

Journal Pre-proof

The CASPER user-centric approach for advanced service
provisioning in mobile networks

Eirini Liotou , Dimitris Tsolkas , Giorgos Kalpaktsoglou ,
Stefano Tennina , Luigi Pomante , Nikos Passas

PII: S0141-9331(20)30345-8
DOI: https://doi.org/10.1016/j.micpro.2020.103178
Reference: MICPRO 103178

To appear in: Microprocessors and Microsystems

Received date: 20 January 2020
Revised date: 19 April 2020
Accepted date: 14 June 2020

Please cite this article as: Eirini Liotou , Dimitris Tsolkas , Giorgos Kalpaktsoglou , Stefano Tennina ,
Luigi Pomante , Nikos Passas , The CASPER user-centric approach for advanced ser-
vice provisioning in mobile networks, Microprocessors and Microsystems (2020), doi:
https://doi.org/10.1016/j.micpro.2020.103178

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier B.V.

https://doi.org/10.1016/j.micpro.2020.103178
https://doi.org/10.1016/j.micpro.2020.103178

The CASPER user-centric approach for advanced

service provisioning in mobile networks

Eirini Liotou1, Dimitris Tsolkas1, Giorgos Kalpaktsoglou2, Stefano Tennina3, Luigi Pomante4, and Nikos Passas1
1Department of Informatics & Telecommunications, National and Kapodistrian University of Athens, Greece

2ADAPTERA, Athens, Greece
3WEST Aquila S.r.l., L’Aquila, Italy

4Università degli Studi dell’Aquila, L’Aquila, Italy

Abstract—This paper presents an overview of the project CASPER1, a 4-year Marie Curie Research and Innovation Staff Exchange

(RISE) project running between 2016-2020, describing its objectives, approach, architecture, tools and key achievements. CASPER

combines academic and industrial forces towards leveraging the expected benefits of Quality of Experience (QoE) exploitation in future

networks. In order to achieve that, a QoE orchestrator has been proposed which implements the basic functionalities of QoE monitoring,

estimation and management. With means of simulation and testbed emulation, CASPER has managed to develop a proprietary SDN

Controller, which implements QoE-based traffic rerouting for the challenging scenario of HTTP adaptive video streaming, leading to more

stable and higher QoE scores compared to a state-of-the-art SDN Controller implementation.

Keywords—Quality of Experience, SDN, orchestration.

1
 http://gain.di.uoa.gr/casper/

I. INTRODUCTION

CASPER (―A user-Centric middleware Architecture for advanced Service Provisioning in futurE netwoRks‖) is a Research and

Innovation Staff Exchange (RISE) project under Marie Skłodowska-Curie Actions (2016-2020), which has just recently been

completed. CASPER has aimed at bringing together experts from industry and academia, from cross-sectorial research areas

having complementary background, with the goal of analysing and exploiting Quality of Experience (QoE) towards developing

efficient schemes for managing multimedia digital services. In particular, efforts have been devoted to the development of

innovative QoE estimation mechanisms and QoE monitoring protocols for optimizing service delivery and providing key input

to Customer Experience Management (CEM) policies. CASPER has created a fully-integrated and multi-disciplinary program

on the development of QoE network optimisation modules towards the creation of a programmable, re-configurable and

adaptable architecture.

QoE is defined by the International Telecommunication Union - Telecommunication Standardization Sector (ITU-T) Rec. P.10

(Amendment 2, 2008), as ―the overall acceptability of an application or service, as perceived subjectively by the end-user‖.

This concept has emerged due to the inefficiency of the traditional Quality of Service (QoS) term to fully imprint the actual

experience of the end-users, as well as its inability to fully capture application-specific and user-specific characteristics. The

purpose of the QoE concept is, therefore, to provide means to track the degree of user satisfaction of a network’s performance

in a qualitative or quantitative manner and to try to improve it in order to meet or exceed the users’ expectations. QoS

provisioning policies can therefore be improved [1]. In order to guarantee QoE in a network, three procedures need to be

implemented [2]:

a) QoE modelling: It refers to an estimation method that attempts to quantify the level of user experience and imprint it into a

Mean Opinion Score (MOS) or a collection of values for Key Performance Indicators (KPIs). There are various different

approaches for estimating QoE. Their primary classification is into objective and subjective models. Subjective models are

based on real life experiments with human participants who evaluate their experience of an application or service. Objective

models, on the other hand, try to automatically measure or predict the quality perceived by the end-users, without their

intervention and are, therefore, required for real-time service evaluation.

b) QoE monitoring: It refers to the key functionality of gathering network, application and user-related factors for a reliable

estimation of the end-user’s satisfaction level. These factors refer to service evaluation feedback from the end-user and from

parameters available in diverse network entities (user device, access network, service provider) in all protocol layers. For the

gathering of these factors, active (intrusive) and passive (non-intrusive) monitoring schemes can be used, while only a specific

set of factors is monitored depending on the specifications of the used estimation model.

c) QoE management: It refers to methods, protocols and techniques that aim to enhance the customer experience, while in

parallel making efficient use of network resources (e.g. [3]). The available service management procedures for QoE

management include but are not limited to routing, scheduling, rate adaptation, and network selection. Such procedures,

especially for multimedia services, are currently bounded by QoS limitations that rely on network constraints (e.g., available

spectrum). The QoE factor is, therefore, the key for moving beyond QoS thresholds and acquiring at the same time the levels of

end-users’ satisfaction for a service.

A QoS-aware middleware for collaborative multimedia streaming and caching has been presented in [4] (for computing

environments, though). CASPER proposes a QoE-based middleware paradigm in order to integrate the three aforementioned

procedures and to guarantee the user experience in mobile networks. It consists of three interlinked and optimised modules

applied both in user and network plane, dealing with the QoE monitoring, estimation, and management functionalities. The

QoE provisioning logic exploits the flexibility and re-configurability provided by the Network Functions Virtualisation (NFV)

and Software-Defined Networking (SDN) technology in a bidirectional manner to acquire QoE influence factors from anchor

points in the network and to apply QoE-driven service management policies. A twofold target has been set for the three

interlinked functionalities: i) to personalise service delivery through acquiring and combining knowledge available in

distributed places, such as various network elements in the access/core/backhaul network, as well as in databases, human

subjects and surrounding environments, and ii) to motivate providers to use enhanced QoE-driven service management policies

as well as advanced CEM techniques. A mapping of the key functional modules for QoE provisioning on the mobile network

infrastructure, as proposed by CASPER, is depicted in Fig. 1.

