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Surface electromyograms (EMGs) recorded with a couple of electrodes are meant to comprise

representative information of the whole muscle activation. Nonetheless, regional variations in
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neuromuscular activity seem to occur in numerous conditions, from standing to passive muscle

stretching. In this study, we show how local activation of skeletal muscles can be automatically tracked

from EMGs acquired with a bi-dimensional grid of surface electrodes (a grid of 8 rows and 15 columns

was used). Grayscale images were created from simulated and experimental EMGs, filtered and

segmented into clusters of activity with the watershed algorithm. The number of electrodes on each

cluster and the mean level of neuromuscular activity were used to assess the accuracy of the

segmentation of simulated signals. Regardless of the noise level, thickness of fat tissue and acquisition

configuration (monopolar or single differential), the segmentation accuracy was above 60%. Accuracy

values peaked close to 95% when pixels with intensity below �70% of maximal EMG amplitude in each

segmented cluster were excluded. When simulating opposite variations in the activity of two adjacent

muscles, watershed segmentation produced clusters of activity consistently centered on each simulated

portion of active muscle and with mean amplitude close to the simulated value. Finally, the

segmentation algorithm was used to track spatial variations in the activity, within and between medial

and lateral gastrocnemius muscles, during isometric plantar flexion contraction and in quiet standing

position. In both cases, the regionalization of neuromuscular activity occurred and was consistently

identified with the segmentation method.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Surface electromyography advanced rapidly in the last decade,
in particular regarding the development of sophisticated detec-
tion systems, which currently comprise grids with hundreds of
electrodes (Merletti et al., 2009).

The conventional bipolar configuration may suffice for identi-
fying gross activation of skeletal muscles in specific motor
tasks (Danion et al., 2002; McLean and Goudy, 2004), or in
response to stretching stimuli (Schieppati et al., 2001). Conver-
sely, this configuration provides unrepresentative electromyo-
grams (EMGs) if the location of surface electrodes is not chosen
properly. Indeed, variations in amplitude and spectral features of
surface EMGs, with respect to the position of electrodes, have
been extensively studied using arrays of electrodes (Farina et al.,
2002; Mesin et al., 2009; Merletti et al., 2003; Zwarts and
ll rights reserved.
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.: 39 011 4330476;
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Stegeman, 2003). Spurious changes in EMG traces hinder the
observation of neuromuscular activity when surface electrodes
are placed close to the innervation zone or the tendon locations
(Mesin et al., 2009).

Quantifying muscle activity with a linear array or pairs of
electrodes presumes that the whole muscle is activated homo-
geneously. Such an assumption is particularly relevant when
estimating muscle forces with analytical models (Lloyd and
Besier, 2003; Zajac, 1989). Nonetheless, compelling evidences
indicate that skeletal muscles are functionally divided into
compartments, activated selectively in voluntary contractions
(Danion et al., 2002; McLean and Goudy, 2004), during the control
of quiet standing posture (Vieira et al., 2010), and even in
response to muscle stretching (Eng and Hoffer, 1997). Therefore,
the assessment of neuromuscular activity in different motor tasks
would benefit from the use of bi-dimensional arrays of electrodes,
allowing for the identification of localized EMG activity within
and between muscles.

In this study, we propose and validate a method for the
automatic identification of local variations in surface EMG activity
with a bi-dimensional array of electrodes. Initially, the generation
of scaled images from the surface EMGs is outlined. Then, EMG
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images are segmented with the watershed algorithm (Vincent and
Soile, 1991). The performance of our method is assessed using
simulated EMGs. Finally, we applied the method to segment
experimental signals recorded from the gastrocnemius muscles.
We chose these muscles because of their high degree of
compartmentalization (English et al., 1993) and our interest
in understanding how such a partitioning might affect the control
of human standing posture (Vieira et al., 2009, 2010). The
segmentation method proposed here is expectedly useful to
study localized muscle activity, the load sharing between
synergists and to predict muscle force using EMG-driven models.
2. Methods

2.1. Generating images from surface EMG signals

When electromyograms are recorded with a bi-dimensional grid of electrodes,

each electrode may be conceived as a pixel p with coordinates x and y given by the

rows and columns in the grid. EMG activity is often represented with its average

rectified value (ARV) or its root mean square (RMS). For EMG images generated

with the ARV descriptor, pixels intensity is computed as

Iemg x,y; i½ � ¼
1

N

XiN
n ¼ 1þði�1ÞN

EMG½x,y,n�
�� �� ð1Þ

where i and N stand for the epoch number and the number of samples in each

epoch, respectively. In a grayscale EMG image, dark and light pixels indicate low

and high EMG amplitudes, respectively (Fig. 1).

