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Abstract

Applying the AdS/CFT correspondence, we investigate the effect of back reaction on the imaginary 
part of heavy quarkonia potential in strongly coupled N = 4 supersymmetric Yang-Mills (SYM) plasma. 
The back reaction considered here arises from the inclusion of static heavy quarks uniformly distributed 
over N = 4 SYM plasma. It is shown that the presence of back reaction reduces the absolute value of the 
imaginary potential thus decreasing the thermal width. Furthermore, the results imply that back reaction 
enhances the quarkonia dissociation.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The heavy ion collisions at RHIC and LHC are believed to produce a new phase of matter 
so-called quark gluon plasma (QGP) [1]. One of the main experimental signatures of QGP for-
mation is quarkonia dissociation. Early evidence [2] indicated that the binding interaction of the 
quark-antiquark pair (QQ̄) is screened by the medium, causing this dissociation. However, re-
cent research [3–8] suggests that the imaginary part of a quarkonia potential, ImVQQ̄, may be a 
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more important reason than screening. Also, this quantity could be used to evaluate the thermal 
width of quarkonia. Already, the ImVQQ has been studied in perturbative QCD etc. [9–11]. How-
ever, lots of experiments show that QGP is strongly coupled [12], which involves nonperturbative 
physics suitable for the Anti-de-Sitter space/conformal field theory (AdS/CFT) correspondence.

AdS/CFT [13–15], namely the duality between the type IIB string theory on AdS5 × S5 and 
N = 4 SYM with an SU(N) gauge group in four dimensions, provides a powerful tool to deal 
with strongly coupled field systems. During the last two decades, this duality has offered many 
important insights for studying various aspects of QGP (see [16] for a good review). Using 
AdS/CFT, Noronha and Dumitru have calculated the ImVQQ for N = 4 SYM plasma in their 
seminal work in [17], where they argued that the ImVQQ could be obtained by analyzing the 
effect of thermal fluctuations due to the interactions between the heavy quarks and the medium. 
Subsequently, this idea has been generalized to various cases. For instance, the ImVQQ̄ of static 
quarkonia is studied in [18,19]. The ImVQQ̄ of moving quarkonia is addressed in [20,21]. The 
finite ’t Hooft coupling corrections on ImVQQ̄ is achieved in [22]. The chemical potential effect 
on ImVQQ̄ is discussed in [23]. For a study of ImVQQ̄ from AdS/QCD, see [24–26]. Moreover, 
this quantity has been holographically computed in some other ways [27–29].

The purpose of this paper is to study the effect of back reaction on ImVQQ̄ for N = 4 SYM 
plasma. As we know, QGP is comprised of huge amounts of free quarks and gluons. That would 
mean if one analyzes the dynamics of a heavy quark (or quarkonium) in this hot plasma, the 
back reaction of the plasma should be taken into account. To our knowledge, except for a few 
examples [30,31] etc., it remains very difficult to investigate the strongly coupled gauge theory 
with large number of flavour quarks. Recently, S. Chakrabortty argued [32] that the back reaction 
could be modeled by means of the deformation of the geometry due to finite density string cloud. 
To be specific, a back reacted gravity background could be dual to a system of large number of 
heavy quarks uniformly distributed over the N = 4 SYM plasma. Later, the drag force [32] and 
jet quenching parameter [33] have been studied in such theories. It was shown that the presence 
of back reaction increases the two quantities thus enhancing the energy loss. Motivated by this, 
in this paper we would like to study the imaginary potential in such theories. We want to know: 
how back reaction modifies the imaginary potential and the thermal width? One step further, how 
back reaction affects the quarkonia dissociation?

The structure of the paper is as follows. In the next section, we introduce the backreacted 
gravity background given in [32]. In section 3, we evaluate the expressions for the real and 
imaginary part of the quarkonia potential, in turn. In section 4, we analyze the effect of back 
reaction on the imaginary potential and discuss how such effects modify the thermal width as 
well as the quarkonia dissociation. In the last section, we summarize our results and make some 
discussions.

2. Background geometry

One considers the (n + 1)-dimensional gravitational action [32]

S = 1

16πGn+1

∫
d5x

√−g(R− 2�) + Sm, (1)

where Gn+1 is the (n +1)-dimensional Newton constant. g denotes the determinant of the metric 
gMN . R represents the Ricci scalar. � refers to the cosmological constant. Sm stands for the 
matter part, given by
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Sm = −1

2

∑
i

Ti

∫
d2ξ

√−hhαβ∂αXμ∂βXνgμν, (2)

where Ti is the tension. hαβ and gμν are the world-sheet metric and space time metric with α, β
the world sheet coordinates and μ, ν the space time directions.