The rest of the paper is organized as follows: Section II presents the project objectives, while Section III describes its concept

and targeted scenarios. Then, Section IV provides the CASPER implementation methodology. Section V presents the main

achievements of the project, namely: a) a user-centric orchestration architecture, b) a QoE modelling tool, c) a QoE monitoring

methodology for managing multimedia flows, as well as d) a system level simulator and e) a testbed for experimentation of

user-centric management scenarios. Finally, Section VI briefly describes the project’s consortium, while Section VII concludes

the paper.

II. RESEARCH AND TECHNOLOGICAL OBJECTIVES

CASPER has three main research objectives:

1. To study, design and optimise QoE estimation mechanisms for multimedia services. This main scientific objective

includes mechanisms for subjective and objective evaluation of a provided service. The target is to enhance and optimise

QoE estimation models, to thoroughly study and evaluate key indicators that affect the QoE, and to design efficient and

dynamic schemes for QoS to QoE translation.

2. To study, design, and optimise QoE monitoring protocols. This objective includes the thorough study of next generation

network architecture and protocol stack towards defining the anchor points from where key QoE indicators can be

acquired and the communication protocols for gathering those at network and user plane. The achievement of this

objective is expected to provide an essential module to operators for exploiting the knowledge of their customers’

experience.

3. To analyse, design and optimise advanced QoE-driven service management policies. An innovative and stochastic

representation of the future networks, including the recent advances in SDN and NFV for orchestrating service

provisioning is used for designing cross-layer QoE-driven service management policies. Additionally, by capitalizing on

the QoE-awareness at operators/service providers and end-devices, application layer enhancements are provided at user

plane for more personalised service delivery.

In addition, CASPER’s main technological objectives are:

1. To develop a System Level Simulator (SLS), where the QoE estimation and monitoring schemes, and the QoE-driven

service management policies will be evaluated under realistic scenarios.

2. To develop a hardware proof-of-concept testbed, where the most promising schemes identified via the SLS will be

integrated and tested in a real-working environment.

3. To integrate QoE exploitation functions into real devices, where a meaningful subset of the middleware architecture will

be implemented in commercial devices and network entities for real-life experimentation.

III. CONCEPT AND APPROACH

The main objective of CASPER is the design and implementation of a middleware architecture for QoE-driven service

provisioning. The first goal towards this objective is the identification of the distinct stakeholders involved in this architecture

who can, therefore, benefit from it. Three main stakeholders can be distinguished in the investigated service provisioning

paradigm, namely a) the Over-The-Top Service Providers (OTT), b) the Mobile Network Operators (MNO) / Internet Service

Providers (ISP) and, finally c) the end-users (Fig. 2). The end-users are the final consumers of a service, which is provided

either by the MNO directly or by an OTT service provider through the MNO’s infrastructure. CASPER defines and studies

three main scenarios which involve the aforementioned stakeholders, while different service types are considered per

scenario.

Fig. 1: A mapping of the key Functional Modules for QoE provisioning on the mobile network infrastructure. QoE monitoring, estimation and

management functions can be implemented at user level and core network level.

Τhe first CASPER scenario (Scenario A) refers to real-time communication between two parties that is end-to-end supported

by the infrastructure of the MNO. The involved parties (end-users) have connectivity to the same or different operators (intra-

operator and inter-operator cases, respectively) and they may be located in the same or different cells (Fig. 3 – Scenario A).

Table I summarises the major principles of scenario A.

Fig. 3: Abstract representation of CASPER scenarios A, B and C (only inter-operator cases are presented). Two users communicate directly (A) or via an

OTT-server (C), or a user consumes an OTT-service (B).

TABLE I. SCENARIO A

Scenario A

Modules involved SDN modules, QoE manager

Service type Real time (VoIP or video)

Involved users Two communicating peers

Technical challenge Apply network-side optimisations to
guarantee high level of QoE at both peers

Approach Advanced routing of the data flows

Interface(s) / Components

used to apply the policy

OpenDaylight Application Programming

Interface (API)

Parameters to be monitored

- service level

Packet loss ratio, Latency, Jitter, Codec,

and Coding rate

Parameters to be monitored

- network level

SDN data and control plane parameters

(e.g., Packet Latency, Transmit/Receive
Throughput Rate, Connected OpenFlow

Switches)

QoE manager feeding
approach

ELK module (querying the elasticsearch)
(Note: ―ELK‖ is the acronym for three

open source projects: Elasticsearch,

Logstash, and Kibana)

Scenario B concerns cases of video content delivery, namely video streaming from an OTT service provider. The common

paradigm nowadays is that OTT parties provide access to video streaming services, which the users can access only through

their MNO or ISP connection. (Note that MNOs or ISPs may also provide video streaming services by themselves to their

subscribers). The second scenario of CASPER is depicted in Fig. 3 as well. The main service that may be applied to this

scenario is video streaming (Non-adaptive or HTTP adaptive video streaming), i.e., a non-real-time service. Caching video

content is an important feature of this scenario. Table II summarises the major principles of Scenario B.
TABLE II. SCENARIO B

Scenario B

Modules involved SDN modules, NFV modules, QoE

Fig. 2: The main stakeholders in CASPER. OTTs provide their services

through the MNO/ISP infrastructure to the end-users.

manager

Service type Video Streaming

Involved users A user that consumes video on demand

Technical challenge a) Apply end-to-end service
optimizations

b) Apply content delivery optimizations

Approach a) Proper transcoding of video content
b) Content instantiation using Content

Delivery Network (CDN) and

caching techniques

Interface(s) / Components
used to apply the policy

OpenStack and OpenDaylight

Parameters to be monitored

- service level

Data rate, Video bit rate, Media bit rate,

Number of stalling events, Duration of
stalling events, Initial delay, Video start

failure, Time on highest layer, Frequency

of quality switches, Amplitude of switches

Parameters to be monitored
- network level

SDN data and control plane parameters
(e.g., Packet Latency, Transmit/ Receive

Throughput Rate, Connected OpenFlow

Switches)

QoE manager feeding

approach

ELK module (querying the elasticsearch)

User application layer

The third scenario (Scenario C) is the most challenging one since it includes an OTT provider, one or more MNO/ISP

providers and multiple users. Applications that fall into this category are online meetings, video conferencing and in general

shared collaborative platforms. The traffic in this case is accumulated at a server in the possession of the OTT party, passing

however through the network infrastructure of one or more MNO/ISPs (intra-operator and inter-operator case, respectively).

