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A B S T R A C T

In this work we propose an approach for mapping flooded areas from Sentinel-2 MSI (Multispectral Instrument)
data based on soft fuzzy integration of evidence scores derived from both band combinations (i.e. Spectral
Indices - SIs) and components of the Hue, Saturation and Value (HSV) colour transformation. Evidence scores are
integrated with Ordered Weighted Averaging (OWA) operators, which model user’s decision attitude varying
smoothly between optimistic and pessimistic approach. Output is a map of global evidence degree showing the
plausibility of being flooded for each pixel of the input Sentinel-2 (S2) image. Algorithm set up and validation
were carried out with data over three sites in Italy where water surfaces are extracted from stable water bodies
(lakes and rivers), natural hazard flooding, and irrigated paddy rice fields. Validation showed more than sa-
tisfactory accuracy for the OR-like OWA operators (F-score > 0.90) with performance slightly decreased (F-
score < 0.75) over heterogeneous conditions (e.g. rice fields). The algorithm was applied with no changes and/
or tuning to independent sites from the Copernicus Emergency Management Service (EMS) activations to si-
mulate operational conditions. Over these sites, the proposed approach achieved greater, more consistent and
robust mapping accuracy compared to traditional approaches based on the segmentation of single input features.
Moreover, OWA operators offer an appealing way of combining and aggregating multiple information in deci-
sion making by modelling uncertainty in decision process.

1. Introduction

Floods are among the most catastrophic natural disasters causing
important and/or permanent damages to infrastructures and commu-
nication systems, crops and livestock, and property but more relevant,
floods provoke loss of human lives. It is estimated that worldwide more
than 5000 deaths are caused by flash floods, that are events occurring
on small spatial scales with short time scales under conditions of rapid
production of surface runoff (Jonkman, 2005). In the future, climate
change could exacerbate these phenomena by increasing the frequency
of extreme and adverse meteorological events (Kharin et al., 2007). In
2007 the European Commission (EC) adopted the Floods Directive for
the assessment and management of flood risk. Remote sensing (RS) is
widely recognized as a unique source of data for the implementation of
EU directives since it provides synoptic view over large areas, frequent
observations and historical archives (Bresciani et al., 2011). Flood
mapping could also serve other stakeholders and purposes such as risk
management, land use and land management, emergency planning.

RS data have been largely used to map the extent of flooded area
worldwide and with instruments operating in the visible, thermal and
microwave wavelengths of the Electromagnetic spectrum (ES). Satellite
systems represent the most widely used platform for large area mapping
and emergency management (Giordan et al., 2018); an operative ex-
ample is the EC Copernicus Emergency Management Service (Co-
pernicus EMS) (http://emergency.copernicus.eu, accessed July 2019).

SAR (Synthetic Aperture Radar) data are a reliable source of in-
formation since they provide data in any weather and illumination
condition especially during flood events characterised by adverse me-
teorological conditions. However, if a visible image is available si-
multaneous and/or close to the peak of the flooding event, retrieving
information from optical data is often more straightforward
(Schumann, 2015) and optical images have been largely exploited since
the early 70s’ (Robinove, 1978; Rokni et al., 2014; Kumar et al., 2018;
Rahman and Di, 2017; Huang et al., 2018).

The European Space Agency's (ESA) Sentinels have started an Earth
Observation (EO) new era especially in disaster monitoring and
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emergency management. Sentinel-2 (S2) mission offers advanced spa-
tial resolution and frequency of acquisitions compared to previous sa-
tellite missions making available passive optical data, e.g. Landsat.
Landsat data, however, still constitute the only historical consistent
archive of EO data for long-term flood mapping and monitoring (Díaz-
Delgado et al., 2016; Mueller et al., 2016). ESA’s Sentinels together
with on demand commercial mission data support operational rapid
mapping of floods by Copernicus EMS.

Most of the methods proposed in the literature to map standing
water with optical data rely on Spectral Indices (SI) or band combina-
tions in colour space, such as the Hue Saturation and Value transfor-
mation (Pekel et al., 2014). Water-related indicators are proposed as
combinations of reflectance in the shortwave infrared (SWIR,
1250–2500 nm) and the near infrared (NIR, 700–1250 nm) (Gao, 1996)
or visible (VIS, 350–700 nm) spectral regions (Li et al., 2014); however,
a water index can be found in different combinations of bands as well as
with different nomenclature for the same formulation (Boschetti et al.,
2014). Mapping is based on the segmentation of a single SI by applying
crisp thresholds to single date acquisitions and/or temporal difference;
this approach is widely used for the identification of water surfaces
because it is fast and simple (Acharya et al., 2018). However, mapping
performance for the selected index/threshold varies as a function of
study area, water characteristics, environmental and atmospheric con-
ditions: hence, the combination of more indices can lead to better re-
sults especially when different conditions coexist in complex scenes
(Acharya et al., 2018).

In this study, we propose a method to synergistically combine water
evidence scores, i.e., features, building on their complementarity/con-
currency to perform a reinforcement of evidence. The approach im-
plements a soft integration of multiple partial evidence scores derived
from possibly semantically heterogeneous factors. In this way, we can
achieve greater, more consistent and robust mapping accuracy com-
pared to traditional approaches based on segmentation of single water/
spectral index. The major long-term objective is to lay the foundation of
an automated algorithm for mapping flooded areas requiring less a-
priori sets and, above all, capable to cope with choices taken under
imprecise information, compared to more traditional methods proposed
in the literature.