Varying action (1) with respect to the space time metric yields

Rμν − 1

2
Rgμν + �gμν = 8πGn+1Tμν, (3)

with

T μν = −
∑

i

Ti

∫
d2ξ

1√|gμν |
√|hαβ |hαβ∂αXμ∂βXνδn+1

i (x − X), (4)

where the delta function denotes the source divergences due to the presence of the strings.
To proceed, one considers the space-time metric of the form

ds2 = gtt (r)dt2 + grr (r)dr2 + r2δabdxadxb, (5)

where (a, b) run over (n − 1) space direction.
Using the static gauge t = ξ0, r = ξ1. The non vanishing components of T μν become

T tt = − bgtt

rn−1 , T rr = − bgrr

rn−1 , (6)

where one have assumed the strings are uniformly distributed over (n − 1) direction. Given that, 
the density reads

b(x) = T
∑

i

δn−1
i (x − Xi), with b > 0, (7)

note that for b < 0, T μν will no longer satisfy the weak and the dominant energy conditions. One 
looks for a solution of (3) in AdS space and parametrizes the metric accordingly treating b as a 
constant

ds2 = −V (r)dt2 + dr2

V (r)
+ r2hij dxidxj , (8)

where hij represents the metric on the (n − 1)-dimensional boundary. Since for the matter part 
one will mainly focus on the string cloud for which the non vanishing components of T μν are

T t
t = T r

r = − b

rn−1 , with b > 0. (9)

By solving the Einstein’s equation, one has

V (r) = K + r2

R2 − 2m

rn−2 − 2b

(n − 1)rn−3 , (10)

where R denotes the AdS radius. K = 0, −1, 1 depending on whether the boundary is flat, spher-
ical or hyperbolic respectively. In this work, we are mostly interested in the K = 0, n = 4 case 
and the corresponding metric is

ds2 = r2

2 (−f (r)dt2 + d �x2) + R2

2 dr2, (11)

R r f (r)
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with

f (r) = 1 − 2mR2

r4 − 2

3

bR2

r3 , (12)

where r denotes the coordinate describing the 5th dimension with r = ∞ the boundary. The 
event horizon rh satisfies f (rh) = 0. Given that, one can write m as

m = (1 − 2

3

bR2

r3
h

)
r4
h

2R2 . (13)

Moreover, the temperature is

T =
√

grr∂r
√

gtt

2π

∣∣∣
r=rh

= 6r3
h − bR2

6πR2r2
h

. (14)

Note that the geometry (11) is thermodynamically stable under tensor and vector perturba-
tions. Also, it resembles AdS Schwarzschild black hole with negative curvature horizon. For 
more details about the backreacted gravity background, we refer to [32,33].

3. ImVQQ̄ for the back reacted gravity background

In this section, we follow the approach in [17,18] to evaluate the expressions for the real and 
imaginary part of the quarkonia potential for the background metric (11). The expectation value 
of the static (temporal) Wilson loop is given by [34]

W(C) = 1

Nc

T rP ei
∫

Aμdxμ

, (15)

where C denotes a closed loop in a 4-dimensional space time and the trace is over the funda-
mental representation of the SU(Nc) group. Aμ represents the gauge potential. P enforces the 
path ordering along C. Considering a rectangular loop with one direction along the time coordi-
nate T and spatial extension L. Then in the asymptotic limit T → ∞, the heavy quark potential 
VQQ̄(L) can be extracted from the vacuum expectation of the rectangular Wilson loop,

< W(C) >∼ e
−iT VQQ̄(L)

. (16)

On the other hand, in the supergravity limit,

< W(C) >∼ e−iSstr , (17)

with Sstr the classical Nambu-Goto action of a string in the bulk,

Sstr = S = − 1

2πα′

∫
dτdσ

√−det (Gμν∂aXμ∂bXν), (18)

where Xμ(σ, τ) are the worldsheet embedding coordinates with μ, ν = 0, 1, ..., 4 and a, b = σ, τ . 
α′ is related to ’t Hooft coupling λ as R2/α′ = √

λ.
To proceed, one uses the remaining symmetry of (18) to completely fix the static gauge, such 

that

t = τ, x = σ, y = 0, z = 0, r = r(σ ). (19)
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Under this assumption, the string action with end points fixed at x = ±L/2 reads

S = T
2πα′

L/2∫
−L/2

dσ

√
r4f (r)

R4 + (
dr

dσ
)2. (20)

Since the above action does not depend on σ explicitly, the corresponding Hamiltonian is a 
constant

L− ∂L
∂( dr

dσ
)

dr

dσ
= r4f (r)/R4√

r4f (r)

R4 + ( dr
dσ

)2
= constant. (21)