This scenario is summarised in Table III. More information about the CASPER scenarios are available at [5].
TABLE III. SCENARIO C

Scenario C

Modules involved SDN modules, NFV modules, Big Data
analytics, QoE manager

Service type Online meeting (e.g., WebEx with

independent voice and video streams), or
many diverse service types of multiple

competing users

Involved users Multiple users at different locations

Technical challenge Global flow optimizations

Approach Apply proper but differentiated routing of
voice and video streams (e.g., WebEx)

Functions/Content instantiation based on

KPI requirements (e.g., users streaming
simultaneously a very popular video)

Interface(s) / Components

used to apply the policy

Custom API, OpenStack, and

OpenDaylight

Parameters to be monitored
- service level

All parameters of scenarios A and B

Parameters to be monitored

- network level

SDN data and control plane parameters

(e.g., Packet Latency, Transmit/ Receive
Throughput Rate, Connected OpenFlow

Switches, Memory utilization)

QoE manager feeding
approach

ELK module (querying the elasticsearch)

IV. IMPLEMENTATION AND WORK PACKAGES

CASPER methodology encompasses four main phases. These phases, together with their encompassed Work Packages (WP)

are depicted in Fig. 4 and are further described below.

Phase-1: Middleware architecture and QoE analysis and exploitation schemes. During this phase, academic and industrial

beneficiaries have worked in synergy to design the middleware architecture for QoE service delivery. In particular, all

beneficiaries were responsible to define the requirements of the middleware architecture, the key parameters for QoE

estimation/monitoring and the reconfigurable parameters used in the QoE-aware service management. Attention was given on

defining potential hardware limitations and interoperability/energy/privacy issues, while innovative QoE estimation

mechanisms, QoE monitoring protocols, and service management algorithms were developed. The methodology for this

phase consisted of two steps: i) define the middleware architecture and a set of quality indicators used for QoE

estimation/monitoring; and ii) design QoE estimation mechanisms and monitoring protocols, and QoE-driven service

management policies.

Phase-2: Analysis and optimisation of the QoE provision schemes using simulations. This phase included the development of

a System Level Simulator (SLS) based on the QoE architecture designed in Phase-1. Using this simulator, the algorithms and

protocols proposed in Phase-1 have been evaluated and optimised. The methodology adopted in this phase consisted of three

main steps: i) the translation of the algorithms and protocols developed in Phase-1 in fundamental modules written in the

programming language of the SLS; ii) the integration of the modules into the SLS in order to realise the proposed middleware

architecture; and iii) the performance assessment in the project scenarios and the comparison with benchmark solutions by

taking into account the project’s service performance evaluation metrics.

Phase-3: Implementation, proof-of-concept study, and experimental assessment. During the third phase, the modules defined

in Phase-2 have been applied in a testbed and their performance has been evaluated through a measurement campaign in a

realistic working environment. This phase has been considered critical before the implementation in real devices, in order to

gain: i) a very clear understanding of the requirements for applying the proposed solutions to real environments, ii) an

understanding of the capabilities and limitations of the new solutions, iii) the ability to assess design decisions early in the

process, and iv) the ability to a-priori visualise the look-and-feel of the solutions. The main goal has been to clarify the

maturity of the new system including: i) what can be supported or not by the implemented middleware architecture, ii) if the

technology is strong enough to be deployed and achieve foreseen performances, iii) if these solutions can be used on existing

wireless and mobile networks. The methodology for this phase consisted of the following steps: i) the testbed implementation

and upgrade with the innovative algorithms and protocols; ii) the definition of test scenarios, metrics and targeted values; iii)

the execution of scenarios and extraction of measurements; and iv) the evaluation of results and conclusions.

Phase-4: Product integration in commercial devices and realistic experiments. In the fourth and last phase, a meaningful

subset of the middleware architecture with the QoE estimation and service management modules has been integrated into a

testbed with real devices that were made available by the industrial beneficiaries. Real-life measurement scenarios have been

defined, covering reliability, real-time applicability and performance issues under a wide range of conditions. The

methodology for this phase consisted of the following steps: i) integration of a meaningful subset of the middleware

architecture into real devices; ii) execution of real-life scenarios and experiments; iii) assessment of the developed system.

The project has been organised into 7 work packages (WPs), as shown in Fig. 4. WP1 and WP7 are concerned with

management and dissemination respectively, running for the whole duration of the project. The rest WPs, from WP2 to WP6,

are the technical WPs of the project. More specifically, WP2 is concerned with the definition of the overall middleware

architecture and the requirements for exploiting QoE in future networks; WP3 focuses on the analysis of key quality

indicators, and the design of QoE estimation mechanisms and QoE monitoring protocols; WP4 performs the design and

optimisation of the QoE-driven service management policies; WP5 deals with the implementation and validation of

algorithms/protocols in the system level simulator and the testbed; and finally WP6 handles the final integration in

commercial devices and proof-of-concept in a real-working environment. In detail:

W
P

2

W
P

6

WP4

WP3

WP5

Phase-1 Phase-2 Phase-3 Phase-4

WP1

WP7

Fig. 4: CASPER workpackages and implementation phases. WP2-WP6 progress the technical work of the project.

WP2 (Middleware architecture definition and requirements description) objectives: To provide an end-to-end

description of the middleware architecture and ensure its smooth and realistic applicability in commercial products by taking

into consideration real-life systems’ requirements, such as performance, complexity, hardware, and energy constraints. The

tasks of WP2 include the description of various communication scenarios and the definition of target performance metrics and

key parameters. Moreover, WP2 includes the design of the complete middleware architecture that thoroughly describes the

new modules, methods and functionalities required to be implemented inside real devices and providers’ infrastructure.

WP3 (QoE estimation mechanisms and QoE monitoring protocols) objectives: To set the ground for the implementation

of the enhanced QoE support framework, by providing the theoretical findings regarding QoE estimation and monitoring

options. The tasks in this WP include the identification of the QoE influence factors and the investigation of possible QoE

modelling options. Moreover, research focuses on the monitoring options in smart devices using for instance software agents

or present capabilities of the devices as well as deal with the available monitoring options at the service provider’s side

(routing devices or provider’s management nodes). Finally, this WP defines and simulates a protocol for the dissemination of

information from the various monitoring and estimation locations to the service provider’s service management nodes.

WP4 (Design and optimisation of QoE-driven service management policies) objectives: To define the basic QoE

management framework and to design optimisation and control algorithms for enhanced service provisioning. This WP

designs a management framework targeted for service providers and operators in order to exploit the acquired QoE-related

information for their own as well as for their customers’ benefit. The framework is designed on top of NFV/SDN technologies

under the control of a centric QoE orchestrator. Moreover, WP4 defines the CEM scenarios to be applied to the QoE

management support, and investigates advanced policies based on acquired QoE measurements.