The approach, which was first defined by Bordogna et al. (2007)
and Carrara et al. (2008) and applied for the detection of surfaces af-
fected by fires (Stroppiana et al., 2015, 2012), here is extended to map
flooded areas from Sentinel-2 imagery by integrating heterogeneous
input spectral features: SIs selected from the literature and the H/V
components of Hue-Saturation-Value (HSV) colour space that were
proposed by Pekel et al. (2014), (2017).

2. Study areas and data

2.1. Study sites

Six sites were selected for algorithm set up and the assessment of
mapping products (Fig. 1, Table 1). Three sites were selected in
Northern Italy (Cal/Val) for algorithm set up where training and testing
pixels were extracted for i) definition of the “standing water” soft
constraints, ii) test of different multi-source soft integration operators
and iii) validation of algorithm performance. Sites were selected to
cover different conditions of standing water in order to capture variable
spectral characteristics: flooded area is due to extreme heavy rainfall
(Cal/Val_1), river bed (Cal/Val_2) and flooded rice fields (Cal/Val_3).
The latter site was selected, although flooding was not due to a natural
event, to train and validate the algorithm over heterogeneous condi-
tions of shallow water surface (< 50 cm) mixed with soil patches and
vegetation condition (See Supplementary materials S1); moreover, a
large dataset of in situ observations was available from field surveys.

Given the variability of surface water conditions and characteristics
in the Cal/Val sites, we refer to “standing water” rather than flooded

areas. But since the primarily objective of the study remains to build an
algorithm for automatic mapping of flooded areas, the Evaluation sites
were selected among the list of activations of the Copernicus
Emergency Management Service (EMS), which provides rapid mapping
products to support emergency management activities immediately
following a disaster (http://emergency.copernicus.eu, accessed July
2019).

Copernicus recent activations were screened to identify flood events
with available clear sky post-event Sentinel-2 images close in time to
the date of EMS mapping and sites were located in Greece (Farkadona/
Thessaly), Spain (Tudela) and Romania (Ozun). Copernicus
Emergency’s post-event maps, based on COSMO-SkyMed (CSK-Very
High Resolution Copernicus Contributing Mission) images were used as
external and independent reference data for the evaluation phase
(Table 3).

2.2. Sentinel-2 data

The constellation of Sentinel satellites is part of the Copernicus
Earth Observation program led by the European Commission and op-
erated by the European Space Agency (https://earth.esa.int/web/sen-
tinel/home, accessed July 2019).

S2 mission operates as part of a two-satellite system (A&B) carrying
on board the MultiSpectral Instrument (MSI) providing high resolution
multispectral optical imagery since June 2015 (A) and March 2017 (B).
MSI measures the Earth's reflected radiance in 13 spectral bands from
VIS/NIR to SWIR with a spatial resolution ranging from 10m to 60m.
Its wide field of view (290 km) makes possible a global coverage of the
Earth's land surface (between 56 °S and 83 °N) every 10 days with one
satellite and every 5 days with two satellites (A&B).

The proposed algorithm builds on S2 data collected for post-event
assessment (after flooding occurrence). Dates of S2 images over Cal/Val
and Evaluation (Fig. 2) sites are listed in Tables 2 and 3, respectively.
Level-2A S2 images were downloaded and pre-processed with sen2r
toolbox (Ranghetti and Busetto, 2019), developed in R and released
under the GNU General Public License version 3 (GPL-3) freely avail-
able on GitHub (https://ranghetti.github.io/sen2r, accessed July 2019).
The sen2r toolbox accesses image archives through the Copernicus
Open Access Hub which provides complete, free and open access to S2
imagery and allows customized pre-processing of multispectral surface
reflectance, spectral indices and RGB images. For Cal/Val_1, Cal/Val_2
and Evaluation sites, Level-2A S2 imagery was downloaded as Bottom
of Atmosphere (BOA) reflectance, and pre-processing consisted in
clipping images to our area of interest and masking clouds: pixels
classified as high and medium cloud probability were masked out,
while pixels belonging to different classes were retained to avoid
masking out water pixels. Within the sen2r toolbox, cloud cover

Fig. 1. Location of the calibration sites in Italy (green triangles) and evaluation
sites in Greece, Spain and Romania (red triangles). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article).
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probability is obtained from the Scene Classification Map (SCL), which
is produced by Sen2Cor algorithm and provided with level 2A imagery,
and includes the Quality Indicators for cloud probabilities at 20m re-
solution. For Cal/Val_3, BOA images were not available in the Co-
pernicus archive and atmospheric correction of Top of Atmosphere
Level-1C products was carried out in the sen2r toolbox using Sen2Cor
algorithm.

2.3. Reference dataset

The reference dataset is composed of pixels labelled as water and not
water collected over the six sites. Over the three Cal/Val sites, pixels
were extracted for algorithm set up (i.e. training) and validation; the
not water category includes vegetation, agricultural fields, cloud and
cloud shadows, urban and industrial areas. Training pixels over Cal/
Val_1 and 2 were collected by photo-interpretation of different combi-
nation of S2 false colour composites; over Cal/Val_3 in situ observations
were available from field surveys carried out in the framework of the
EU-FP7 ERMES project. For the collection of validation pixels over the
same sites, a stratified random sampling scheme was adopted to extract
over each site about 1200 pixels, which were independently labelled as
water and not water; uncertain pixels (e.g. presence of clouds and cloud
shadows) were discarded leading to a total number of testing pixels
lower than 1200 (Table 2). More information is provided in Supple-
mentary materials (S1).

