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PARP1 and PARP2 govern the DNA-damage response by

catalysing the reversible post-translational modification ADP-

ribosylation. During the repair of DNA lesions, PARP1 and

PARP2 combine with an accessory factor HPF1, which is

required for the modification of target proteins on serine

residues. Although the physiological role of individual ADP-

ribosylation sites is still unclear, serine ADP-ribosylation at

damage sites leads to the recruitment of chromatin remodellers

and repair factors to ensure efficient DNA repair. ADP-

ribosylation signalling is tightly controlled by the coordinated

activities of (ADP-ribosyl)glycohydrolases PARG and ARH3

that, by reversing the modification, guarantee proper kinetics of

DNA repair and cell cycle re-entry. The recent advances in the

structural and mechanistic understanding of ADP-ribosylation

provide new insights into human physiopathology and cancer

therapy.
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Introduction
Reversiblepost-translational modifications (PTMs)control

the spatio-temporal organisation of DNA-damage response

(DDR). PTMs trigger and regulate many aspects of DDR,

including recognition of DNA damage sites, chromatin

remodelling, recruitment of DDR factors, initiation and

execution of DNA repair, as well as cell cycle arrest [1]. A

variety of PTMs are involved in DDR, including selective

protein phosphorylation and dephosphorylation, as well as

conjugation of proteinaceous modifiers such as ubiquitin,

SUMO, and Nedd8 [2]. Importantly, the different types of

modification involved appear to be highly integrated and
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even dependent on each other. A critical example is the

phosphorylation of the histone variant H2AX (termed

gH2AX) by phosphatidylinositol-3-kinase-related kinases

ATM, ATR, and DNA-PK that is required for DDR-linked

ubiquitylation [3]. Failure to organise a proper DNA repair

response strongly affects maintenance of genome integrity,

thus predisposing to various human disorders, such as

cancer, neurodegeneration, and immunodeficiency.

Therefore, the cellular response to DNA damage as well

as the PTMs involved within it have received a great deal of

attention in transitional medicine [4].

Prominent among PTMs triggered by DNA damage is

ADP-ribosylation, a reversible PTM of proteins that is

involved in many cellular processes, such as transcription,

cell division, and survival [5]. ADP-ribosylation results in

the covalent attachment of a single ADP-ribose unit

[namely, mono(ADP-ribosyl)ation (MARylation)] or

polymers of ADP-ribose units [namely, poly(ADP-ribo-

syl)ation (PARylation)] to a variety of amino-acid residues

on target proteins [6]. The attached ADP-ribose moieties

originate from NAD+, which is cleaved during the reac-

tion, releasing nicotinamide. Interestingly, ADP-ribosy-

lation can also occur on terminal DNA or RNA phos-

phates, thus representing a novel type of nucleic acids

modification during DNA repair [7�,8–10]. Notably, phar-

macological modulation of ADP-ribosylation reactions

represents one of the most successful examples of anti-

cancer interventions (i.e. PARP inhibitors; PARPi) [4].

Proteomic studies revealed that one third of the human

nuclear proteome in the presence of DNA damage is

subject to ADP-ribosylation, mainly on serine residues

[11�,12��,13�]. The two types of ADP-ribosylation — MAR-

ylation and PARylation — can be recognised by different

reader proteins [5], which are also capable, in some cases, of

distinguishing between short and long PAR chains [14].

This realisation, together with the indications of the func-

tional relevance of PAR chain branching [15], suggests the

existence of a complex ‘PAR code’ [16] akin to that

described for ubiquitin [17] and hints at multiple regulatory

roles of ADP-ribosylation in DDR. The investigation of

ADP-ribosylation functions in DDR has been facilitated by

novel antibodies and antibody-like reagents, which are able

to distinguish between different lengths and, in some cases,

sites of the modification [18,19�].

The best-studied ADP-ribosylation ‘writer’ is poly(ADP-

ribose) polymerase 1 (PARP1), the founding member of

the PARP family of ADP-ribosyltransferases (ARTs)
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which in humans consists of 17 core members (PARP1 to

PARP16) [20,21].

PARP1, which is thought to account for the greatest part

of detectable ADP-ribosylation in human cells under

DNA damage, is one of the most abundant nuclear

proteins and, in addition to DNA repair, acts as a key

player in chromatin remodelling, apoptosis, transcription,

telomere maintenance and DNA replication [5,6,21–

23,24��]. Several PARP1 functions in DNA repair are

complementary to those of PARP2 [25]. Genetic disrup-

tion of PARP1 and PARP2 simultaneously, but not indi-

vidually, results in embryonic lethality in mice, demon-

strating their functional redundancy [26].