WP5 (Development and validation of proposed modules) objectives: To integrate simulation modules of WP3 and WP4

and conduct joint simulations, followed by the development of building blocks for the respective algorithms and protocols. In

WP5, the separate simulation modules, constructed during WP3 and WP4 and offering measurements on the performance of

individual solutions, are integrated into one overall simulation model. Next, WP5 translates these algorithms and protocols

into modules /building blocks which are integrated into the nodes of the testbed in order to conduct detailed experimental

activities for a preliminary proof-of-concept of the proposed middleware architecture.

WP6 (System integration and proof-of-concept) objectives: To integrate the proposed architecture into real devices and to

test the performance in real working environments. This will provide a clear assessment of advantages/disadvantages of the

proposed solutions. In this WP, a meaningful set of the modules/building blocks identified, developed, and tested in WP5 are

integrated into real devices. Moreover, WP6 performs a comprehensive experimental assessment of the developed devices

improved with the new middleware and evaluates the performance improvement in realistic environments where the devices

are expected to operate.

V. MAIN ACHIEVEMENTS

A. CASPER orchestration architecture

CASPER orchestration logic is integrated into the European Telecommunications Standards Institute (ETSI) NFV-MANO

architecture (Management and Orchestration Architecture) [6] as shown in Fig. 5. The proposed QoE orchestrator acts as the

NFV Orchestrator (NFVO) and is logically divided into three components: a) the QoE manager which implements the service

and network management logic, b) the QoE monitor which includes the basic functionalities of QoE modelling and

monitoring, and c) the QoE controller, which, as its name implies, controls the collection of monitored information from the

various network entities into the QoE orchestrator. The flow of QoE service management in CASPER is as follows:

1. The QoE monitor requests KPIs from the QoE controller

2. Each ELK (Elasticsearch, Logstash, Kibana) element collects appropriate information from the Virtual Network Function

(VNF) that it is in charge of. In the context of Long-Term Evolution (LTE) networks [7], these VNFs may represent

either access or core network entities, such as: the evolved Node B (eNB), Mobility Management Entity (MME), Serving

Gateway (S-GW), Packet Data Network Gateway (P-GW), or even a Content Delivery Network (CDN) and IP

Multimedia Subsystem (IMS), among others.

3. The QoE controller creates respective queries to these ELKs

4. These requests are handled by the appropriate ELK

5. Monitored parameters are reported back to the QoE controller

6. The QoE monitor translates collected information to QoE ―language‖ (i.e. MOS or KPI values vs. appropriate thresholds)

7. Network and/or application management mechanisms are triggered by the QoE manager, using for instance OpenStack

(which acts as the Virtualized Infrastructure Manager) or OpenDaylight (which acts as the SDN controller and Virtual

Networking Manager).

Fig. 5: QoE orchestration in CASPER [8]. The QoE NFVO controls the flow of the QoE service management logic.

B. CASPER QoE modelling tool

To facilitate the analysis on QoE estimation, in the context of CASPER we developed a tool that uses, as a key interface with

the end-users, a mobile application. A storyline for the usage of this tool is as follows:

 The mobile application is used to monitor and store to a database, video delivery characteristics (such as initial delay,

stalling events etc.) and network characteristics (such as the connection type).

 The video consumer is requested by the application to evaluate the presented video by giving a MOS. The value provided

by the user is also stored to the database.

 The collected data (user’s feedback and monitored values) are then analyzed using machine learning techniques to set a

mathematic formula that translates monitored parameters to a QoE score.

Fig. 6: Storyboard of the CASPER application. After the user watches a video, he/she is instructed to evaluate its quality using a MOS sliding scale.

The procedure to be used for the data collection is based on specifications for subjective QoE tests and current work on

crowdsourcing practices. A storyboard of the application is presented in Fig. 6. The CASPER QoE modelling tool is

composed of the following components (see Fig. 7): a) an Android application, b) a google firebase synchronised with the

application, c) a web service to download the collected data to an editable local MySQL base, and d) a php/matlab tool to

elaborate on the collected data and apply data analysis.

Fig. 7: The ingredients of the CASPER QoE modelling tool. QoE scores are stored in the MySQL database.

C. Network-side QoE monitoring and signalling

Moreover, CASPER has proposed a QoE-based SDN controller on top of a Mininet network topology, presented in Fig. 8.

The main functionality of the controller is to guarantee a minimum QoE level for the end-users, at situations of high network

congestion that lead to intense packet losses. This guarantee is achieved by triggering traffic redirection from the main

(shortest) to a failover path. In order to achieve that, the controller periodically collects statistics from the network switches in

order to estimate MOS as follows:

 For VoIP applications, the delay and packet loss are necessary, in order to be able to use the ITU-T G.107 E-model (a

parametric QoE estimation model for VoIP traffic).

 For video applications, the bit rate, frame rate and packet loss are necessary, in order to use the ITU-T G.1070 E-model

((a parametric QoE estimation model for video traffic).

Fig. 8: Traffic forwarding with QoE monitoring [9]. When QoE is below a predefined threshold, traffic is redirected from the main shortest path (s1->s9->s8)

to the failover longest path (s1->s2->s3->s4->s5->s6->s7->s8).

Then, if MOS is lower than a predefined threshold, the controller will provoke the traffic redirection to the failover path

through the insertion of appropriate rules to the OpenFlow switches. Indicative results in terms of MOS that present the above

scenario are presented in Fig. 9. At this figure, we can observe that with the proposed SDN controller, the experienced MOS

can recover and reach very high values after a situation of great congestion that led to a momentary MOS reduction.

Fig. 9: MOS comparison between cases with (red plot) and without (blue plot) the SDN controller in VoIP traffic generation, when a link failure occurs

(adopted from [9]). With the SDN Controller, MOS values bounce back to high values.

D. System Level Simulator - The OMNeT++ Framework

CASPER simulator builds upon INET/SimuLTE over the OMNeT++ Discrete Event Network Simulator [10]. OMNeT++ is

an extensible, modular, component-based C++ simulation library and framework, primarily developed for building network

simulators.

All CASPER scenarios have been simulated in this environment, while here we present indicative results of Scenario B, i.e. a

video streaming service that runs at the application layers of a variable number of users and the OTT server. Each user first

sends a request to the server, which then starts transmitting the chunks of the video. The download can be executed

simultaneously by one or more users or in different periods. The reference topology for Scenario B is shown in Fig. 10.