Over the Evaluation sites no training pixels were used, and reference
pixels used to assess the accuracy of the mapping products were ex-
tracted from Copernicus EMS products.

2.4. Water spectral features

2.4.1. Spectral indices
A set of spectral indices was selected from the literature and com-

puted within the sen2r toolbox (Table 4). The AWEI and AWEISH in-
dices were proposed by Feyisa et al. (2014) to improve classification
accuracy in areas that include shadows and dark surfaces which are
often misclassified as water. The NDWI (Normalized Difference Water
Index), mNDWI (modified NDWI) and NDFI (Normalized Difference
Flooding Index) were chosen among the normalized difference indices
based on Boschetti et al. (2014) who identified that indices relying on
visible and SWIR reflectance are the best performing for surface water
detection. NDWI was proposed first by McFeeters (1996) to identify
open water surfaces using GREEN and NIR reflectance. The modified
NDWI (mNDWI) was introduced by Xu (2006) to improve water dis-
crimination even in presence of high turbidity and to reduce confusion
with built up areas. Finally, SAVI was selected to represent the land/
vegetation category.

2.4.2. Hue - Value colour space components
The Hue, Saturation and Value (HSV) colour space transformation

was applied to S2 SWIR2, NIR, RED bands to extract the H/V compo-
nents. Indeed, it has been demonstrated that, in the HSV colour space,

standing water can be effectively estimated by defining a relation be-
tween H and V components (Pekel et al., 2016, 2014). The approach,
initially developed for MODIS (Pekel et al., 2014) and then adapted to
Landsat data (Pekel et al., 2016), is in the process of being extended to
S2 (Pekel et al., 2017); it is also the basis for the generation of opera-
tional Copernicus water bodies products (https://land.copernicus.eu/
global/content/algorithm-wb-300m-global, accessed July 2019).
Therefore, since it represents the up to date approach for mapping
flooded areas, we used H/V components as input features to the algo-
rithm and combined it with SIs relying on the fact that OWA operators
can flexibly manage evidence scores derived from heterogeneous in-
puts.

Standardized colorimetric transformation from RGB (SWIR2, NIR,
RED respectively) to HSV colour space (Smith, 1978) is expressed by
the following equations:

=V max R G B( , , )

=S V min R G B V( ( , , ))/

= =H if V min R G B0 ( , , )

= ° × + ° ° =H G B V min R G B mod if V R(60 ( )/( ( , , )) 360 ) 360

= ° × + ° =H B R V min R G B if V G(60 ( )/( ( , , )) 120 )

= ° × + ° =H R G V min R G B if V B(60 ( )/( ( , , )) 240 )

Hue (H), defined as an angle in a range 0°–360°, represents per-
ceived colour spectral composition, i.e. the visual perceptual property
corresponding to the categories called red, green, blue and others.
Saturation (S) depends on the proportion of reflectance of the dominant
wavelength across the spectrum and shows how far a colour is from a
grey of equal brightness. Value (V) is defined as colour brightness. In
the human recognition process H plays the key role.

3. Methods

The work consisted of two phases: algorithm development (set up
and validation) and assessment of the mapping products (Fig. 3). In the
first phase, we defined the algorithm scheme and specific elements and
we assessed algorithm performance. In the second phase, we quantified
the accuracy of flooded area maps obtained by applying the algorithm
over independent evaluation sites and without tuning over the specific
characteristics of the sites. This phase aims to investigate the export-
ability of the algorithm when applied to different geographic regions
and/or environmental conditions thus simulating operational semi-au-
tomated implementation.

3.1. Algorithm set up

The proposed algorithm relies on a multi-criteria approach that
aggregates the information brought by multiple input features (SIs and
H/V) into a synthetic global evidence degree. Each feature could be
used as source for deriving evidence of water/flooded conditions

Table 1
Location/extent of the study sites and characteristics/conditions of the surface water areas.

Site Location Lat Lon Surface water conditions Dimension (km2)

Cal/Val_1 Emilia (IT) 44.968861 10.649674 Flooded areas due to severe rainfall events 2090
Cal/Val_2 Po Valley (IT) 44.992491 11.377019 River in standard conditions 546
Cal/Val_3 Vercelli Province (IT) 45.278927 8.527552 Flooded rice fields 1937
Eval_1 Farkadona (GR)1 39.510748 21.968400 EMS flooding events - natural hazards 1354
Eval_2 Tudela (ES)2 41.918886 1.360486 2722
Eval_3 Ozun (RO)3 45.849476 25.979288 1049

https://emergency.copernicus.eu/mapping/list-of-components/EMSR271.
https://emergency.copernicus.eu/mapping/list-of-components/EMSR279.
https://emergency.copernicus.eu/mapping/list-of-components/EMSR293.
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Fig. 2. S2 false colour composites (R= SWIR/band12, G=NIR/band8, B=RED/band4) (left) and grey scale S2 SWIR band12 (right) over Evaluation sites in Greece
(a), Spain (b) and Romania (c). Yellow polygons show the area of interest (AOI) for accuracy assessment. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article).