Imposing the boundary condition at the deepest point of the U-shaped string like

dr

dσ
= 0, r = r∗, (22)

one gets

dr

dσ
=

√
a2(r) − a(r)a(r∗)

a(r∗)
, (23)

where

a(r) = r4f (r)

R4 , a(r∗) = r4∗f (r∗)
R4 , (24)

with

f (r∗) = 1 − 2mR2

r4∗
− 2

3

bR2

r3∗
. (25)

Integrating (23), the inter-distance of QQ̄ can be written as

L = 2

∞∫
r∗

dr
dσ

dr
= 2

∞∫
r∗

dr

√
a(r∗)

a2(r) − a(r)a(r∗)
. (26)

Putting (23) into (20), the total action for QQ̄ is obtained as

S = T
πα′

∞∫
r∗

dr

√
a(r)

a(r) − a(r∗)
. (27)

The above action is divergent since it contains the self-energies of QQ̄ pair. One could cure 
this divergence by subtracting from S the self energy contribution of the two quarks [34–36]. 
Then the real part of the heavy quark potential for the background metric (11) reads

ReVQQ̄ = 1

πα′

∞∫
r∗

dr[
√

a(r)

a(r) − a(r∗)
− 1] − 1

πα′

r∗∫
rh

dr. (28)

For the above equation, we would like to make the following comment. For small distance L, 
one expects T as well as b, to have negligible effect on the interaction potential of QQ̄. This 
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Fig. 1. The effect of thermal fluctuations (dashed line) around the classical configuration (solid line).

argument is backed by lattice results [37,38] which indicates that for LT << 1 the free energy is 
independent of T . Furthermore, for small L if QQ̄ interaction does not depend on T and b, then 
the regularization in (28) does not depend on these scales either.

To proceed, we derive the expressions of ImVQQ̄. One considers the effect of thermal world 
sheet fluctuations around the classical configurations rc(x),

r(x) = rc(x) → r(x) = rc(x) + δr(x), (29)

where rc(x) solves δSNG = 0. For simplicity, δr(x) is taken to be of arbitrarily long wavelength, 
i.e., dδr(x)

dx
→ 0. The physical picture of the thermal fluctuations is shown in Fig. 1. Notice that 

if r∗ is close enough to rh, the fluctuations of very long wavelength may reach the horizon.
The string partition function that takes into account the fluctuations is given by

Zstr ∼
∫

Dδr(x)eiSNG(rc(x)+δr(x)). (30)

Discretizing the interval −L/2 < x < L/2 into 2N points located at xj = jx (j =
−N, −N + 1, ..., N ) with x ≡ L/(2N), one has

Zstr ∼ lim
N→∞

∫
d[δr(x−N)] · · ·d[δr(xN)]exp[ iT x

2πα′
∑
j

√
(r ′

j )
2 + a(rj )], (31)

where rj ≡ r(xj ) and r ′
j ≡ r ′(xj ). The thermal fluctuations are most important around x = 0, 

where r = r∗. Hence, one can expand rc(xj ) around x = 0, keeping only terms up to second 
order in xj . Given that r ′

c(0) = 0, one gets

rc(xj ) ≈ r∗ + x2
j

2
r ′′
c (0). (32)

Also, the expansion for a(rj ), keeping only terms up to second order in xm
j δrn, reads

a(rj ) ≈ a∗ + δra′∗ + r ′′
c (0)a′∗

x2
j

2
+ δr2

2
a′′∗ , (33)

with a∗ ≡ a(r∗), a′∗ ≡ a′(r∗), etc. Then, the exponent in (31) can be approximated as

SNG
j = T x

√
C1x

2
j + C2, (34)
2πα′
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where

C1 = r ′′
c (0)

2
[2r ′′

c (0) + a′∗], C2 = a∗ + δra′∗ + δr2

2
a′′∗ . (35)

If the function in the square root of (34) is negative, SNG
j will contribute to ImVQQ �= 0. The 

relevant region of the fluctuations is the one between δr that yields a vanishing argument in the 
square root of (34). Thus, one could isolate the j−th contribution

Ij ≡
δrjmax∫

δrjmin

d(δrj )exp[ iT x

2πα′
√

C1x
2
j + C2], (36)

where δrjmin and δrjmax are the roots of C1x
2
j + C2 in δr .