The QoE policy for video streaming aims at reacting to a decrease in the MOS value, due to the incipient network congestion,

which increases the end-to-end delay and the Packet Loss Rate (PLR). In this case, a path’s change from the main path to the

backup path is triggered if the value of MOS persistently falls below a given threshold. In parallel, we apply a second policy,

aiming at increasing the throughput and then its corresponding MOS value. We can change the value of the packets’ size or

the interval at which the OTT server sends the packets, i.e., we simulate the effects of adaptive streaming (namely, the

packet’s size or the send interval are adjusted at run-time continuously trying to cope with changing network conditions). In

Fig. 11, we present simulation results for this scenario, where the vertical red lines are the markers indicating when a

streaming flow has changed the path over the network, while black vertical lines indicate an increase in packet size.

Fig. 10: Scenario B – Network Topology [11]. All users (UEs) simultaneously download a video from an OTT server via the LTE access network and

transport network.

Fig. 11: Average QoE metrics over time for PLR and Throughput [11]. When congestion starts, since MOS is below a predefined threshold, traffic is

redirected to the backup path leading to a MOS increase.

E. CASPER testbed

In this section, we present the necessary components and tools that are required in order to prepare the CASPER testbed from

scratch (Fig. 12). Specifically, to create the CASPER testbed environment, we have setup the following implementation

components, associated with the functionality that we should provide to the testbed users:

1. Mininet: An emulator platform to setup the virtual network. Within Mininet we setup our network topology consisting of

switches, hosts and the controller [12].

2. POX controller: An SDN controller to control the virtual network. POX is a Python based open source OpenFlow/SDN

controller used for faster development and prototyping of new network applications [13].

3. QoE orchestrator modules: When we initiate an experiment or scenario in CASPER testbed, all available network

measurements are stored and queried in real-time through the QoE controller. The QoE Monitor checks these KPIs

against acceptable thresholds as well as estimates the overall QoE score. Every time a metric crosses a certain threshold,

the QoE Manager is informed. Specifically, if the quality of the link is under pressure or problematic due to high delay,

packet loss or jitter, the QoE Manager will instruct POX to select the fail-over path which provides better conditions for

such a communication.

4. HTTP Adaptive Streaming server: The HTTP Adaptive Streaming server used in CASPER comes in two versions. One

version is Node.js – based (i.e., written in Javascript) and it is installed in Ubuntu environment [14]. This allows us to

experiment with the network emulation and virtual hosts in parallel, and it has been implemented as a first step, mainly

for a proof of concept of the server-client successful streaming. The alternative server version used in CASPER is the

Microsoft Internet Information Services (IIS) server installed in a physical host [15]. This allows us to experiment a) with

a widely well-known server, adopted in order to support the HTTP Adaptive Streaming logic and b) with physical hosts,

making the experiment very realistic.

5. ELK (Elasticsearch, Logstash, Kibana): An analytics platform to store, visualize and push processed/aggregated data

to the SDN controller for performing the network functionality over the virtual network [16].

6. HTTP Adaptive Streaming client: Except for VLC [17], we also use for the implementation of the video client a well-

known adaptive streaming player called Dash.js, which provides a web interface. This tool allows us to monitor adaptive

streaming-specific KPIs, such as client buffer, download rate, etc. [18].

7. FFMPEG (HTTP Adaptive Streaming library): FFmpeg is a free and open-source project which contains a wide

software set of libraries and programs which was extensively used in CASPER for handling video, audio, and other

multimedia files and streams [19].

8. MP4Box – GPAC: In CASPER, we used MP4Box for the preparation of the HTTP Adaptive Streaming content,

specifically to create the Dynamic Adaptive Streaming over HTTP (DASH) manifest and associated files [20].

9. MiniEdit (Mininet’s graphical user interface): The Mininet network simulator includes MiniEdit. It is a simple Graphical

User Interface (GUI) editor for Mininet. MiniEdit is an experimental tool in order to show how Mininet can be extended

[21].

Fig. 12: CASPER testbed topology. The testbed consists of the main CASPER PC (Mininet network emulator, POX and ELK), three virtual hosts
within the main CASPER PC, and two physical hosts (DASH server and client).

10. Wireshark: Used for network monitoring purposes. It provides network troubleshooting, analysis, software and

communications protocol development [22].
TABLE IV. TOOLS USED

TOOLS VERSION

Ubuntu 16.0

Windows 10

Mininet (incl. POX controller) 2.3.0d6

ELK 7.5.0

Node.js 13.2.0

VLC 3.0.8 Vetinari

DASH-IF 3.0.1

FFmpeg 3.4.6-0ubuntu0.18.04.1

MP4Box – GPAC 0.5.2-DEV-revVersion

Wireshark 2.6.10

MiniEdit 2.2.0.1

F. Hardware setup

In our CASPER testbed we are experimenting both with virtual and physical hosts. Virtual hosts provide greater flexibility in

terms of manipulation, however physical hosts help reach to more realistic, near-the-market conclusions.

Fig. 13: The CASPER testbed consists of the main CASPER PC and two physical hosts (DASH server and client).

As shown in the photo of the testbed in Fig. 13, it consists of three physical devices:

 Mininet and POX controller run inside an OptiPlex 7050 PC in Ubuntu environment. It needs to be emphasized that

Mininet is not installed as a virtual machine; otherwise bridging between the two physical hosts would not work, which is

mandatory for the HTTP Adaptive Streaming scenario. In the case of the Node.js – based HTTP Adaptive Video Server,

both the server and the client run inside the same PC. The IP addresses of this system are 192.168.10.3 (first network

card) and 192.168.10.5 (second network card). In Fig. 13, this corresponds to the screen on the right.

 In the case of Microsoft IIS, the HTTP Adaptive Video server runs inside a Samsung Series 9 laptop in Windows 10. The

IP of this system is 192.168.10.4. In Fig. 13, this corresponds to the screen on the left.

 Also, for the Microsoft IIS case, the Dash.js HTTP Adaptive Video client runs inside an OptiPlex 3050 PC in Windows

10 environment. The IP of this system is 192.168.10.2. In Fig. 13, this corresponds to the screen in the middle.

In Fig. 13, we capture a moment during actual HTTP Adaptive Video Streaming from the server to the client, via Mininet, of

the Big Buck Bunny video.

Fig. 14: Mininet virtual topology consists of three virtual hosts, three switches and the SDN Controller.