Table 2
Number of pixels used for algorithm set up and validation for Cal/Val sites (w/nw stand for water/not water).

Name Area Dates Training (# pixel) Testing (# pixel) (w/nw)

Cal/Val_1 Emilia (site 1) S2A 13/12/2017 144689 866 (157/709)
Cal/Val_2 Po valley (site 2) S2A 14/05/2017 51014 1131 (192/939)
Cal/Val_3 Rice fields (site 3) S2A 22/04/2016 42015 953 (170/853)
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(partial evidence of flooding); aggregation reinforces the evidence on
one side by exploiting the convergence of partial evidence from mul-
tiple possibly redundant sources, and, on the other side, by compen-
sating the inconsistency/conflict of evidence from multiple possibly
complementary sources. This allows to strengthen the plausibility of the
presence of water and reduces confusion of surfaces with similar
characteristics (Stroppiana et al., 2012).

Aggregation is carried out with Ordered Weighted Averaging op-
erators (OWAs): a parameterized family of soft-mean-like aggregation
operators. The approach is applied independently to each pixel of the
input EO image with the following steps:

1 Definition of the soft constraints for each input feature from training
data and their application;

2 Definition/selection of OWAs to be used for the soft integration;
3 Pixel-based soft integration to compute the synthetic global evi-
dence degree;

4 Segmentation of the synthetic global evidence for deriving the maps
of standing water/flooded areas according to pessimistic or optimistic
attitude of the decision maker.

In the last step, pessimistic refers to decision maker’s attitude that
wants to map the maximum extent of the phenomenon to minimise the
chance of underestimating. On the contrary, the optimistic attitude
wants to minimise the chance of overestimating, reducing false alarms.

3.1.1. Soft constraints on spectral feature
Soft constraints can be defined with different approaches according

to the available expertise and training data (Carrara et al., 2008;
Stroppiana et al., 2009); in this work, they were defined from training
data available over the three Cal/Val sites to compute partial evidence
scores of pixels having given spectral feature values. For each feature,
distinct soft constraints, i.e. Membership Degree (MDSI, MDH, and MDV,
respectively), were defined from frequency histograms of training
pixels of the three Cal/Val study sites as shown in Fig. 4 (for details see
Supplementary Materials). Evidence scores derived from the SIs were
computed as MDSI(SIp), where SI is the spectral index value of pixel p.
Evidence scores derived from H/V components were computed by the
fuzzy Cartesian product of MDH and MDV (i.e., fuzzy relation): min
(MDH(Hp), MDV(Vp)) where Hp and Vp are the Hue and Value of pixel p.

3.1.2. Soft integration
Partial evidence scores of SIs and the H/V were integrated by ap-

plying OWAs: non-linear operators that, given a weighting vector,

W= [w1, …wn] so that the weights sum to 1, it applies a weighted
average of the arguments rearranged from the highest to the smallest.
The key step of OWAs is reordering, meaning that a specific weight wi is
not univocally associated to the specific ith input argument but rather it
is associated to the ith position of the reordered arguments (Yager,
1988; Xu and Da, 2003). For example, the weight w1 will determine the
contribution of the greatest input argument to the global evidence de-
gree computed by the OWA which could be the partial evidence score
from different features for distinct pixels of the EO image.

The weighting vector W determines the semantics of the integration
that can model any decision attitude varying smoothly between an
optimistic and a pessimistic one. For example, a weighting vector W of
the OWA operator with w8=1 considers only the contribution of the
minimum argument, i.e. the minimum partial evidence score; hence, in
our context, implementing an optimistic attitude means to compute the
minimum total flooded area (AND aggregation). Conversely, by setting
w1= 1 the maximum partial evidence will determine the largest
flooded area, thus in our context modelling the pessimistic case (OR
aggregation). Intermediate cases, in which all or most components of W
are not null, model soft “democratic” integrations. An example is the
average of the partial evidence degrees, or any operator that exploits
only a portion of the input arguments (e.g. “at least three of” which
could be defined by a weighting vector

=W 0.5, 0.25, 0.25, 0, 0, 0, 0, 0 ).
In our experiments, we compared the following five OWA weight

vectors:
=W [0, 0, 0, 0, 0, 0, 0, 1]AND (completely optimistic global evi-

dence map minimizing watered areas)
=W [0, 0, 0, 0, 0, 0, 0.5, 0.5]Almost AND (partially optimistic global

evidence map almost minimizing watered areas)
=W [0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125]average

(fully democratic and neutral global evidence map of watered areas)
=W [0.5, 0.5, 0, 0, 0, 0, 0, 0]Almost OR (partially pessimistic global

evidence map almost maximizing watered areas)
=W 1, 0, 0, 0, 0, 0, 0, 0OR (fully pessimistic global evidence

map maximizing watered areas)

3.1.3. Algorithm validation
The performance of the algorithm was assessed by comparison with

reference dataset for the Cal/Val sites in four major steps:

1 Sampling design: stratified random sampling of about 1200 points,
i.e. single pixels in the image (10m×10m), with strata for not
water and water classes derived by thresholding AWEI, spectral

Table 3
Dates of S2 images and EMS mapping for the Evaluation sites. CSK is Cosmo-SkyMed.