PARP1 is a multi-domain protein, composed of four DNA-

binding domains,namelythreeZn-fingers, onetryptophan-

glycine-arginine (WGR) domain, an auto-modification

domain consisting of a BRCT motif, and a catalytic domain

[21]. The combination of different DNA-binding domains

allows recognition of various DNA breaks including single-

strand and double-strand ones [27��,28��]. Interestingly,

PARP1 appears to be released from a DNA end by binding

to another, which could allow it to move between DNA

ends in a manner that was termed the ‘monkey bar’ mech-

anism [29]. While this mechanism does not result in net

dissociation of PARP1 from DNA ends, this can be

achieved through PARP1 auto-modification, which is

thought to counter DNA binding through electrostatic

repulsion between negatively charged PAR chains and

DNA backbone [30,31]. In cells, PAR chains can addition-

ally contribute to releasing PARP1 from chromatin by

recruiting factors, such as the chromatin remodeller

ALC1/CHDL1 or the scaffold XRCC1, that facilitate this

process [32–34]. It is largely by interfering with PARP1

auto-modification that PARP1 inhibitors induce prolonged

residence of PARP1 on chromatin, a phenomenon that is

known as ‘trapping’ and thought to be the key to cytotoxic

effects of PARP1 inhibition in cancer [35].

Compared with PARP1, PARP2 has a shorter N-terminal

DNA-binding domain, which comprises an unstructured

region and a WGR domain, while the catalytic domain is

highly homologous to that of PARP1, which results in the

majority of PARPi anticancer drugs targeting both PARP1

and PARP2 enzymes [27��]. While the primary role of

PARP1 and PARP2 is linked to their ADP-ribosylation

activity, the two proteins might also serve other, non-

catalytic roles. In particular, recent PARP2 structures

suggest that double-strand DNA break recognition not

only activates the catalytic domain, but also aligns the two

DNA ends such that the DNA appears continuous across

the break, seemingly poised for ligation [36�,37��,38,39].

Here, we discuss the mechanisms by which PARP1 and

PARP2-dependent serine ADP-ribosylation controls

DDR.
www.sciencedirect.com 
Histone PARylation factor 1 (HPF1) drives DNA
damage repair response by enabling PARP1
and PARP2 to catalyse serine ADP-
ribosylation
PARP1 and PARP2 act as ‘first responders’ at DNA

lesions. Both enzymes are recruited within seconds of

the occurrence of various types of DNA damage and

rapidly catalyse protein modification [40,41]. PARP1

and PARP2 are allosterically regulated by binding to

DNA breaks, which leads to remodelling of an autoinhi-

bitory fragment of the catalytic domain, called the helical

domain (HD), which inhibits NAD+ binding in the rest-

ing state [37��,42��]. Biochemical studies accompanied by

new mass spectrometry tools have established that the

main targets of ADP-ribosylation under both basal and

DNA-damage conditions are serine residues in substrate

proteins [11�,12��,13�,43�,44�,45]. Targeted sites are

enriched for lysine-serine (KS) and, to a lesser extent,

arginine-serine (RS) motifs [11�,12��,44�]. Although ser-

ine ADP-ribosylation has been detected on a large frac-

tion of human proteins, the bulk of the modification

corresponds to a limited number of key sites within

PARP1 and PARP2 themselves and histone tails

[12��,43�]. Intriguingly, the proximity of ADP-ribosylable

serine sites (e.g. S10 of histone 3; H3S10) to lysine

residues, which are known targets of acetylation (e.g.

H3K9) as well as the overlap with serine phosphorylation

sites (e.g. H3S10), suggests an important contribution of

histone ADP-ribosylation to a multi-layered cross-talk

with additional DDR-relevant histone PTMs

[44�,46�,47�]. Recent studies revealed that, surprisingly,

PARP1 and PARP2 are by themselves insufficient for

ADP-ribosylating serine residues. Histone PARylation

factor 1 (HPF1), which binds the catalytic domain of

PARP1 or PARP2, is an essential participant in this

process [12��,37��,43�,48��,49��]. The interaction between

HPF1 and PARP1/2 — like NAD+ binding — is nega-

tively regulated by the HD fragment of these PARPs and

is therefore enhanced upon their binding to damaged

chromatin [37��,38,49��] (Figure 1). Strikingly, HPF1

together with PARP1/2 jointly forms the specific pep-

tide-binding site, but also contributes a key residue

(E284), termed the ‘glutamate finger’, to the catalytic

core of PARP1 or PARP2 [49��]. Consistent with its

catalytic role, E284 is required for in vitro modification

of serine-containing substrates and for DNA damage-

induced ADP-ribose signalling in human cells despite

being dispensable for the HPF1–PARP interaction and

HPF1 stability [49��,50,51�]. E284 seemingly acts as a

general base that deprotonates the serine hydroxyl group

to facilitate the subsequent nucleophilic attack on the 1ʺ
carbon of NAD+. The importance of acceptor deprotona-

