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Abstract

Some models of physics beyond the Standard Model have predicted the existence of a light neutral vector particle,
called the U boson, which would mediate a new dark gauge interaction. KLOE has searched for the production of
U bosons in five analyses comprising four types of production processes with various final states. We’ve used Dalitz
decays of the ¢ meson, ¢ — U with U — e*e™ and the two final states 1 — 7t~ n’ and 1 — 77’7, to provide
limits on the mixing strength between the dark sector and the Standard Model in the range 50 < my < 520 MeV/c?.
We’ve set a limit using ete™ — Uy, U — u*u~ in the range 520 < my < 980 MeV/c? and provided a preliminary
limit using ete™ — Uy, U — e*e” in the range ~ 5 < my < 520 MeV/c2. We’ve also searched for a U boson
in the dark Higgsstrahlung process, ete™ — Uh, U — p*u~, placing a preliminary limit on the product of the
kinetic mixing parameter and the dark coupling constant in the parameter space 2m, < my < 900 MeV/c? and
10 < my < 500 MeV/c2.
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1. Introduction

A series of recent astrophysical observations have
obtained results which cannot be explained within the
framework of the Standard Model. For example, the
e*/e” excess in cosmic-ray flux as compared to the
p*/p~ flux [1], the 511 keV gamma-ray signal from
the galactic center [2], the total e* /e~ flux [3-6], the
DAMA/LIBRA annual modulation [7, 8], the CoGeNT
results [9, 10], and the positron spectrum in primary
cosmic rays [11].

Several well-motivated dark matter models have been
put forth which claim to explain the aforementioned
anomalies. In particular a new gauge interaction would
be mediated by a new vector gauge boson, the U bo-
son (dark photon), which could kinetically mix with the
Standard Model hypercharge (ordinary photon). This
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small coupling between dark matter and the Standard
Model can be described by a single kinetic mixing pa-
rameter, &, defined as the ratio of the dark to the Stan-
dard Model electroweak couplings, ap/agw. The re-
sulting Lagrangian would be,

&
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Since no astrophysical data involves an anomalous
production of antiprotons, these models only offer an
explanation if there exists a U boson with a mass less
than two proton masses. The U bosons could be ob-
served as a sharp resonance at my in the invariant-mass
distributions of final-state charged lepton or pion pairs
in reactions of the type e*e™ — £(n)*€(7)"y, or in me-
son Dalitz decays.

2. The search for Uin ¢ —» nU, U - e*e”

Reece and Wang suggested that there could be an as-
sociated decay of a vector into a pseudoscalar and a
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U boson, V. — PU [12]. The KLOE experiment op-
erating at the DAONE ¢-factory was therefore poised
to search for the U boson in ¢ — nU decays.

The first KLOE U boson search looked for the pro-
cess & — nU, U — e*e™ by selecting 13,000 events
of n —» w7’ with an associated e*e™ pair selected
from 1.5 fb~! of data collected in 2004-2005, with ~2%
background [13].

A second analysis using 31,000 events of 1 —
m707° with an associated e*e” pair was selected
from 1.7 fb=! of data from 2004-2005 with ~3%
background[14]. An irreducible background from the
Dalitz decay ¢ — ny* — ne*e”, n — m'nn® was
present and simulated using the Vector Meson Domi-
nance model [15]. We assumed the U boson decays only
into leptons with an equal coupling to e*e™ and ptp™.

A resonant peak was not observed in the dielectron
mass spectrum of the two analyses, see Figure 1. The
background peak around 440 MeV/c? is from the decay
¢ — KgKp. The CLS technique was used to set an
upper limit on the strength of kinetic mixing parameter
as a function of U boson mass [16]. The 90% confidence
level limit is shown in Figure 4.
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Figure 1: Dielectron invariant-mass distributions, mee (MeV/c?), for
¢ — nete” withn — w0 (fop) and n — 77070 (bottom). The
red lines are fits to the measured data.

3. The search for Uinete” —» Uy, U -» u*p~

Using 239.3 pb~! of data collected in 2002, we’ve
searched for a U boson in the process e*e™ — Uy, U —
uru [17]. Again the signal would appear as a nar-
row resonance in the final-state dilepton invariant-mass
spectrum.