Name Location Imaging date Reference date Resolution reference mapping

Eval_1 Greece S2B 28/02/2018 CSK 24/02/2018 3 m
Eval_2 Spain S2A 14/04/2018 CSK 13/04/2018 3 m
Eval_3 Romania S2A 03/07/2018 CSK 03/07/2018 5 m

Table 4
The spectral indices (SIs).

Index Category Reference

AWEI=C1 (GREEN−SWIR1) − (C2 * NIR+C3 ∗ SWIR2) Water Feyisa et al., 2014
AWEISH=BLUE+D1 * GREEN – D2 * (NIR+ SWIR1) – D3 * SWIR2 Water Feyisa et al., 2014
MNDWI= (GREEN – SWIR1) / (GREEN+SWIR1) Water Xu, 2006
NDWI= (GREEN – NIR) / (GREEN+NIR) Water McFeeters, 1996
NDFI= (RED – SWIR2) / (RED+ SWIR2) Flooding Boschetti et al., 2014
SAVI= (1+ L) * (NIR – RED) / (NIR+RED+L) Vegetation Huete, 1988
WRI= (GREEN+RED) / (NIR+ SWIR1) Water Shen and Li, 2010

Where C1=4, C2= 0.25, C3= 2.75, D1=2.5, D2=1.5, D3= 0.25, L=0.5 and S2 MSI bands are BLUE=band2 (490 nm), GREEN=band3
(560 nm), RED=band4 (665 nm), NIR=band8 (842 nm), SWIR1= band11 (1610 nm), SWIR2=band12 (2190 nm).
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index that provided the best visual discrimination;
2 Supervised labelling: photo-interpretation of the points within each
stratum;

3 Confusion matrix: pixel by pixel comparison between reference and
maps to compute True Positives (TP), True Negatives (TN), False
Positives (FP) and False Negatives (FN);

4 Computation of accuracy metrics from the confusion matrix: com-
mission (CE= FP/(FP+TP)) and omission (OE= FN/(FN+TP))
errors and F-score according to the following equation:

= × + +F score 2 TP / (2 TP FP FN)

For each OWA operator, CE, OE and F-score were computed
adopting a set of thresholds defined in the domain [0, 1] of the in-
tegrated global evidence scores with a step of 0.1. Each value specifies
the segmentation threshold for identifying water/flooded (above the
threshold) and not water/not flooded (below the threshold) pixels in the
synthetic flooded map.

3.2. Assessment of flooding mapping

The proposed algorithm was automatically applied (i.e. with no
further tuning and/or changes) to the Evaluation sites to perform a
more extensive and robust validation and to provide insights on op-
erational implementation. For each site, we computed accuracy metrics
(CE, OE and F-score) through pixel by pixel comparison of algorithm
outputs and reference data, i.e. Copernicus EMS perimeters.

Results from the soft integration were also compared with water/
flood maps obtained by segmentation of each single spectral index with
crisp threshold values proposed in the literature (Table 5). Since
threshold values are not optimal for any image and manual adjustment
is often necessary (Chen et al., 2013; Hui et al., 2008; Ji et al., 2009),

we also assessed the sensitivity of accuracy metrics to changes of the
selected crisp value. For the HSV component, we applied equations
proposed in Pekel et al. (2016).

4. Results and discussion

4.1. Partial evidence degrees

The membership functions shown in Fig. 4 were applied pixel by
pixel to each single input feature to obtain partial evidence degree of
water/flooding; examples over zoom areas (20 km×20 km) are de-
picted in Fig. 5 for the three Cal/Val sites. The higher the degree is (i.e.
closer to 1), the more likely the pixel is covered by water and/or
flooded. As expected, the degree varies with the considered input fea-
ture; SAVI (Fig. 5) provides the lowest partial degree over all types of
water surfaces: natural flooding (Cal/Val_1), river (Cal/Val_2) and rice
fields (Cal/Val_3). Flooded rice fields have the most variable beha-
viour/degree in relation to the high rate of different field conditions as
observed during in situ surveys (See S1) and confirmed by the Fig. 4
where, for most of the indices, the distribution overlaps histograms of
the not water classes. Yet Cal/Val_3 was selected with the specific
purpose to train the algorithm on diverse spectral conditions of
standing water. Over this site, H/V and AWEI provide the highest de-
grees, which, however, might include false detections.

NDFI and mNDWI provide similar results since they are both de-
rived from VIS/SWIR wavelengths, (Boschetti et al., 2014); for example,
over Cal/Val_2 the main river is not fully identified (i.e. partial evi-
dence degree<1). WRI, SAVI and NDWI present very low degree of
partial evidence, i.e. not clear identification of the river in the Cal/Val_1
(See S3).

Fig. 3. Algorithm flowchart.
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Fig. 4. The soft constraints for the input SIs (a to g) and for Hue (H) and Value (V) components (h) defined on the training pixels over the Cal/Val sites (pooled
together). Flooded areas include standing water, rice fields and rivers/lakes; not flooded areas include dry soil, vegetated land, agricultural fields, urban areas, clouds
and cloud shadows.
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4.2. Global evidence degree

Fig. 6 shows the output maps of soft integrated global evidence
degree [0–1] for each Cal/Val site with different OWA compared to
false colour RGB images.

The greatest proportion of water surface is obtained with the “OR”
(W= [1, 0, 0, …]) and “Almost_OR” (W= [0.5, 0.5, 0.0, …]) operators
that assign the highest weights to the input features with the highest
partial evidence; the opposite for “AND” and “Almost_AND” operators.
The “Average” delivers the highest range of variability of the global
evidence degree across sites likely due to different water characteristics;

Table 5
Segmentation crisp thresholds on the spectral indices.