tion for the ADP-ribosylation reaction has long been

postulated [52,53] and is underscored by the fact that,

in vitro and in the absence of HPF1, PARP1 and PARP2

preferentially modify glutamate and aspartate residues,

which are constitutively deprotonated at a neutral pH
Current Opinion in Genetics & Development 2021, 71:106–113
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Figure 1
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Model of HPF1-dependent PARP1 and PARP2 activation and function at the DNA damage foci.

Upon DNA damage, an inactive conformation of PARP1 or PARP2 is recruited to DNA. PARP1 and PARP2 undergo a conformational change in

the regulatory domain (HD) allowing NAD+ binding. HPF1 binds to the PARP catalytic domain allowing the initiation of ADP-ribosylation of serine

residues in target macromolecules, such as histone H3 tails, various DNA repair factors, and PARP1 and PARP2 themselves. Once the initial ADP-

ribose is attached, PARP1/2 can catalyse the PAR chain elongation reaction without HPF1, which may dissociate from the complex. ADP-

ribosylation allows recruitment of PAR-readers (i.e. ALC1) to DNA damage sites, which, in turn, trigger DNA repair and ligation. Furthermore, ADP-

ribosylation at DNA damage sites contributes to modulate proximal chromatin epigenetics, regulates the activity and function of various

substrates, and controls PARP1/2 release from DNA.
[54]. Indeed, while serine residues are the predominant

cellular targets, the alternative activity of PARP1 and/or

PARP2 towards glutamate and aspartate residues can be

detected in cells, where it becomes relatively more prom-

inent upon HPF1 knockout [43�]. In addition to activat-

ing the serine side-chains, HPF1 might use a broader

negatively charged region that surrounds E284 to help

recognise the lysine or arginine residue that precedes the

serine in KS or RS motifs [49��].

The discovery of HPF1 sheds new light on the distinction

between MARylation and PARylation. HPF1 binding to

PARP1 is sterically incompatible with chain elongation

[49��], which results in HPF1 having a negative effect on

chain length, especially when it is present at a saturating

level in an in vitro reaction or overexpressed in cells [48��].
When present at a high level, HPF1 instead turns PARP1

into an NAD+ hydrolase by discouraging the attachment

of ADP-ribosylation to proteins as soon as available serine

sites become singly modified [51�]. However, it is unclear

what the relevance of the hydrolase activity is in cells.

Paradoxically, HPF1 is at the same time required for

normal PARylation by contributing to the attachment of
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the first ADP-ribosylation unit that is a prerequisite for

subsequent chain formation, and appears to be the rate-

limiting step of the whole PARylation process [24��].
DNA damage induced PARylation could be seen as

consisting of two distinct stages, where the first consists

in the attachment of an ADP-ribosylation unit to a protein

side-chain or ‘chain initiation’ (achieved by PARP1 or

PARP2 in HPF1-depend manner) and the second in the

attachment of consecutive ADP-ribosylation units or

‘chain elongation’ (catalysed by PARP1 or PARP2 alone

and inhibited by HPF1) [24��]. The complex role of

HPF1 in this process could explain why the levels of

this protein in the cell are kept low [48��] — enough to

efficiently initiate chains but not to preclude extension.

Interestingly, as explained below, the two stages of serine

ADP-ribosylation are also largely distinct when it comes

to their regulation by hydrolases, with initiation being

counteracted by the serine-specific ARH3 and elongation

by PARG [24��]. Dysregulation of ADP-ribosylation ini-

tiation by either HPF1 knockout or ARH3 upregulation

results in impaired PARP1 auto-modification and

increased trapping and inhibitor sensitivity in human

cells [35].
www.sciencedirect.com
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Functional consequences of PARP1/PARP2-
mediated ADP-ribosylation in response to
DNA damage
Functional consequences of ADP-ribosylation reactions

are poorly understood and have thus received a great deal

of attention in the field in recent years. PARylation has

more profound consequences in the cells compared with

MARylation [24��] and can even suppress DNA repair

when it is excessive [55]. For these reasons, PARylation is

present only transiently in response to DNA damage. In
vitro experiments showed that, within the first ten min-

