoom near the minimum of the Δχ2 curve. Bottom: same, for tilts along the
y direction. As the likelihood profile is not well approximated by a parabola in the full considered range (left), the parabolic fit that extract the tilts are performed in a
reduced range, as shown in the right panels.
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7.3. Precision determination of the bow of silicon sensors

Another subtle effect comes from possible bows of the thin silicon
layers of a detection module. A bow may result from compressive or
tensile effects of the mounting supports on the sensor. Here we consider a
bow along one of the orthogonal directions (the x axis) of the third
module of station 2 as an example, and study as a function of the
maximum displacement (which results at the detector center for the
modeled symmetric effect, i.e. on the z axis) the total Δχ2 of a collection
of scattering fits. The deformation is modeled as a quadratic displace-
ment of the true z position of the sensor with respect to its nominal one.
Similarly to what is found for z offsets, a non-zero bow estimate may
result from the discreteness of the measurements of track coordinates
–the effect is of the same order of magnitude (see Table 10 and Fig.25).

7.4. A note on the positioning of target layers

The discussions outlined supra focused on the possible biases in the
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positioning of silicon sensors, and on data-driven ways to constrain them.
The demonstration that precise fits to the scattering kinematics have the
potential of tightly constraining those effects should come as a relief; on
the other hand, throughout this document we have argued in favour of
preferring distributed target geometries, with very thin layers precisely
positioned along the z axis acting as an additional measurement
constraint on the vertex position. The question then arises of what is the
constraining power of the data on the positioning of those detector ele-
ments, too: indeed, an imprecise placement of the target material may
jeopardize all the gains of its distributed geometry.

We have not attempted in our studies to demonstrate that the same
method discussed earlier in this section can be successfully applied to
constrain the positioning of target layers. On the other hand, the tech-
nique is very similar. The information reported supra (Sec. 7.1) should be
sufficient proof that the constraining power of the direct parametrization
of the scattering vertex position in the likelihood function (Eq. 4.1) can
be a solution to the problem. The question to us is thus not whether this
approach is viable, as much as how doable is the machining of a precise,



Fig. 25. Δχ2 profile as a function of the bow (measured as a displacement along
z) at sensor center in tracking module two in the second station, for a statistics of
107 generated interactions in the baseline geometry.

T. Dorigo Physics Open 4 (2020) 100022
rigid structure –a ‘‘distributed target block’’wherein the relative position
of each layer will remain the same throughout a lengthy data taking
campaign, provided that the detector area is kept at constant tempera-
ture. In that case, the original determination of possible deviations from
the design positions, obtained from data, will remain valid on the time
scale of several hours averting the need to be redetermined with high
frequency. A second issue is the availability of a sufficiently precise
simulation to estimate the ‘‘bias for no offset’’ subtraction terms that
allow to correct for the misplacement of the detector elements; we have
no means of gauging whether a full GEANT simulation suffices for the
task, but on the other hand the simulation can in turn be tuned with real
data before these effects can be modeled. Hence it appears that a software
solution to the issue of positioning errors is available, albeit maybe not as
straightforward as it seems in our idealized setup.

8. Conclusions and design recommendations

In this concluding section we summarize our recommendations on
some design aspects and construction choices for the detector of a muon-
electron scattering experiment targeting the measurement of the Δαhad
parameter, as well as on future studies which we believe are potentially
fruitful. Our results are of course approximate and the resulting conclu-
sions should be verified with the help of a full simulation; however, we
believe they are still useful in guiding those more refined and detailed
investigations: in a word, they show the direction that should be taken in
furthering the optimization of design choices.