Threshold Reference

AWEI > 0 Feyisa et al., 2014
AWEISH > 0 Feyisa et al., 2014
mNDWI > 0 Xu, 2006
NDWI > 0 McFeeters, 1996
NDFI > 0.32 Ranghetti et al., 2016
SAVI < -0.25 or SAVI < -0.27 Weintrit et al., 2018
WRI > 1 Acharya et al., 2017

Fig. 5. The partial evidence degrees for AWEI (a, b, c), mNDWI (d, e, f), NDFI (g, h, i), and the H and V components (l, m, n) for zoom areas of 20 km×20 km of Cal/
Val_1 (left), Cal/Val_2 (middle) and Cal/Val_3 (right). Cloud masked areas are white and the degree of partial evidence ranges in [0, 1].
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Fig. 6. The global evidence degree over Cal/Val_1 (left), Cal/Val_2 (middle) and Cal/Val_3 (right) obtained with OWA weight vector “AND” (a, b, c), “Almost_AND”
(d, e, f), “Average” (g, h, i), “Almost_OR” (l, m, n) and “OR” (o, p, q). In the bottom row (r, s, t) S2 images as false colour composites (R= SWIR/band12, G=NIR/
band8, B=RED/band4). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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this is particularly evident in the Cal/Val_1 and Cal/Val_3. In the
former, degrees close to 1 are assigned to flooded areas while inter-
mediate values are assigned to river pixels. In the latter, rice fields
cover the entire range of values [0, 1] probably due to different con-
ditions and timing of agronomic flooding as also highlighted by field
photos (See S1).

4.3. Algorithm validation

Over Cal/Val sites, test pixels were used for estimating accuracy of
maps obtained by segmenting global as well as partial evidence de-
grees; segmentation reduces continuous information in [0, 1] to binary
two-class maps (water/no water). Accuracy metrics, computed for each
OWA operator and input feature (SIs and H/V components) for varying
thresholds, quantify the improvement brought by integrating re-
dundant/complementary information. F-score is shown in Fig. 7.

Among OWAs, the best performance was obtained with “OR” and
“Almost OR” weight vectors (F-score> 95%) suggesting that input
features are not only redundant, but instead complementary in char-
acterizing water/flooded areas. F-score of the best performing “OR”
operator decreases below 90% when threshold> 0.5 due to the in-
crease of False Negative detections over more complex conditions of
water surfaces in Cal/Val_3; indeed, rice flooding conditions can be
spatially heterogeneous due to difference in water depth, flooding
timing and duration, emergence of rice plants (Ranghetti et al., 2018).

For Cal/Val_1, NDFI and H/V have the greatest accuracy with F-
score> >90%; comparable performance can be achieved with other
indices but only when threshold<0.5. For Cal/Val_2, NDWI and H/V
perform best with F-score is> 90% even for greater thresholds.
Accuracy drastically decreases over Cal/Val_3 with F-score below 75%
when threshold>0.1 for all features except AWEI and H/V; even with
the best performing features, accuracy is lower than values obtained
with “OR” operator confirming that OWAs can dynamically handle
variable conditions. Moreover, results of single features are clearly not
consistent across sites: the same index does not guarantee robust per-
formance meaning that operational use over large and heterogeneous

areas is straightforward.

4.4. Flooding products

Maps of integrated global evidence degree over Evaluation sites
(Greece, Spain and Romania) were obtained with all OWA operators
and segmented with variable fuzzy threshold to deliver binary maps of
flooded/not flooded areas. Pixel by pixel comparison with Copernicus
EMS reference data provided accuracy metrics shown in Fig. 8.

The “OR” and “Almost_OR” OWAs show the most consistent per-
formance in the three sites as represented by the greatest F-score and
the flat trend line for different thresholds, meaning that “OR-like” op-
erators produced a good balance between CE and OE. On the contrary,
“AND” and “Almost AND” perform differently across sites with the
lowest commission and the highest omission errors. These operators
represent an optimistic attitude showing areas of highest probability of
being flooded thus reducing the risk to detect false positive (i.e. false
alarms).

Results confirm outcome from validation with the best performing
“OR-Like” OWA operators achieving more than satisfactory F-scores
(> 75%) yet lower compared to accuracy levels of algorithm validation
on Cal/Val sites (F-score ∼ 1). Over Evaluation sites, the algorithm was
applied automatically with no changes compared to the set-up phase
and lower accuracy is due to different environmental/topographic
conditions (e.g. narrow river valley or wide flood plains) and water
characteristics and permanence (e.g. shallow waters). Moreover, over
large areas a decrease of accuracy is expected for the coexistence of
complex and highly variable surface conditions (water presence, cloud
shadows, built up areas, low-albedo non-water surfaces) (Wang et al.,
2018).

Further reasons could be pointed out for the lower performance.
Above all, EMS reference polygons are derived from high/very high
resolution EO data (pixel size< 5m) and by supervised classification to
achieve highest accuracy while fuzzy flooded areas are derived from S2
with 20-meter spatial resolution with a semi-automatic algorithm.
Moreover, EMS maps do not include stable water surfaces (e.g. lakes

Fig. 7. F-score as a function of the threshold for the three Cal/Val sites for OWA operators (top) and single input features (bottom).
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and rivers) as flooded areas which are mapped as flooded in the fuzzy
maps instead. Finally, (apparent) commission errors could be due to
time lag between reference data and S2 imagery acquisition dates
(Table 3) that, in fact, is larger over Eval_1 and Eval_2.