utes after DNA damage by H2O2, PARylation is con-

verted to MARylation by the poly(ADP-ribose)glycohy-

drolase (PARG) [19�,56,57��]. Indeed, PARylation, if not

reversed in a timely manner, appears to be very toxic to

the cells [24��,58,59], for instance by impairing alternative

lengthening of telomeres (ALT) and global transcription

[24��]. In contrast, MARylation marks are well tolerated,

and are hence compatible with recovery after DNA

damage and cell division. This observation is unexpected

considering that ADP-ribosylation marks were shown to

be able to interfere with canonical histone modifications

required for cell proliferation (i.e. H3S10 phosphoryla-

tion) [24��,43�,60].

As mentioned above, it is only recently that ADP-ribo-

sylation events have been mapped to defined sites in

protein substrates and limited information is available on

functional consequences of individual modification

events. Although it is likely that PARylation affects

protein functions and dynamics [61], the only understood

consequence of the site specific ADP-ribosylation is the

role of PARP1 auto-modification at the 3 serines residues

(i.e. 499, 507, and 519). Those serine residues are the

predominant in vivo PARP1 auto-modification sites and

are crucial for PARP1 release from DNA, therefore their

mutation sensitises cells to PARP inhibitors [35]. Never-

theless, the best-understood aspect of proteins’ PARyla-

tion at DNA foci remains scaffolding. A number of DNA

damage response proteins, including specific chromatin

modifiers, are rapidly recruited through direct binding of

the modification, often mediated by specific protein

modules (‘readers’ domains), such as the macrodomain,

PBZ, and WWE domains [5]. Importantly, diverse parts of

the modification can be recognised by different proteins

readers, thus able to distinguish between MARylation

and PARylation of various lengths [5,14,62]. This obser-

vation also suggests a sort of physical and functional

compartmentalisation of readers, where some factors

may enrich preferentially at long PAR chains, which

are mainly observed on auto-modified PARP1 and

PARP2. By contrast, other factors may bind with higher

affinity short PAR chains or MARylation, mainly present

on histone proteins. Biochemical analysis indicates that,

upon HPF1–PARP binding to nucleosomes, histone H3 is

rapidly modified to saturation at the DNA break, whereas

PARP2 continues to accumulate PARylation over time
www.sciencedirect.com 
[37��]. This suggests that, at least for PARP2, the histone

modification serves as the initial anchor for recruiting

factors to sites of DNA damage. Considering the high

overall similarity in the mode of action of the two pro-

teins, PARP1 may act analogously to PARP2; neverthe-

less, further biochemical and ultimately cellular studies

will be needed to investigate this in detail. By contrast to

histone ADP-ribosylation, PARP1/PARP2 auto-modifica-

tion may not present a persistent mark of DNA damage

sites, as it ultimately leads to PARP release from DNA,

consistent with previous observations [35,63–65]. Of note,

PARP2 engages DNA ends in a manner that could

prevent access of repair factor access to the break, sug-

gesting its dissociation might be a prerequisite for subse-

quent repair [37��], consistent with previous observations

for PARP1 [66]. In this respect, the ADP-ribosyl modifi-

cation on histones might serve as a break-proximal

recruiting platform and the key determinant of subse-

quent repair events. However, at this stage it is difficult to

pronounce with confidence on the relative functional

importance of histone-linked and PARP-linked modifi-

cation, as both can in theory act as signals that attract

DNA repair factors, many of which are recruited at DNA

damage foci by ADP-ribosylation, including ALC1,

APLF (aprataxin PNK-like factor), and XRCC1

[25,67,68] (Figure 1).

Among PAR readers, the helicase ALC1 possesses a

macrodomain, which allows PAR binding and recruitment

to DNA damage foci, thereby facilitating an open chro-

matin structure, and, in turn, increasing accessibility of

additional repair factors to DNA [68,69]. Depletion of

HPF1 abolishes recruitment of DDR factors, as illus-

trated for recruitment of LIG3 and XRCC1 to Okazaki

fragments [70]. Similarly, the PARP1-XRCC1 axis, and

possibly HPF1, is involved in short-patch single-strand

break (SSB) repair physiologically occurring at enhancers

as a response to neuron-specific transcriptional activity

[23]. Altogether, these recent observations confirm the

importance of ADP-ribosylation in triggering a proper

DDR, which may be required in multiple physiological

conditions.