For this analysis we required two charged tracks emit-
ted at large-angle such that their energy is deposited
in the barrel of the calorimeter. The initial-state radi-
ation (ISR) photon was not explicitly detected, being
emitted at small angle with respect to the beam axis,
where its direction was reconstructed using kinemat-
ics of the charged leptons, py, = Pmiss = —Pup =
_(ﬁu* + ﬁuf). A variable called the “track mass”,
Myrack, Was computed using energy and momentum con-
servation, assuming two equal-mass oppositely-charged
final-state particles and an unobserved photon, and was
used to separate muons from pions and electrons. The
Myck distributions for the backgrounds ete™ — e*e™,
7tt7, and 7wt 710 were determined using Monte Carlo
simulations which were then used to estimate residual
background contributions in the dimuon invariant-mass
spectrum. The final invariant-mass spectrum was ob-
tained after subtracting residual backgrounds and divid-
ing by efficiency and luminosity. The absolute cross
section is in good agreement with the PHokHARA Monte
Carlo simulation prediction, see Figure 2.
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Figure 2: Differential cross section of the process e*e™ — ptu~y as
a function of the dimuon invariant mass.

No resonant peak was observed so we used the CLS
technique to estimate the maximum number of U boson
signal events that can be excluded at 90% confidence
level, Ncrg. We then used this number to estimate a
limit on the kinetic mixing parameter,

@ Ncig (mg) 1
& (my) = — = > , (D
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where £ = p, the radiator function, H (mg), was
extracted from doey, /dMy = H(I’)’I[[,S, cos(GY)) .

a'?[ED (m¢¢) using the PHokHARA MC simulation, our effi-
ciency &g (mep) ~ 1-10%, I = f oy dMy is the integral
of the U boson cross section, and L = f L =2393 pb‘1
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is the integrated luminosity. We also applied a system-
atic uncertainty of 1.4-1.8%. The 90% confidence level
limit is shown in Figure 4.

4. The search for Uin ete™ —» Uy, U - ete”

In a similar process as the previous search, KLOE
also looked for a U boson in ete™ — Uy, U — e'e".
This time we performed a large-angle selection which
allows us to obtain a dielectron invariant-mass distri-
bution with sufficient statistics near the dielectron mass
threshold, me. = 2m,. In this case, the hard ISR pho-
ton is explicitly detected in the barrel of the calorime-
ter along with the charged-lepton pair, 50° < G+ ¢- 4 <
130°. The track mass variable was again used to re-
move background contamination from e*e”™ — putuy,
ete” — mty, ete” — yy (where one photon con-
verts into an e*e” pair), efe” — ¢ — pn’ — A0,
and other ¢ decays. The resulting background contam-
ination was less than 1.5%. Figure 3 shows the final
dielectron invariant-mass distribution demonstrating ex-
cellent agreement with a BaBavaga-NLO MC simula-
tion [18] modified with weighted events to account for
the lengthy simulation time for events in the phase space
near the dielectron mass threshold.

No resonant U boson peak was observed prompting
another use of the CLS technique to estimate Ncp, the
number of U boson signal events excluded at 90% con-
fidence level. We used (1) with £ = e to set a prelim-
inary limit on the kinetic mixing parameter as a func-
tion of my. For this analysis €. ~ 1.5-2.5%, and
L= f £ =1.54fb7! from 2004-2005 KLOE data.
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Figure 3: Dielectron invariant-mass distribution for the radiative
Bhabha scattering process ete™ — ete™y.
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Figure 4: Exclusion limits on the kinetic mixing parameter, &2, from
KLOE (in red) and compared with limits from E141[19], E774[20],
MAMI/A1[21], APEX][22], WASA[23], HADES[24], A1[25], and
a preliminary result from BaBar[26]. The gray band indicates the
paramter space that could explain the (g, — 2) discrepancy.