To provide an operational-like example, we chose the “Almost_OR”
(pessimistic attitude) and “Almost_AND” (optimistic attitude) operators
to segment the synthetic global evidence degrees with f> 0.5 to obtain
maps of flooded/not flooded areas for the three Evaluation sites. Fig. 9
shows accuracy maps obtained by per-pixel comparison with reference
EMS data, with the following categories: correctly classified flooded
(blue), correctly classified not flooded (grey), commission (orange) and
omission (green) errors. The “Almost_AND” operator (left column in
Fig. 9) provides different rates of commission/omission (9/48%, 37/
21% and 4/69% in panels a, c, and e, respectively) generally picturing
the lowest rates of false detections/commission errors (i.e. optimistic
attitude) at the expense of a greater omission (green areas) such as for
Eval_1 and Eval_3. Over Eval_2, overall accuracy is more stable as
measured by F-score (Fig. 8), which is in the range 69–70% and does
not significantly change with the OWA and threshold. Over this site,
commission errors are greater (32–46%) and mainly due to natural/
artificial permanent water surfaces which are not included in EMS
mapping. Over Eval_3, F-score is 46% and 71% for “Almost_AND” and
“Almost_OR”, respectively due to a significant decrease of the omission
error from 69% (Fig. 9e) to 37% (Fig. 9f) and the greater correctly
classified flooded areas (blue regions), which can be observed in the
lower left portion of Fig. 9f; over this site fuzzy maps show lower
performance in the detection of flooded areas along the river course
probably due to the lower spatial resolution of the S2 imagery.

Finally, to further analyse results obtained with traditional ap-
proaches, we computed accuracy metrics of flooded area maps achieved
by segmentation of single input features with thresholds proposed in
the literature; results are illustrated in Table 6.

Accuracy metrics are consistent with results from soft integration

with F-score values for Eval_1 (Greece) greater, for most of indices,
compared to Eval_2 (Spain) and Eval_3 (Romania). Eval_2 confirms to
be the site with highest commission errors for the reasons discussed
above.

Although accuracy levels from crisp thresholds are satisfactory, re-
sults are not consistent across sites (as already pointed out in Fig. 7). In
fact, features ranking based on F-score changes with site, as highlighted
in the table by coloured text in the table, thus posing issues for op-
erational implementation over large areas. For example, SAVI is the
best for Eval_2 (F-score= 71.1%) and worst for Eval_1 (F-
score= 67.3%) and Eval_3 (F-score= 36.1%). More consistent results
are obtained with the H/V components with F-score> 70% for all sites
although it is not the best performing ranking 4th, 2nd and 5th for
Eval_1, Eval_2 and Eval_3, respectively. Note, moreover, that at the time
of writing no equations for the HSV approach were specifically cali-
brated for S2 data and for the comparison we applied equations pro-
posed for Landsat data as in Pekel et al. (2016).

Hence, these results highlight and confirm the need of an approach
for combining different inputs since a-priori selection of a single index/
feature could not guarantee a stable accuracy across sites.

We further tested the sensitivity of F-score to changes of the crisp
threshold around the literature value and found different results ac-
cording to the investigated SIs (Fig. 10). As suggested by Feyisa et al.
(2014), AWEI shows a fairly stable optimal threshold value compared
to mNDWI. On the contrary AWEISH appeared to be sensitive to changes
of the threshold value but with different rates over the sites. NDFI and
mNDWI, both derived from VIS/SWIR wavebands (Boschetti et al.,
2014), show similar trends with a slightly better and flatter accuracy
trend of the first. NDWI shows a significant reduction of F-score over
Eval_3 (Romania) if threshold> 0; performance comparable to the
other indices and sites could be achieved only with threshold set to
lower values compared to McFeeters (1996). Similarly, SAVI presents
low performance for Eval_3 and likely better results for threshold values

Fig. 8. Accuracy metrics for the Evaluation sites for OWA operators used for the integration of the degree of partial evidences.
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Fig. 9. The accuracy map of flooded areas over the three Evaluation sites (Greece: a, b; Spain: c d; Romania: e, f) obtained with OWA weight vector “Almost_AND”
(left column) and “Almost_OR” (right column) with threshold= 0.5. The map shows correctly classified flooded (blue), correctly classified not flooded (light grey),
commission (orange) and omission (green) errors. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article).

Table 6
Accuracy metrics computed by applying crisp thresholds to the single spectral index for the three Evaluation sites. Best and worst F-score values are highlighted in
bold and italics, respectively.