The cluster of pixels with high intensity in Fig. 1 means a group of electrodes

detecting high EMG activity and likely reflects the spatial selectivity of muscle

activation.

2.2. Segmenting EMG image with watersheds

The watershed technique segments grayscale images by considering pixels

with high intensity as elevated surfaces and pixels with low intensity as

catchment basins. Similarly, the intensity of pixels in EMG images can be

represented as a topographical relief (Fig. 2). The algorithm identifies the location

of ridges (watersheds) in the grayscale image and labels each catchment basin

(group of pixels), surrounded by such ridges, with a different number (Vincent and

Soile, 1991).

Since pixels with high ARV amplitude would be conceived as elevated surfaces,

clusters of these pixels would be partitioned if the watershed algorithm was

applied directly to EMG images (Fig. 2a). In this case, pixels with high gray

intensity (i.e. high neuromuscular activity) would constitute the watershed line,
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Fig. 1. Grayscale image (bottom panel) created with intensity values (Iemg) computed f

plantar flexion (Section 2.3.2). A matrix of 120 electrodes, disposed into 8 rows and 15

amplitudes computed for an epoch of 250 ms (dashed lines).
which is not desired. Rather, watershed lines could be estimated by processing the

gradient of Iemg. Assuming that pixels represent the spatial sampling of Iemg, the

edges of subsets with low and high EMG activities are computed as the Euclidean

norm of Iemg gradient (gemg), which gives the rate of change in gray intensity

(Fig. 2b)

gx m, n; i½ � ¼ F�1 ST
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where F�1 is the inverse of the Fourier transform operator, kx and ky indicate the

spatial frequencies, Nr and Nc stand for the number of rows and columns of

electrodes, T indicates the transpose operator, and S is the bi-dimensional Fourier

transform of the zero-padded Sobel operator

s¼

þ1 þ2 þ1

0 0 0

�1 �2 �1

�������

�������
ð3Þ

As the number of clusters produced by the watershed segmentation depends

on the number of regional minima in the gradient, the problem of over-

segmentation (Fig. 2b) can be minimized by flattening sharp transitions of gray

intensity in gemg with image opening followed by image closing operation

(Heijmans, 1995). Opening and closing can be envisaged as the attenuation and

intensification of pixels with intensity exceeding or not reaching some threshold,

respectively. Opening and closing gemg by the structuring element v are defined as

(Heijmans, 1995)

gemg3v¼ ðgemg � vÞ � v ð4Þ

gemg�v¼ ðgemg � vÞ � v ð5Þ

where J and K indicate opening and closing, respectively. � and � are the

Minkowski operators for addition and difference, defined as

ðgemg � vÞðpÞ ¼max
zADv

fgemg ðpþzÞg ð6Þ

ðgemg � vÞðpÞ ¼min
zADv

fgemg ðpþzÞg ð7Þ

where Dv is the domain of the structuring element v, which was chosen as a square

grid (3�3) of zeros (which means that zA �1, 0, 1½ � � �1, 0, 1½ �).

The opened–closed gradient of Iemg provided a flattened surface for the

segmentation. Clusters of EMG activity were then identified properly with the

watershed algorithm (Fig. 2c).