Reversal of serine ADP-ribosylation
Two enzymes are required for reversal of serine PARyla-

tion, namely PARG and ARH3 [71]. These enzymes

function in a cooperative manner; PARG very efficiently

cleaves PAR chains [72] but is incapable of removing

MARylation [73,74]. De-MARylation is instead catalysed

by ARH3, which selectively cleaves the O-glycosidic
linkage between the serine of target proteins and

ADP-ribose [57��]. PARG is highly active in cells and

accounts for the conversion in MARylation of almost all

PAR chains within minutes upon DNA damage, therefore

in a physiological context MARylation on serine appears

to be the persistent form of ADP-ribosylation

[19�,24��,57��]. PARG inhibition prevents conversion of
Current Opinion in Genetics & Development 2021, 71:106–113
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PARylation to MARylation [19�,75��], implying that

PARG is required to keep PARylation under control

and balance its ‘positive’ (i.e. recruitment of DNA repair

factors) and ‘negative’ (i.e. toxic effects and pro-apopto-

sis) roles. ARH3 instead prevents chain formation by

removing the priming unit of ADP-ribose covalently

linked to modified substrates, without which a PAR chain

cannot be extended [24��,57��]. Thus, PARG and ARH3,

although primarily active at different stages of de-ADP-

ribosylation reaction, show synergy and their joint inacti-

vation is required to unleash widespread, and ultimately

toxic, PARylation [24��].

Conclusions
The understanding of DDR control by PARP1-depen-

dent or PARP2-dependent ADP-ribosylation at the

molecular level has improved significantly in the last

decade. With the development of new biochemical tools,

proteomic approaches, electron microscopy, and genetic

screens, new key players have been identified, providing

novel mechanistic insights. Major breakthroughs in the

field in the last years were the identification of HPF1 and

the dissection of the molecular mechanisms of the HPF1–

PARP1/2 complex catalytic activity, the characterisation

of serine residues as the main targets of ADP-ribosylation

in response to DDR, better elucidation of recruiting and

scaffolding roles of this modification, and, not least, the

cooperation between PARG and ARH3 in counteracting

PARP1 and PARP2 activity.

Considering that the PARP inhibitors, currently in clini-

cal use, were identified before the discovery of such

mechanisms, it may be of interest to re-evaluate the

potency and in vitro selectivity of existing PARPi in

the context of HPF1–PARP1/2 complexes, although

one must bear in mind that such complexes might be

relatively scarce and short-lived in the cell, PARP1/2

presumably remaining predominantly unbound at any

given moment. The emerging picture is that while

HPF1 might increase affinity of PARP1 for some existing

inhibitors [35,76�], this regulatory factor actually pro-

motes resistance to PARPi in the cell by stimulating

PARP1 auto-modification, which in turn counteracts

inhibitor-induced trapping [35]. Future studies of exist-

ing and design of novel PARPi should take into account

recent insights into allosteric communication between

DNA-binding and catalytic domains of PARP1 [77��].

From the ‘erasers’ point of view, arising therapeutic

potential of PARG inhibition (PARGi) in cancer therapy

has also been investigated. PARGi is indeed very efficient

in inducing toxic accumulation of cellular PARylated

proteins, thus promising advantages for treatment of

PARPi-resistant tumours [78��]. Moreover, our studies

suggest the potential for ARH3 as a novel drug target

for cancer therapy, for instance in improving PARGi

cytotoxicity or in selectively killing PARG-null cancer
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cells [24��]. On the latter point, PARG depletion is a

major PARPi resistance mechanism of serous ovarian and

triple-negative breast cancers [75��] and could be targeted

with ARH3 inhibitors. Conversely, downregulation of

ARH3 confers resistance to PARPi [24��,35], which phe-

nocopies the effect of PARG loss or PARG inhibition

[75��,78��]. These major breakthroughs open new and

fascinating scenarios regarding development of new ther-

apeutic strategies for PARPi-resistant cancers.

As the understanding of HPF1 and ARH3 molecular

functions provided insights into the elucidation of human

diseases and their treatment [24��,35,48��], many other

DDR factors controlled by ADP-ribosylation signalling

may equally impact therapeutics and/or prognosis of

human disorders. For instance, the central role of

ALC1 in allowing access of DDR factors at damaged foci

may explain the crucial impact of its expression levels on

sensitivity to PARPi in cancer cells [32–34,79,80]. These

studies provide the rationale for designing novel thera-

peutics focused on inhibiting the recruitment of ADP-

ribosylation readers, such as ALC1, to DNA damage foci

to further sensitise cancer cells to PARPi.

Altogether, ADP-ribosylation is of vital importance in

DDR and its further investigation promises new insights,

which may significantly contribute to the understanding

of human pathophysiology and treatment of human

diseases.
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