We have approached this studywith the preconception, partly derived
from previous discussions with colleagues, that the design of a detector
built to measure such a subtle physical effect as the running of α due to
hadronic loop effects should be as simple and robust to systematic effects
as possible. Indeed, this appears as the driving consideration, given that
hadronic loop contributions never exceed a part in a hundred of the total
cross section, even in themost favourable regions of high q2. However, the
precise studyof the scatteringkinematics, andof the constrainingpowerof
the various relations betweenmeasurable quantities, convinces us that the
opposite is true: the very high statistics of collectable scattering events,
combinedwith the redundantmeasurement of anoverconstrained system,
allow for a data-driven in situ reduction of themost worrysome systematic
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sources of uncertainty. The results of the previous section demonstrate
how even the ‘‘small’’ statistics of O(107) fully reconstructed scattering
interactions, collectable in a few minutes of data taking, allow to detect
misplacements, tilts, and bows of the detection modules by microscopic
amounts. After obtaining those results, we are left with the clear impres-
sion that all of the detector parameters bearing some relevance for the
reconstruction of the events kinematicsmay bedeterminedwith very high
precision and with dataset sizes as small as those collectable on the time
scale of minutes of data taking. If true, this is very good news for the
experiment, as the beam instability during data taking will require to
frequently re-calculate the mean beam energy. The MUonE collaboration
has shown how this can be done with the study of events where electron
and muon emerge with equal divergence from the scattering, provided
that the z position of detection modules is very precisely known. For that
purpose, they proposed to endow the stations with built-in laser in-
terferometers. We believe those devices are useful but not strictly needed
in principle, and we trust that their calibration method can be carried out
without being affected by large systematic uncertainties from the relative
positioning of sensors and target layers.

8.1. Recommendations

Below we list the main take-home points we obtained from our study
of the geometry of detection and target components for the proposed
muon scattering experiment.

1. The advantages of an independence of the stations making up the
detector (ease of construction and assembly, reduction of trigger
logic) should be considered with care and compared to the ad-
vantages brought by the alternative designs proposed in this work,
to be reassessed with a full simulation of the detector and
interactions.

2. The option of dividing up the target material into as many thin
layers as it is practical to assemble in rigid structures should be
investigated in detail, taking into account material choices, pro-
duction costs, and machining issues. The single choice of dividing
the 1.5 cm of beryllium envisioned for each station into 300 50μ
m-thick layers, stacked into 31 cm-long structures where each
layer is spaced by 3 mm from its neighbors, wins a considerable
amount of constraining power on the parameter of interest.

3. If shorter stacks of thin target layers are built, which thus do not
occupy the full longitudinal space between two consecutive
modules in a section, their placement with respect to the tracking
modules should be studied with care, as considerable variations in
the q2 resolution may result from the variation of that parameter.
From our studies it appears advantageous to position the target
stacks closer to the module on their left, as this increases the
precision of the measurement of outgoing particles at the price of
a less crucial decrease of the precision with which the incoming
muon is traced.

4. The construction of double-sided silicon strip detection elements
should be customized such that one side has strips staggered by
half the pitch width (i.e. 45μm for the CMS Phase-2 sensors) with
respect to the position of the strips on the other side. While the
advantage of such setup depends on the details of the charge
collection in the sensors, which has been simulated with a quite
crude model, we believe that the peculiar kinematics of MUonE,
with almost all tracks traveling with almost null divergence from
the beam axis and thus will typically create single-strip hits, makes
this conclusion robust.

5. The option of rotating by a 45-degree stereo angle the middle
module of each station should be studied with a full simulation
which could appraise the relative merits of such a setup with
respect to other effects. In the absence of backgrounds and in the
idealized setup we have considered here, a slight worsening of the
considered figures of merit is apparent from the rotated setup. In
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addition, a small loss in acceptance results from the misalignment
of the sensitive area of the secondmodule with respect to the other
two in each station.

6. If practical, the separation of sensors in double-sided modules by a
larger amount than the 0.18 cm default of the CMS phase 2
detection elements appears to improve the resolution for the
reconstruction of elastic muon-electron scattering events, in
modules mounted with no staggering of the strips; however, if a
45 μm staggering is used in mounting the two sensors back-to-
back in a double-sided module, the spacing should be kept at its
minimum value.