Enhancing the contrast of EMG image with histogram equalization (Kim et al.,

2001), before computing its gradient, emphasized groups of pixels with similar

intensity and further improved the watershed segmentation (Fig. 2d).
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Fig. 2. Schematic of watershed segmentation (right panels) applied to: (a) the grayscale image created with ARV amplitude of experimental EMG signals, as shown in

Fig. 1; (b) the gradient (Eq. (2)) of the image shown in (a); (c) the flattened gradient, obtained with image opening and image closing techniques (Eqs. (3) and (4)); (d) the

flattened gradient estimated as in (c) but for the equalized EMG image. Surfaces shown in the middle panels comprise a topographical representation of EMG image and its

gradients shown in the left panel, except in (d), where the topographical representation (middle panel) refers to the flattened gradient of the equalized EMG image (left

panel).
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This equalization technique stretches the intensity distribution across the range of

values used to represent EMG amplitude as gray intensity (from 0 to 255), with

dark and bright regions becoming even darker and brighter (left panel in Fig. 2a,d).

After partitioning EMG images into clusters of pixels with similar activity

levels, the maximal ARV amplitude was calculated for each cluster. Electrodes

corresponding to pixels with intensity below some threshold, from 0% to 90% of

maximal ARV amplitude, were further excluded from each cluster.
2.3. Signals used for EMG segmentation testing and analysis

The proposed segmentation method was tested for simulated and experi-

mental EMGs.
2.3.1. Simulated signals

Monopolar surface EMGs were simulated by positioning muscle fibers inside a

rectangular cross-section area of 100 mm�15 mm (Fig. 3a). The parameters in

Table 1 were used to generate interference EMGs (Fig. 3b). EMG images were

created and then segmented with the proposed algorithm (Fig. 3c,d).

The segmentation algorithm was tested for two simulation sets, each with

30 different populations of motor units.

First set: one muscle 60 mm large was simulated active at 60% of maximal

voluntary contraction (MVC) and with fat thickness varying between 2 and 6 mm.
Second set: two adjacent muscles with identical dimensions (50 mm large)

were simulated active. The force level varied from 10% to 90% MVC for the first

muscle and from 90% to 10% MVC for the second muscle, giving an average force

level of 50% MVC. The contiguous location of both muscles was simulated to

reproduce the two gastrocnemius muscles.
2.3.2. Experimental signals

Experimental EMGs were used to investigate the feasibility of the proposed

algorithm in identifying clusters of activity within and between medial (MG) and

lateral (LG) gastrocnemius. Monopolar signals were detected from eight healthy

subjects (18–36 years) with a matrix of 8�15 electrodes. After cleansing and

wetting the skin with alcohol and water, the electrodes were placed exclusively

above the gastrocnemius muscles, as confirmed by ultrasound imaging (Vieira

et al., 2010; see supplemental material). Basically, the junction between both

muscles and their contours were scanned by sliding the ultrasound probe on the

leg and marked on the skin. Each half of the matrix was then positioned on each

gastrocnemius muscle (Fig. 6a). Ultrasound imaging was also used to estimate the

fat thickness, which ranged from 3.4 to 5.6 mm. These values were within the

simulated range of fat thickness, from 2 to 6 mm.

ARV maps were created for EMGs recorded synchronously with: (1) ankle

torque during 10 s of isometric plantar flexion at 60% MVC, once with

knee extended and once with knee flexed (Vieira et al., 2008); (2) centre of

pressure during 40 s of quiet standing (Vieira et al., 2010). EMGs were amplified by
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(b), after adding 10 dB SNR of Gaussian noise. (d) Watershed segmentation (as described in Section 2.2) of the topographical image shown in (c).

Table 1
Description of the parameters used to simulate interference EMGs (SD means standard deviation; Fuglevand et al., 1993). EMGs were simulated using the planar model

proposed in Farina and Merletti (2001).

Parameter Value

Skin conductivity 4.3�10�4 S/m

Fat conductivity 4.0�10�2 S/m

Muscle longitudinal conductivity 40�10�2 S/m

Muscle axial conductivity 9.0�10�2 S/m

Fiber mean length 120 mm

Spread of innervation zone 1 mm SD of Gaussian distribution

Spread of tendon endings 2 mm SD of Gaussian distribution

Fiber density 20 fibers per mm2

Fiber depth From 0.15 to 15 mm

Motor unit (MU) dimension
Exponential distribution of number of fibers per MU, with

ten-fold variation between smallest and largest MUs

Conduction velocity (CV) Gaussian distribution with 4 m/s mean and 0.3 m/s SD

Recruitment order From low to high CV
Force level where recruitment stops 60% of maximal voluntary contraction (MVC)

Range of discharge rate 8–30 pulses per second (pps)

Variation in discharge rate with force 0.5 pps/%MVC

Inter-pulse interval variability Gaussian distribution with coefficient of variation 0.2
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5 k (10–500 Hz EMG-USB amplifier, LISiN and OTBioelettronica, Turin) and

sampled at 2048 Hz with a 12 bit A/D converter (72.5 V dynamic range).