Eval_1-Greece Eval_2-Spain Eval_3-Romania

OE CE F-score OE CE F-score OE CE F-score
AWEI 19.4% 26.0% 77.2% 8.8% 44.3% 69.2% 37.4% 18.5% 70.8%
AWEISH 20.5% 28.2% 75.5% 9.8% 44.5% 68.7% 38.5% 18.0% 70.3%
mNDWI 13.4% 39.0% 71.6% 6.5% 50.1% 65.1% 29.7% 29.3% 70.5%
NDWI 37.7% 19.1% 70.4% 14.9% 39.7% 70.6% 61.3% 9.4% 54.3%
WRI 17.1% 38.2% 70.8% 9.1% 46.5% 67.3% 34.5% 22.0% 71.2%
SAVI 44.7% 14.0% 67.3% 20.4% 35.8% 71.1% 77.6% 7.2% 36.1%
NDFI 15.2% 35.7% 73.1% 7.3% 46.8% 67.6% 31.7% 25.6% 71.2%
HSV 20.6% 34.4% 71.9% 10.7% 41.3% 70.8% 39.9% 15.2% 70.4%
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greater than SAVI >0 as proposed in the literature. WRI shows low
sensitivity to threshold values greater than the literature one for all
sites. Interestingly no change occurs for Eval_3 and WRI appears to be
the best performing and more stable index compared to very variable
results that it shows for the other sites. In general, these results confirm
that threshold selection is a crucial choice to extract water pixels (Yang
et al., 2018).

5. Conclusions and perspectives

In this work we developed an algorithm to automatic map flooded
areas from multispectral S2 MSI images based on fuzzy set theory. Since
the use of multisource data is recognized as the way to achieve im-
proved global and regional water mapping (Huang et al., 2018), we
propose an approach to integrate multiple spectral features. Rather
than making an a-priori selection of the best (or a few) water indicator
(s), we exploited redundancy (convergence of evidence) or com-
plementarity provided by multiple spectral features. Integration is
carried out with OWA operators that can flexibly aggregate inputs of
different nature: we included traditional spectral indices and the H/V
components of the HSV transformation proposed by Pekel et al. (2014),
(2016), which represent an up to date approach for water mapping and
they are exploited for the generation of Copernicus operational pro-
ducts (https://land.copernicus.eu/global/products/WB, accessed July
2019). In fact, OWAs can integrate contributing factors which can be
semantically different (spectral indices, H/V, other types of data such as
surface elevation gradient, single spectral bands, etc.) by normalizing
their distinct contributions by computing evidence score through the
application of soft constraints (Bordogna et al., 2007).

The algorithm was trained and validated over three study sites in
Italy where water pixels represented a wide range of conditions from
shallow to deep water, from clean to turbid and from natural hazard to
managed irrigation flooding. Results showed that performance is
comparable or better than traditional approaches based on the seg-
mentation of single input features and with more consistent and robust
accuracy. By integrating multiple inputs, we limited subjectivity and
sensitivity involved in an a-priori selection of the most suitable index
and crisp thresholds (Yang et al., 2018).

A key step for the implementation of our approach is the definition
of the soft constraints for each input feature, which could be done by
integrating expert knowledge (as in this work) as well as in a com-
pletely unsupervised manner (Stroppiana et al., 2009) when expert
knowledge is not available and/or it requires time/effort to be for-
malized (Sakamoto et al., 2018). The proposed approach could be

exploited in automated processing for near-real time mapping and
monitoring and we showed how, testing over independent and large
sites selected from Copernicus EMS operational mapping, it provided
satisfactory accuracy. Indeed, over the three Evaluation sites, the al-
gorithm was applied without local tuning over site characteristics: soft
constraints defined for the calibration sites in Northern Italy were used
without any modification. Over Evaluation sites, lower accuracy was
expected due to the complexity of each scene where different surface
conditions coexist; however, these accuracy levels could be considered
a lower bound of the performance of the algorithm that could be im-
proved by recalibrating the soft constraints and weight vectors.

OWA operators certainly offer an appealing solution for the in-
tegration of multiple features and for formalizing distinct expert atti-
tudes when aggregating partial to global evidence (Bordogna et al.,
2007). Among the OWA analysed, OR-like operators are more stable
providing accuracy levels that are less sensitive to the threshold applied
to segment the integrated global evidence degree. On the contrary,
AND-like operators show decreasing F-score for increasing thresholds
due to the greater rate of omission errors. In fact, AND-like operators
implement an optimistic approach by retaining only high probability
flooded/water areas. Different OWA operators able to retain only high/
low probability water/flood surfaces could be exploited in a framework
of multistep contextual classification approaches, such as region
growing algorithms (Stroppiana et al., 2012). From a user perspective,
OWA operators allow to represent different semantics and to model
different attitude of the decision making process smoothly between an
optimistic and a pessimistic one; this sort of thematic product could be
an advantage in decision support system framework (Ceresi et al.,
2018).

In future work, the algorithm will be tested to flexibly integrate
feature derived from data acquired by other satellite missions with si-
milar spectral and geometrical characteristics (e.g. Landsat data) as
well as other remotely sensed data, such as SAR imagery (e.g. Sentinel-
1). We also consider that the soft integrated global evidence degree
ranging in [0, 1] could bring additional information on flooding con-
ditions such as the likelihood of being flooded and/or partially flooded
pixels; this information could be useful in decision making or as input
for modelling. Moreover, the algorithm could be tested with input
features taking into account the temporal dimension (pre – post event
change detection) to further enhance flooded area mapping accuracy.
More sophisticated machine learning approaches to generate flooded
area map and relying on automatic training process based on selected
high plausible pixels will also be tested.

Fig. 10. F-score for the three Evaluation sites (Greece, Spain and Romania respectively Eval_1, Eval_2, Eval_3) and the indices for varying values of the crisp
threshold. The range of variability is centred at the value proposed in the literature highlighted by the grey vertical line.
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