7. Although in principle advantageous, the production of thin layers
machined in a square lattice by etching away material in a grid of
narrow holes does not appear to provide a sufficient additional
constraining power to be worth pursuing, as the resolution on the
transverse position of the scattering vertex achievable with a
combined fit to the three tracks is already quite good.

8. We suggest that the positioning, the tilt, and the bow of each of the
detection elements can be determined with very high accuracy by
studying the distribution of the profile likelihood of the scattering
fits to a large number of interactions as a function of the consid-
ered biased parameter. In order to evidence those shifts and
constrain the parameters in an optimal way, the fits should handle
the scattering as a whole as is done in this study, rather than
consider independently the trajectory of each track.

9. In case a distributed target is chosen for the detector, the option of
sealing the volume external to the tracking modules in bags filled
with low-pressure helium should be considered (as argued supra,
at the end of Sec. 3.1.3). While we did not compare the resolution
provided by such an arrangement to that obtained by ignoring the
effect of scatterings in air, a small gain is clearly predictable by
reducing the scattering with non-constrainable vertex z.

10. We suggest that a global likelihood fit to the track hit information,
which included the hit position determination in the likelihood
calculation, would improve the sensitivity of the determination of
the event q2 over other choices. The benefits of a simultaneous fit
to all available information comes from avoiding first-order
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Taylor approximations to the covariance of the individual de-
terminations, as well as, in the case of hit finding, from the
interplay of the center-of-gravity determination and the track
incident angle on the silicon sensors. We are however aware that
the presently envisioned readout of the CMS phase-2 silicon
modules does not include analogic charge readout capabilities, so
this option may not be implemented in practice.

While we believe that the above conclusions are robust enough to be
largely independent of the approximations we used to derive them, we
suggest that the main differences between the considered design choices
be studied by modeling the relative geometries in a full simulation of the
device, which may correctly account for non-Gaussianity of multiple
scattering, delta rays, background hits, non-elastic scattering events, and
a full model of charge deposition in the silicon sensors.
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Appendix A. Two figures of merit

We define here two different figures of merit which may be useful to quantify the information content of the reconstructed differential cross section,
with respect to the extraction of its hadronic contribution. The first one is a simple pseudo-significance measure, summed over all considered bins of the
cross section distribution:

ZSB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXi¼imax

i¼imin



2
� ffiffiffiffiffiffiffiffi

NSB
i

q
�

ffiffiffiffiffiffi
NB

i

q ��2vuut (14)

Above,NSB
i is the expectation value of the number of event counts in bin i, assuming the nominal value ofΔαhad andNB

i is the corresponding expected
number of events if the hadronic contribution (as modeled in Eq. (5)) is neglected; imin and imax are the indices of the first and last bin considered in the
histogram comparison. The construction requires the specification of a predicted distribution of the electroweak part of the elastic cross section, which is
the theoretical curve folded with the experimental acceptance and resolution effects. These are determined separately, as discussed infra.

The acceptance factor is extracted from a binned ratio between reconstructed and generated events in each bin of true q2: because the same
generated events are used in the calculation, this factor is thus the true one affecting the measured distribution, hence no uncertainty from imperfect
acceptance affects the comparison of measured and expected electroweak spectrum. As for the resolution effects, we tried unsuccessfully to extract them
frommean and RMS values of the q2 residuals (measured minus generated) from the generation and reconstruction of simulated elastic scattering events
at different reference values of q2. Imperfections in the resulting model –which crucially requires the independent determination of parameters for each
of the different studied geometries– consistently out-weigh the effect that the q2 resolution alone has on the test statistic defined above. We therefore
also in this case decided to use the ‘‘true’’ q2 resolution, as determined event per event by comparing fitted and generated q2. At the price of some
throwing up of our hands, we gain some more power for the defined statistics.