2.4. Segmentation performance and statistical analysis

The accuracy of segmentation of simulated EMG images was evaluated as the

ratio between the sum of true positive and true negative electrodes and the total

number of electrodes in the grid (120 for monopolar and 105 for differential

configuration). This definition accounts for the two main classification errors. For

example, if the watershed lines confine a large cluster, including electrodes above

muscle portions not activated, the accuracy will not be high because of pixels
falsely classified as positive. Similarly, if the cluster resulting from the segmenta-

tion does not comprise all electrodes above the active muscle portion, the accuracy

will be low because of false negative pixels.

Three different methods were considered for the segmentation of EMG

images: watershed without equalization, watershed with equalization and the

segmentation without watershed. In the later case, clusters of EMG activity were

formed by selecting pixels with amplitude higher than a threshold (Threshold

method). The segmentation accuracy of simulated EMG images was evaluated by

considering five SNR values (0, 5, 10, 15 and 20 dB), the three segmentation

methods, two detection systems (monopolar and differential), and two thicknesses

of the fat layer (2 and 6 mm). For each case, accuracy was computed for amplitude

thresholds varying from 0% to 90% of maximal ARV, at steps of 5%. A multi-factorial
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ANOVA was considered for such comparisons (first simulation set). For the second

simulation set, the performance of watershed segmentation was evaluated by

comparing simulated and estimated variations in activity for each of the two

muscles.
3. Results

3.1. Simulation 1: single muscle

Clusters of EMG activity were identified more accurately with
than without using the watershed algorithm (Fig. 4). However,
regardless of the detection system simulated and independent of
usage of the watershed algorithm, the accuracy of EMG image
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Table 2
Mean values (SD) of the accuracy (%) of EMG image segmentation when the watershed

images were created from simulated signals (n¼30 sets of signals) with the fat thickn

Monopolar

Fat layer 2 mm Fat layer 6 mm

SNR eq non-eq eq non-eq

0 82 (13)n 70 (12) 83 (10)n 72 (13)

5 84 (11)ny 74 (12)y 86 (07)n 77 (13)

10 84 (10)ny 79 (11)y 88 (05)n 81 (12)

15 84 (10)ny 81 (10)y 88 (06)n 84 (11)

20 85 (10)I 83 (09)y 89 (05)n 86 (10)

n po0.05 between eq and non eq conditions
y po0.05 between 2 and 6 mm fat thickness
segmentation significantly depended on the noise level (p¼0.001)
and amplitude threshold, especially for low thresholds (Fig. 4).

The equalization of EMG images significantly improved the
performance and robustness of watershed segmentation. Inter-
estingly, for all conditions simulated, the accuracy peaked at the
same amplitude threshold when segmenting equalized EMG
images. Even when setting the amplitude threshold to 0%,
watershed segmentation of equalized images was remarkably
accurate (Fig. 4). By pooling the amplitude thresholds, watershed
segmentation performed statistically better with than without
image equalization. This improved performance was evident for
low SNR, with the use of equalization leading to mean accuracy
values higher than 80% for 0 dB SNR. Non-equalized images,
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Fat layer 2 mm Fat layer 6 mm

eq non-eq eq non-eq

83 (10)n 68 (13) 83 (11)n 67 (15)
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however, resulted in average accuracy lower than 75% for 0 and
5 dB SNR (Table 2). Similarly, segmentation of EMG images was
slightly but significantly more accurate for thicker (84.3%) than
thinner fat layer (81.5%; Table 2).