G. Performance evaluation

Our testing methodology for performance evaluation is based on the idea of comparing the CASPER-based controller with a

default POX controller implementation, which comes pre-installed with Mininet and is the current status quo (e.g. [23]). For

these experiments, we use the Microsoft IIS HTTP Adaptive Video server and the Dash.js HTTP Adaptive Video client. The

steps in order to run the experiments are the following:

1. We open Mininet and activate the default POX controller.

2. We start running pings among all hosts in order to create traffic.

3. We then start the HTTP Adaptive Streaming session between the two physical hosts, while their traffic is passing through

Mininet, and is controlled by the default controller.

4. We record the viewing experience at the client in terms of index being downloaded, bitrate being downloaded, etc. using

the DASH reference client web interface.

5. We then initiate extra traffic within Mininet in order to create congestion in the network, as this creates a common

bottleneck problem. We do this using the VLC player.

6. We check again how the viewing experience of the client is affected using the DASH reference client web interface.

7. We run the same experiment from scratch for the CASPER controller, record the user experience and compare. We run

the experiment for three different monitored video KPIs: delay, packet loss and jitter.

8. In parallel, we record the bandwidth and delay values as time progresses using Kibana software.

The virtual topology within Mininet is presented in Fig. 14, while the full testbed topology including also the physical hosts is

already depicted in Fig. 12.

Assisting in performance evaluation, the DASH reference client provides the possibility to select among a plethora of KPIs

related to the quality of the video stream. These are the following [18]:

 Buffer length: The length of the forward buffer, in seconds.

 Bitrate downloading: The bitrate of the representation being downloaded.

 Index downloading: The representation index being downloaded and appended to the buffer.

 Current Index / Max Index: The representation index being rendered / The maximum index available.

 Dropped Frames: The absolute count of frames dropped by the rendering pipeline since play commenced.

 Latency (min|avg|max): The minimum, average and maximum latency over the last 4 requested segments. Latency is the

time in seconds from request of segment to receipt of first byte.

 Download (min|avg|max): The minimum, average and maximum download time for the last 4 requested segments.

Download time is the time in seconds from first byte being received to the last byte.

 Ratio (min|avg|max): The minimum, average and maximum ratio of the segment playback time to total download time

over the last 4 segments.

Any KPIs that are selected from this list will appear as plots in time at the dash.js web interface.

Default controller case
We first run the experiment with the default controller. We initiate traffic only by pings. Then we initiate the HTTP Adaptive

Streaming session. Traffic is passing through the s1->s2 path (as declared in Fig. 14), while the bandwidth is greatly increased

for this path. At the same time, the downloaded index at the DASH.js video client fluctuates until it reaches index=7 (the

highest available) (Fig. 15). At the beginning of the 3rd minute of the video, we suddenly initiate a simple (non-adaptive)

Fig. 15: Experiment progress – default controller (snapshot from dash.js enviornment). When congestion is added in the network, the video index

is reduced to 1, while the video buffer keeps decreasing leading to a stalling.

Fig. 16: HTTP Adaptive Streaming traffic and VLC traffic on top – default controller (snapshot from Kibana). All video traffic is passing through

the s1->s2 path (green plot) throughout the whole duration of the experiment.

Fig. 17: Index downloaded – default controller (snapshot from dash.js environment). The index is fluctuating causing video quality fluctuations,

which degrade the user viewing experience.

video stream between two Mininet virtual hosts (h1 and h2) (Fig. 16). All traffic continues to pass through the s1->s2 path

(i.e., ―bandwidth segment 1‖ in Fig. 16). The impact of this parallel stream is immediately shown in Fig. 15 where the buffer

length is shown to progressively decrease, until a point that it reaches zero and the video is stalled. From that point onwards,

the downloaded index keeps fluctuating at lower values as demonstrated in Fig. 17. Note that in Fig. 15 the blue plot which

corresponds to the video buffer level is refreshed periodically and only the latest values are kept. On the contrary, the green

plot which corresponds to the video pending index keeps its values since the video started playing.

CASPER controller case

In this scenario, we configure as the monitored KPI the average delay, while packet loss and jitter threshold are deliberately

set to high values so that they do not have an impact on the controller behaviour, which allows us to understand what impact

the delay KPI has on the controller decisions, and in sequence on the user viewing experience.

The HTTP Adaptive Streaming session goes through the path s1->s2, similarly as in the default case. While this happens, the

user’s buffer will start increasing. When the extra video stream is initiated via VLC, traffic starts flowing through the same

path. However, as the CASPER QoE-based controller monitors the delay KPI, when this reaches a predefined threshold, the

controller decides to reroute this traffic that relates to the virtual hosts to the alternative path s1->s2->s3, as shown in Fig. 18

(bandwidth segment 2 and segment 3). The traffic that is related to the HTTP Adaptive Streaming session continues flowing

through the s1->s2 path. In this way, the index downloaded is preserved at a high value, having a respective impact also to the

viewing experience of the user (Fig. 19). Note that at this figure, the index is shown to be ―7‖ before 00:50 playtime; since the

value is preserved until the end of the video, the ―green plot‖ is not extended.

QoE evaluation

Since in our experiments we focus on HTTP Adaptive Streaming scenarios, in order to evaluate the QoE of the end users we

need a standard QoE model for this specific type of applications. For this purpose, we use the ITU-T Rec. P.1203.1:

―Parametric bitstream-based quality assessment of progressive download and adaptive audiovisual streaming services over

reliable transport - Video quality estimation module‖ [24].

The procedure in order to obtain video quality MOS scores for the video streamed to the client’s device is the following: We

keep track of the video segments been played out at the client, as well as the timestamps of video quality switches. This can

be possible e.g. using the DASH.js reference player, since it provides plots with the indexes been downloaded in time

(seconds). Afterwards, we run the itu-p1203 tool downloaded from [25] and presented at [26]-[27] for each video quality been

played out, which will provide MOS values per second. Based on the seconds that each video quality has been actually played

out we collect the respective values and create a plot of video streaming MOS over time.

Fig. 18: HTTP Adaptive Streaming traffic and VLC traffic on top – CASPER controller (snapshot from Kibana). When congestion is added in the
network, HTTP adaptive video traffic is passing through the s1->s2 path, while VLC non-adaptive video traffic is passing through s1->s2->s3.

Fig. 19: Index downloaded – CASPER controller (snapshot from dash.js enviornment). The video index is preserved at the highest value 7

throughout the whole duration of the experiment.