Since each 2ð
ffiffiffiffiffiffiffiffi
NSB

i

q
�

ffiffiffiffiffiffi
NB

i

q
Þ factor is an approximate measure of the significance of a departure of the observed rate from its Poisson mean NB

i , and

ZSB is a quadrature sum of those factors, it results in a pseudo-significance measure of the shape difference between the two distributions.
A second, well-knownmeasure of the information content of the difference between two distributions is provided by the Kullbach-Leibler divergence

[25]. It is defined as
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DKL ¼
Xi¼imax

pSBi log
�
pSBi
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�
(15)
i¼imin
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where here pSBi and pBi are here the two probability distributions under discussion (respectively, the expected density function of the differential cross
section which includes the hadronic contribution, and the expected density function of the same, considering the electroweak part alone; in both cases,
the true resolution and acceptance are considered, as discussed supra); index i runs on the bins from imin to imax as for the ZSB statistic defined supra. DKL is
a measure of entropy –in other words, it is an estimate of the information content provided by the difference of the two compared densities, and is thus
arguably very well suited to capture the quality of the reconstruction, when the hadronic contribution to elastic scattering is the focus of the
measurement.

As mentioned in the body of this document, the above test statistics are insufficiently sensitive to the effect we are trying to put in evidence, for
simulated datasets of the size reachable by our computing power. They can only be useful when there is no stochasticity involved in passing from one
studied geometry to the next; this happens, e.g., when we study effects that do not modify the propagation of the particles in the material, such as
variations of the stereo angle of the central tracking module (particles crossing the rotated module encounter the same amount of material as particles
crossing an unrotated module). The residual statistical variations due to different acceptance of the configurations at different stereo angles are small
enough that the two test statistics discussed here produce a coherent picture, as shown in Fig. 19.

Appendix B. Δαhad extraction by cross section fits

Here we describe the extraction of the Δαhad parameter from a shape fit to the observed q2 distribution of elastic muon-electron scattering events,
used for some checks described in this document. Originally our intent was to extract directly the uncertainty on the parameter of interest with this
method. However, we realized that it was not practical to do so; in fact, the crucial input of the fit is a precise model of the q2 resolution, as of course this
directly affects the precision on the extractable value of Δαhad. We tried to model the resolution with parametric forms of considerable complexity, but
the comparison of the merits of different geometries showed to be too dependent on unwanted differences in the precision of the resolution models
produced for each of them.

Fig. 26. Example of a shape fit to the differential cross section of elastic muon-electron scattering as a function of q2. The blue points show simulated data, the black
curve is the result of the fit, and the green and red curves show the electroweak and hadronic contributions which constitute the two fitted components. In this
simulation the value of the hadronic contribution has been artificially increased by a factor of 2000 to better study the fit performance in case of a significant hadronic
contribution, given the sample size (107 generated interactions, of which 79% are fully reconstructed). The left panel shows the full spectrum, the middle one shows a
closeup of its low end, and the right one shows its high- q2 tail. Note that the data extends to values where the templates are null at the small end. This is an innocuous
feature of the template generation, which includes resolution and efficiency effects. The fit is performed by ignoring the first four non-zero bins of the templates as well
as the last two bins.

Because of the above, we use simulation information: rather thanmodeling the q2 resolution, for each event we reconstruct we read off the difference
between true and estimated q2. This allows to construct perfect templates of ‘‘signal’’ (the hadronic contribution to the differential cross section) and
‘‘background’’ for each studied geometry configuration. Again, this is the absolute optimum one may ever obtain with a perfect modeling of the
resolution map; its application to a two-component fit thus allows to extract information on the relative merits of the different geometries which is
33
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oblivious of the issues connected with that part of the analysis problem.
Since this technique has not been used for the results reported in the article, here we only exemplify how a shape fit performs in the baseline

geometry, with a value of Δαhad increased by a factor sufficient to be estimated precisely with a statistics of 107 produced interactions. Fig. 26 shows the
appearance of the data and its interpretation as the sum of background and signal templates with a likelihood fit, where the signal fraction is the only
free parameter. The signal in this case has been increased by a factor of 2000 from its true value, to evidence its different shape and to allow a
convergence of the fit with a limited number of fitted data events.
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