3.2. Simulation 2: two muscles

Variations in the level of activity of two closely spaced muscles
were tracked appropriately with the watershed algorithm. When
simulating simultaneous and opposite variations in activity of two
adjacent muscles, the average EMG amplitude was almost
constant (Fig. 5a,b). However, the watershed segmentation of
equalized EMG images identified two clusters of activity. The
average activity of each cluster approached the simulated effort
level, although with overestimation for low SNR (Fig. 5a,b). The
centroid of such clusters was located within the active muscle
region. Conversely, the centroid of the whole EMG images shifted
transversally as the activity of each muscle varied oppositely
(Fig. 5c,d).

3.3. Experimental signals

The segmentation of experimental EMG images identified
consistent and localized activity in each gastrocnemius muscle
during isometric plantar flexion (Figs. 6,7). Considering one EMG
frame, the watershed segmentation produced two large clusters
of pixels. Pixels along the watershed line coincided with the
location of the junction between both gastrocnemii, as confirmed
with ultrasound imaging (Fig. 6a). After excluding pixels with
intensity below 70% of maximal ARV, the clusters of electrodes
were fairly localized over each muscle (Fig. 6b). Such localized
activation of each gastrocnemius muscle was observed,
consistently, when segmenting EMG frames throughout the 10 s
of plantar flexion with knee extended and flexed (Fig. 7).
Activation of both muscles was chiefly augmented in knee
flexed condition, with the extent of activity in LG exceeding that
in MG muscle.

Local variations in activity within the same gastrocnemius
muscle were consistently identified when subjects stood at ease
(Fig. 8). Segmentation of EMG images obtained during standing
resulted into two clusters of activity, both centered mostly on MG
muscle, proximally and distally (Fig. 8a). Fluctuations in ARV
amplitude were remarkably similar to changes in CoP position,
with distal and proximal clusters exhibiting more tonic and
phasic activities, respectively (Fig. 8b).
4. Discussion and conclusions

In this study, we propose a method for the automatic
segmentation of surface EMG images. Regardless of the activation
level, active portions of simulated muscle were accurately
identified with the segmentation method. Furthermore, segmen-
tation of experimental EMG images revealed localized activity
within and between gastrocnemius muscles.

4.1. Technical issues

Segmentation accuracy depends on the occurrence of false
positive and false negative pixels. False positives correspond to
electrodes positioned above inactive muscle portion and included
in the cluster after segmentation. Electrodes over active muscle
portion and not included in the cluster are false negatives. Once
the watershed segmentation identifies cluster of EMG activity, the
occurrence of false negative pixels cannot be corrected by raising
the amplitude threshold. Conversely, false positive pixels might
be excluded from the cluster if the amplitude threshold is raised
progressively. This explains the increase in accuracy values for the
segmentation of simulated EMG images when the amplitude



skin

MG

Medial

Junction between gastrocnemius 
muscles (MG and LG)

Lateral
Right leg (posterior view)

knee

ankle

Matrix of electrodes (columns 4-11) 
Transversal view

EMG image

R
ow

s

2

2

4

6

8

Segmented EMG image

Columns

R
ow

s

2

4

6

8

La
be

ls

Wshed

1

2

60

70

80

I E
M

G
(µ

V
)

50

LG

4 6 8 1210 14

2 4 6 8 1210 14

Fig. 6. (a) Positioning of the grid of 120 eyelet electrodes on the gastrocnemius muscles of the right calf. The ninth column of the grid was aligned with respect to the

junction between the two muscles, identified with ultrasound imaging. (b) EMG image and segmentation of EMG equalized image with the watershed segmentation

described in Section 2.2. By flattening the segmented image with image opening and closing and excluding pixels with intensity below 70% of maximal ARV amplitude, two

clusters of high EMG activity are identified for each gastrocnemius muscle. Circles in the segmented image mark the final result of the segmentation procedure and thus

define the regions of activity.