The integral in (36) can be obtained by using the saddle point method in the classical gravity 
approximation, i.e., α′ << 1. The exponent has a stationary point when the function inside the 
root square of (36)

D(δrj ) ≡ C1x
2
j + C2(δrj ), (37)

assumes an extremal value. This happens for

δr = − a′∗
a′′∗

. (38)

Requiring that the square root has an imaginary part, results in

D(δrj ) < 0 → −xc < xj < xc, (39)

where

xc =
√

1

C1
(
a′2∗
2a′′∗

− a∗). (40)

Taking xc = 0 if the square root in (40) is not real. With these conditions, one can approximate 
D(δr) by D(− a′∗

a′′∗
) in (36)

Ij ∼ exp[ iT x

2πα′

√
C1x

2
j + a∗ − a′2∗

2a′′∗
]. (41)

Then the total contribution to the imaginary part is given by �jIj , leading to

ImVQQ̄ = − 1

2πα′

∫
|x|<xc

dx

√
−x2C1 − a∗ + a′2∗

2a′′∗
. (42)

Integrating (42), one arrives at the imaginary potential for the back reacted gravity background

ImVQQ̄ = − 1

2
√

2α′ (
a′∗

2a′′∗
− a∗

a′∗
), (43)

with
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a′∗ = r4∗f ′(r∗) + 4r3∗f (r∗),
a′′∗ = r4∗f ′′(r∗) + 8r3∗f ′(r∗) + 12r2∗f (r∗),

f ′(r∗) = 8mr−5∗ + 2br−4∗ ,

f ′′(r∗) = −40mr−6∗ − 8br−5∗ , (44)

where, for convenience, we set R = 1. Note that when b is put to zero, the result of N = 4 SYM 
plasma [17] is reproduced.

4. Numerical results

Before numerical computation, we discuss the regime of applicability of this model. First, the 
imaginary potential should be negative, yielding

a′∗
2a′′∗

− a∗
a′∗

> 0, (45)

results in

ε > εmin, (46)

with ε = rh/r∗, where the value of εmin can be evaluated numerically.
The second limitation relates to the maximum value of LT (say LTmax ). From (14) and (26), 

one has

LT = 6r3
h − b

3πr2
h

∞∫
r∗

dr

√
a(r∗)

a2(r) − a(r)a(r∗)
. (47)

In Fig. 2, we plot LT as a function of ε for different values of b. From these figures, one 
can see that in each plot there exists a LTmax , corresponds to ε = εmax . In fact, for ε > εmax , 
there may be other string configurations (which are not solutions of the Nambu-Goto action) 
that contribute to the calculation of the Wilson loops besides the semiclassical U-shaped string 
configuration [39]. Here we are mostly interested in the case of ε < εmax . Briefly, the domain of 
applicability of (43) is εmin < ε < εmax .

Now let’s discuss results. First, we analyze how back reaction affects the inter-distance of 
QQ̄. From Fig. 2, one sees that increasing b leads to decreasing LT , implying the inclusion of 
back reaction reduces the inter-distance.

Next, we study how back reaction influences the imaginary potential. To that end, we plot 
ImV/(

√
λT ) versus LT for different values of b in Fig. 3. One can see that in each curve 

ImV/(
√

λT ) starts at a LTmin, corresponding to εmin, and ends at a LTmax , corresponding to 
εmax . Moreover, for increasing b the onset of ImV/(

√
λT ) happens at smaller LT . As discussed 

in [20], if the onset of the imaginary potential occurs for smaller LT , the suppression will be 
stronger. Thus, one concludes that the presence of back reaction enhances the quarkonia dissoci-
ation.

Also, one can analyze the effect of back reaction on the thermal width. Usually, a larger 
absolute value of imaginary potential corresponding to a larger thermal width [17,18]. Since the 
absolute value of ImV/(

√
λT ) decreases with b, one infers that the inclusion of back reaction 

decreases the thermal width.
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Fig. 2. LT versus ε. In the plots from top to bottom, b = 0,1,2, respectively.

Fig. 3. ImV/(
√

λT ) versus LT . In the plots from right to left, b = 0,1,2, respectively.

5. Conclusion and discussion

In this paper, we studied the imaginary potential of heavy quarkonia in a back reacted gravity 
background, which is dual to a system of large number of heavy quarks uniformly distributed 
over the N = 4 SYM plasma. The motivation rests on the earlier studies on the drag force [32]
and jet quenching parameter [33] in such theories. It is observed that the presence of back reaction 
decreases the absolute value of the imaginary potential thus decreasing the thermal width. One 
step further, the inclusion of back reaction enhances the quarkonia dissociation.

However, several problems remain. The most pertinent how to study the back reaction with 
respect to the interaction between the heavy quarks in the cloud and the back reaction to the 
spacetime geometry? Moreover, how to study such effects in the systems that are not confor-
mal? (since SYM plasma differs from QGP mainly due to the lack of a dynamical breaking of 
conformal symmetry). We hope to report our progress in this regard in the near future.
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