Following this procedure, we therefore present the MOS plot for the default and CASPER controller cases. In Fig. 20, for the

default controller case, we observe that the MOS starts with some fluctuations in the beginning, until the buffer is sufficiently

filled, and then it is stable at very high value of approximately 4.3. However, afterwards, as the new VLC video stream is also

initiated, the MOS score is significantly dropped and keeps fluctuating until the video ends. It is in fact, not only the low

index values that will deteriorate the user viewing QoE, but also these continuous video resolution fluctuations, called

switches, which have a negative impact on the user experience. Moreover, it needs to be noted that the video also presented a

first stalling of 8 seconds, followed by multiple stallings of less than 2 seconds duration, as well as another stalling of 10

seconds. Such stalling events have an extremely negative impact on the user’s experience. On the contrary, in Fig. 21, we

observe that the MOS values for the CASPER controller case are preserved at the highest index available, even after the VLC

stream start. The reason is that the controller reroutes the VLC traffic to the alternative path, causing much less congestion to

both (as a load balancer).

VI. CONSORTIUM

CASPER consortium consists of 2 academic and 3 industrial partners across 3 countries: Greece, Italy and Spain (Fig. 22). In

this way, CASPER fosters the fruitful collaboration of academia and industry with the objective of developing innovative

QoE-aware service management solutions and bridging the fundamental gap between academic (i.e., more theoretical, and

less application-specific) and industrial (i.e., more system- and application-specific and devoted to solutions that can be

implemented in real devices) research. In particular, CASPER builds a bridge among experts in: i) designing advanced

theoretical algorithms, ii) developing and implementing middleware architectures in testbeds, and iii) developing and

implementing software applications and hardware drivers. The industrial beneficiaries (WEST Aquila, IQUADRAT and

ADAPTERA) have strong technical background on the development of advanced middleware architectures for service

provisioning and CEM schemes. Also, the academic beneficiaries (University of Athens and University of L’Aquila), have

experience in design methodologies and algorithms for service and network management, as well as in QoE analysis. Apart

from the technical impact of CASPER, the consortium also commits on disseminating the project results to the technical as

well as the non-expert audience
2
.

Fig. 22: CASPER consortium map.

2
 http://gain.di.uoa.gr/casper/dissemination.html

Fig. 20: QoE – Default controller. When congestion is added in the network, MOS values are fluctuating at low values.

Fig. 21: QoE – CASPER controller. Even though congestion is added in the network, MOS values are preserved at stable and high values.

VII. CONCLUSION

This paper has presented the CASPER project. We have provided an overview of the project’s mission and technical

objectives, its structure and implementation logic, as well as main results in terms of QoE modelling, monitoring and

management. As discussed in the paper, CASPER takes into consideration recent technological advances towards designing a

practical, applicable, and integrated middleware architecture for personalised QoE provisioning by orchestrating the

management of service flows. The project follows a human-centred approach, designing solutions that target at the

satisfaction of the end-user when consuming a service. This approach entails a degree of personalisation in service delivery,

which enforces an era of more ―fair‖ telecommunication services. Moreover, the holistic approach of CASPER is expected to

incentivize a collaboration paradigm between MNOs and OTTs, by providing a technologically feasible realization where

feedback from MNOs is enabled and application-awareness is enforced. Furthermore, the final CASPER middleware

architecture is delivered as a software solution enabling its exploitation from smaller telecom players and start-ups, who by

taking advantage of the results of the project are enabled to create new business activities, such as specialized products for

quality monitoring and benchmarking. The presented results depict that the user experience can be significantly improved by

flexibly manipulating the network flows using a QoE-based SDN-based orchestrator.

ACKNOWLEDGMENT

This work has been funded by the EC under the auspices of the H2020-MSCA-RISE CASPER project (grant 645393).

REFERENCES
[1] Wang, N., Schmidt, D. C., Gokhale, A., Gill, C. D., Natarajan, B., Rodrigues, C., et al. (2003). Total quality of service provisioning in middleware and

applications. Microprocessors and Microsystems, 27(2), 45–54. https://doi.org/10.1016/S0141-9331(02)00096-0

[2] Liotou, E., Tsolkas, D., Passas, N., & Merakos, L. (2015). Quality of experience management in mobile cellular networks: key issues and design

challenges. IEEE Communications Magazine, 53(7), 145–153.

[3] Tsolkas, D., Liotou, E., Passas, N., & Merakos, L. (2014). The Need for QoE-driven Interference Management in Femtocell-Overlaid Cellular
Networks. In 10th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (Mobiquitous 2013) (pp. 588–
601).

[4] Jeon, W. J., & Nahrstedt, K. (2003). QoS-aware middleware support for collaborative multimedia streaming and caching service. Microprocessors and
Microsystems, 27(2), 65–72. https://doi.org/10.1016/S0141-9331(02)00098-4

[5] Colarieti, A., Marotta, A., Mpervarakis, M., Pomante, L., & Tsolkas, V. (2017). QoE provisioning over mobile networks: The CASPER perspective. In

2017 IEEE 22nd International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD) (pp. 1–5).

[6] ETSI GS NFV-MAN 001 V1.1.1 - Network Functions Virtualisation (NFV); Management and Orchestration.

[7] 3GPP TS 23.002 V15.0.0 - Technical Specification Group Services and System Aspects; Network architecture.

[8] Liotou, E., Marotta, A., Pomante, L., & Ramantas, K. (2017). A middleware architecture for QoE provisioning in Mobile Networks. In 2017 IEEE 22nd

International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD) (pp. 1–5).

[9] Xezonaki, M.-E., Liotou, E., Passas, N., & Merakos, L. (2018). An SDN QoE Monitoring Framework for VoIP and Video Applications. In 2018 IEEE
19th International Symposium on ―A World of Wireless, Mobile and Multimedia Networks‖ (WoWMoM) (pp. 1–6).

[10] A. Virdis, G. Stea, and G. Nardini, ―SimuLTE – A Modular System-level Simulator for LTE/LTE-A Networks based on OMNeT++,‖ in Proceedings of
the 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, 2014, pp. 59–70.

[11] Ciambrone, D., Tennina, S., Boschi, M., Tsolkas, D., & Pomante, L. (2018). Assessing QoE-driven management policies for VoIP and Video
Streaming service provisioning. In 2018 IEEE 23rd International Workshop on Computer Aided Modeling and Design of Communication Links and

Networks (CAMAD) (pp. 1–6).