Fig. 7. Four EMG frames are shown for 10 s of isometric plantar flexion with knee extended (a) and knee flexed (b). Each frame was created with the ARV amplitude

computed for 0.25 s epochs and for 120 monopolar signals recorded from the gastrocnemius muscles. The ninth column marks the junction between MG and LG muscles,

as in Fig. 6. Blue ellipses were adjusted to the cluster of electrodes to produce a smooth visualization of localized activity with time. The direction of the major and minor

axes of each ellipse was estimated with the two eigenvectors of the covariance matrix calculated for the electrode coordinates in each cluster. The length of each axis was

then scaled with the corresponding eigenvalues. These ellipses were interpolated with elliptic cylinders to illustrate the time course of spatial variations in neuromuscular

activity. Red and black cylinders denote the first and the second cluster with highest EMG activity, respectively. Note that the mean position of the cluster with highest

activity changes from MG to LG muscle when comparing knee extended with knee flexed conditions.

T.M.M. Vieira et al. / Journal of Biomechanics 43 (2010) 2149–2158 2155



2 4 6 8 10 12 14

1

2

3

4

5

6

7

8
0 2 4 6 8 10 12 14 16 18 20

-2

-1

1

2

10
20
30
40
50

CoP
Cluster 1
Cluster 2

Po
si

tio
n 

(c
m

)

AR
V 

am
pl

itu
de

(µ
V)

Time (s)Columns (cm)

R
ow

s
(c

m
)

MG LG

Knee
forward

Fig. 8. (a) Coordinates of the centroid of the two clusters with highest activity, depicted for 20 s of quiet standing test. Dashed line shows the junction between MG and LG

muscles. Note two distinct locations of activity, mostly on MG muscle. (b) Centre of pressure position in the sagittal plane and mean ARV amplitude, computed for the

clusters whose centroid positions are shown in (a). Black and gray ARV traces correspond to the most distal and proximal clusters, respectively. Note that EMG activity in

proximal portions fluctuates more than in the distal portion and with different timings.

T.M.M. Vieira et al. / Journal of Biomechanics 43 (2010) 2149–21582156
threshold increased (Fig. 4). After all false positives are excluded
from the cluster, any further increase in amplitude threshold
excludes true positive pixels and thus decrease accuracy (Fig. 4).
Therefore, the maximal accuracy relates inversely to the number
of false negative pixels and matches the optimal amplitude
threshold. Even without setting amplitude thresholds, the
accuracy of watershed segmentation applied after equalization
was fairly good (Fig. 4). Considering that accuracy peaked close to
0.95, consistently at �70% amplitude threshold, the equalization
led to robust and accurate identification of localized EMG activity
(Fig. 4).

The preceding argument likely explains the higher accuracy
obtained for thicker fat layers (Table 2). As increase in fat
thickness leads to larger spread of action potentials on the skin
(Farina et al., 2002, 2004), the segmentation of simulated EMG
images resulted in clusters with less false negatives for thicker fat
layer.

4.2. Interpreting the accuracy of simulated EMG segmentation

How much the accuracy of watershed segmentation of
simulated signals translates into physiological values is predict-
able. The spatial spread of surface EMGs recorded from pinnated
muscles is proportional to the number of active motor units
(Vieira et al., 2010), and the distance between muscle fibers and
electrodes (Roeleveld et al., 1997). Consequently, local activation
of the same muscle distributes within a larger area on the skin.
Electrodes other than those above the active muscle portion
record significant activity. Hence, watershed lines in the experi-
mental EMG image confine large clusters of electrodes, with the
inclusion of false positive pixels. The fact that local activation
diffuses on the skin indicates that clusters created with the
watershed algorithm does not exclude or exclude only few
electrodes on the active muscle portion (false negatives).
Accuracy is then balanced by the exclusion of false negatives
and the inclusion of false positive pixels. The accuracy of
experimental and simulated EMG segmentation is expected to
vary similarly with the amplitude threshold (Fig. 4).

Results obtained for the second simulation set indicate the
extent to which the segmentation accuracy is physiologically
applicable. Watershed segmentation consistently identified
two clusters of pixels when simulating opposite and concurrent
changes in the activity level of two adjacent muscles. The
estimated level greatly approached the simulated level of
activation for each muscle (Fig. 5b). Conversely, unrepresentative
estimates of muscles activation (Fig. 5) were obtained with the
traditional technique for parameter extraction from EMG maps
(Farina et al., 2008). Therefore, local variations in the level of
neuromuscular activity are quantified properly with the segmen-
tation of experimental EMG images. Actual amplitude of localized
activity, however, is possibly overestimated if EMGs are recorded
with considerable noise (0 dB SNR; Fig. 5a), which is often not the
case (Merletti and Hermens, 2004).