5. The search for Uin ee™ - Uh’/, U —» ptu~

If the hidden symmetry is spontaneously broken by
a Higgs-like mechanism, the existence of at least one
other scalar particle, h’, can be postulated. The hypo-
thetical dark Higgsstrahlung process ete™ — Uh’, U —
pwru” can then be investigated using KLOE data with
the added benefit that this process is suppressed by a
single factor of & as opposed to the three processes out-
lined above which are suppressed by 2. In fact, the
production cross section of this process would be pro-
portional to the product of the dark coupling and the
kinetic mixing strength, ap x &2 [27].

There would be two different scenarios depending
on the relative masses of the dark photon and the dark
Higgs boson. Specifically, if my, > my the dark Higgs
could undergo decays h’ — UU — 4¢, 4m, 2¢ + 2,
which have been searched for by BaBar [28]. If how-
ever my < my the dark Higgs boson would have a large
lifetime and would escape the KLOE detector without
depositing a signal. We have restricted our search to
this so-called “invisible” dark Higgs scenario.

KLOE has performed this analysis using 1.65 fb~! of
data collected with center-of-mass collision energy at
the ¢-peak, and 0.2 fb~! of data with a center-of-mass
energy of ~1000 MeV. Mass resolutions were found to
be ~1 MeV/c? for myy (my) and ~10 MeV/c? for muyp;ss
(my). The signature of the dark Higgsstrahlung process
would be a sharp peak in the two-dimensional distribu-
tion mpyiss versus my,,,, see Figure 5. We chose binning
such that 90-95% of the signal would be in one bin.
We used a sliding 5x5 bin matrix (excluding the cen-
tral bin) to determine background MC simulation scale
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factors. The selection efficiency was evaluated using
Monte Carlo simulations and varied between 15% and
25% with a conservative 10% systematic uncertainty.
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Figure 5: Missing mass, mpss, (interpreted as the mass of the Higgs,
my) versus the dimuon invariant mass, m,,, (interpreted as my if
there exists a resonance). This figure shows the results from the 1.65
fb~! of on-peak data.

Several sources of backgrounds are visible in Fig-
ure 5. The left part of the triangular region consists
mainly of ¢ — K*K~ with K* — p*v. The top point
of the triangular region is mostly ete™ — efe " u*pu”
and ete” — efe m'm”. The darkest horizontal band
comes from ¢ — 7w n’. The two diagonal bands
originating in the lower-right corner of the triangle are
from ete™ — pu*p” and e*e” — mtmT. All the back-
grounds from the ¢ decays are strongly suppressed in
the off-peak sample.

No evidence of the dark Higgsstrahlung process was
found. Using uniform prior distributions, 90% con-
fidence level Bayesian upper limits on the number of
events, Nogg,, were derived separately for the two sam-
ples. The results were then converted in terms of the
dark Higgstrahlung production cross section parame-
ters,

Noog 1
€ ouw (apg2=1)-L°
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where L is the integrated luminosity and the total cross

section,
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was evaluated assuming ape* = 1. The combined 90%
confidence level limits from on- and off-peak data are
shown in Figure 6 as projections onto mpy;s and in Fig-
ure 7 as projections onto m,,,,. The limit on ap X & at
90% confidence level translates to a limit on &> of 107°
to a few 1078 (if ap = agym).
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Figure 6: Projections of the 90% confidence level limits on ap x £ as

a function of ny;ss for several values of my, ;.
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Figure 7: Projections of the 90% confidence level limits on ap x £ as

a function of my,,, for several values of mpy;gs.

6. Conclusions

The KLOE collaboration has performed five analy-
ses for searches in the Dark Sector consisting of four
production processes and a total of five final states. We
found no evidence for a U boson or a dark Higgs boson
and placed 90% confidence level limits on the kinetic
mixing between the dark sector and the Standard Model
in the mass range ~ 5 < my < 980 MeV/c2. We’ve
also placed 90% confidence level limits on ap X & in
the parameter space 2m,, < my < 900 MeV/c? and
10 < my < 500 MeV/c?>. An upgrade to the DA®NE
luminosity and the insertion of additional detectors for
the new KLOE-2 experiment are expected to improve
these limits by at least a factor of two.
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