[12] http://mininet.org/

[13] https://noxrepo.github.io/pox-doc/html/

[14] https://nodejs.org/en/

[15] https://www.iis.net/

[16] https://elasticsearch-py.readthedocs.io/en/master/

[17] https://www.videolan.org/vlc/

[18] https://github.com/Dash-Industry-Forum/dash.js

[19] https://www.ffmpeg.org/

[20] https://github.com/gpac/gpac/wiki/mp4box-dash-opts

[21] https://github.com/mininet/mininet/blob/master/examples/miniedit.py

[22] https://www.wireshark.org/

[23] R. Jmal and L. Chaari Fourati, ―Implementing shortest path routing mechanism using Openflow POX controller,‖ in The 2014 International Symposium
on Networks, Computers and Communications, 2014, pp. 1–6.

[24] P.1203 : Parametric bitstream-based quality assessment of progressive download and adaptive audiovisual streaming services over reliable transport

(https://www.itu.int/rec/T-REC-P.1203-201710-I/en)

[25] https://github.com/itu-p1203/itu-p1203

[26] Raake, A., Garcia, M.-N., Robitza, W., List, P., Göring, S., Feiten, B. (2017). A bitstream-based, scalable video-quality model for HTTP adaptive

streaming: ITU-T P.1203.1. In 2017 Ninth International Conference on Quality of Multimedia Experience (QoMEX).

[27] Robitza, W., Göring, S., Raake, A., Lindegren, D., Heikkilä, G., Gustafsson, J., List, P., Feiten, B., Wüstenhagen, U., Garcia, M.-N., Yamagishi, K.,

Broom, S. (2018). HTTP Adaptive Streaming QoE Estimation with ITU-T Rec. P.1203 – Open Databases and Software. In 9th ACM Multimedia

Systems Conference.

Eirini Liotou

Eirini Liotou received the diploma degree in electrical and computer engineering from the National Technical
University of Athens, the M.Sc. degree in communications and signal processing from the Imperial College of
London, and the Ph.D. degree from the Department of Informatics and Telecommunications, University of
Athens in 2017. She was a Senior Software Engineer in the Research and Development Department, Siemens
Enterprise Communications. She has authored more than 25 peer-reviewed publications in conferences and
high-impact journals, while she has served as Technical Program Committee member and Technical Reviewer in
flagship IEEE conferences and international journals. She is currently a Post-Doc Researcher in the
Communication Networks Laboratory, University of Athens. Her research interests are in the area of Quality of
Experience in mobile cellular networks.

Dimitris Tsolkas
Dimitris Tsolkas holds a Ph.D. degree from the Department of Informatics and Telecommunications, National and
Kapodistrian University of Athens (NKUA). He has extensive experience in R&D and project management,
working in a plethora of EC-funded research and development projects in association with institutions from
academia (Department of Informatics and Telecommunications - NKUA, Computer Technology Institute and
Press “Diophantus”, and Department of digital systems - University of Piraeus) and industry (LINK Technologies
S.A., WEST L'Aquila, and MOBICS S.A.). He has teaching experience as a lecturer at the Business College of Athens
(BCA) and as an instructor of postgraduate and graduate courses in the Department of Computer Science and
Engineering, University of Ioannina, and the Department of Informatics and Telecommunications - NKUA. He has
published more than 35 articles in peer-reviewed journals, international conferences and book chapters. His
research interests are in the areas of 5G RAN, D2D communications, and QoE provisioning.

Giorgos Kalpaktsoglou
To be provided

Stefano Tennina
Dr. Stefano Tennina received the Laurea degree (cum laude) in Electronic Engineering from the University of
L’Aquila, Italy, in 2003 and the Ph.D. degree in Electrical and Information Engineering from the same Institution
in 2007. From 2002 to 2009 he has been with the Centre of Excellence in Research DEWS as a post-doctoral
researcher. From 2009 to 2012 he was a Research Scientist in the CISTER Research Unit, involved in two projects:
EMMON (ARTEMIS program), aiming at large-scale and dense real-time WSNs and SENODS (PT-CMU program),
targeting energy efficiency in large Data Centers. Since 2004 he is a co-founder of WEST Aquila s.r.l., where he
holds now a position of Senior Researcher and is full time employee since 2012. His research focus is in the area
of wireless communication protocols/systems, with particular emphasis on experimentation with real COTS test-
beds. His current research activity is mainly focused on fully distributed positioning algorithms and energy
efficient wireless communications through network coding and distributed source coding algorithms. As
professional member of IEEE and ACM since 2011, he is author or co-author of more than 30 journal and
conference papers in technical journals and conference proceedings.

Luigi Pomante
Luigi Pomante has received the “Laurea” (i.e., BSc+MSc) Degree in Computer Science Engineering from
“Politecnico di Milano” (Italy) in 1998, the 2nd Level University Master Degree in Information Technology from
CEFRIEL (a Center of Excellence of “Politecnico di Milano”) in 1999, and the Ph.D. Degree in Computer Science
Engineering from “Politecnico di Milano” in 2002. He had been a Researcher at CEFRIEL from 1999 to 2005 and,
in the same period, he had been also a Temporary Professor at "Politecnico di Milano". From 2006, he is an
Academic Researcher at Center of Excellence DEWS (“Università degli Studi dell’Aquila”, Italy). From 2008 he is
also Assistant Professor at “Università degli Studi dell’Aquila” (he is responsible of the “Embedded Systems”
course). His activities focus mainly on Electronic Design Automation (in particular Electronic System-Level
HW/SW Co-Design) and Networked Embedded Systems (in particular Wireless Sensor Networks). In such a
context, he has been author (or co-author) of more than 100 articles published on international and national
conference proceedings, journals, and book chapters. He has been also reviewer and member of several TPCs
related to his research topics. From 2010, he has been in charge of scientific and/or technical issues on behalf of
DEWS in more than 10 funded European and national research projects.

Nikos Passas
Nikos Passas received the Diploma (Hons.) from the University of Patras, Patras, Greece, in 1992 and the Ph.D.
degree from the University of Athens, Athens, Greece, in 1997. He is currently a member of the teaching staff
with the Department of Informatics and Telecommunications, University of Athens, and a Group Leader of the
Green, Adaptive and Intelligent Networking Research Group inside the department. Over the years, he has
participated and coordinated a large number of national and European research projects. He has authored/co-
authored more than 140 papers in peer-reviewed journals and international conferences. His research interests
include mobile network architectures and protocols. He is particularly interested in quality of service provision
for wireless networks, medium access control, and mobility management. He was a Guest Editor and Technical
Program Committee Member in prestigious magazines and conferences, such as IEEE Wireless Communications
Magazine, Wireless Communications and Mobile Computing Journal, IEEE Vehicular Technology Conference, IEEE
International Symposium on Personal, Indoor and Mobile Radio Communications, and IEEE Global
Communications Conference.