4.3. Identifying localized neuromuscular activity

Multi-channel EMG recordings allow for the estimation of
muscle fibers direction (Grönlund et al., 2005) and the centroid of
EMG amplitude (Farina et al., 2008), for the identification of motor
unit action potentials (Holobar et al., 2009), and for the robust
estimation of EMG descriptors (Farina and Falla, 2008). Insights
into the localized activity within and between muscles is often
obtained by visual inspection of multi-channel EMGs (Troiano
et al., 2008), which is time consuming and subjective. Conversely,
the watershed technique holds remarkable potential for the
automatic identification of active muscle portions.

Recently, Staudenmann et al. (2009) applied K-means cluster-
ing to identify localized activity in the calf muscles. The number of
clusters was fixed to six, beforehand, to avoid the equivocal
discarding of information and the identification of local minimum
of distance. Some properties render the watershed algorithm
more attractive than conventional clustering techniques for the
automatic segmentation of EMG images: (1) the identification
of clusters does not rely on distances minimization and is not
supervised; (2) initial guess about the number of clusters is not
required; (3) the accuracy is marginally sensitive to noise, fat
thickness and electrode montage; (4) isolated pixels with high
intensity, likely resulting from contact problems in the electrode–
skin interface (Clancy et al., 2002), would be discarded with the
gradient flattening.

The results obtained for the experimental signals recorded
from MG and LG are striking. Small portions of these muscles,
activated during brief plantar flexion, were tracked remarkably
well with the segmentation algorithm (Fig. 7). Conventionally, the
activity of gastrocnemius muscles is expected to decrease when
one exerts plantar flexion with knee flexed (Arampatzis et al.,
2006). EMG maps indicate that this might not be the case. The
result in Fig. 7 does not allow for conclusive ascertainments
concerning the load sharing between gastrocnemii. Nevertheless,
it shows that both muscles are activated locally. Compelling
evidences support the compartmentalization of gastrocnemius
muscles and the high selectivity of surface EMGs recorded from
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pinnated muscles (English et al., 1993; Wolf and Kim, 1997, Vieira
et al., 2010; manuscript under preparation). Consequently, pairs
of surface electrodes positioned on MG or LG unlikely provide
representative recording of general muscle activity.

Watershed segmentation proved useful in distinguishing
patterns of activation between proximal and distal MG regions
during standing. Fluctuations in mean ARV amplitude occurred
with dissimilar timing between muscle locations (compare ARV
traces in Fig. 8b). Indeed, with intramuscular electrodes we
observed that motor units in different portions of the MG muscle
are activated with variable timing during standing (Vieira et al.,
2009, 2010), suggesting a flexible and selective controller for the
fine adjustments of calf muscles length with body sways (Loram
et al., 2005). Although the level of gastrocnemius activation is
expectedly small during standing, the equalization technique
rescales EMGs amplitude to the whole spectrum of gray intensity.
Slight variations in amplitude are thus emphasized. Considering
that the watershed algorithm confines all regional minima in the
image (Vincent and Soile, 1991; Fig. 2), clusters of activity are
likely identified from equalized EMG images obtained for low-
intensity contractions.

The method proposed here houses multiple noteworthy
applications. For example, studies focusing on the muscle force
estimation from EMGs (Lloyd and Besier, 2003), on the timing of
muscle activation (Schieppati et al., 2001), on the synergic
activation of muscles spanning the same joint (McLean and
Goudy, 2004), or on the contribution of distinct muscles in
specific motor tasks (Danion et al., 2002), would benefit from the
automatic tracking of localized muscle activity.

4.4. Limitation of watershed segmentation

The watershed algorithm applies for the segmentation of
images. Consequently, it requires the use of bi-dimensional grid of
electrodes for the automatic identification of local EMG activity.
When using a linear array or pairs of electrodes, different methods
could possibly work for determining localized muscle activity
(Staudenmann et al., 2009; Wolf et al., 1998).
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