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a b s t r a c t

Weed expansion has the potential to severely affect global agriculture. Habitat suitability
models (HSMs) have been widely used to assess weed expansion to enable effective pre-
vention and control of weeds. However, few studies have focused on the habitat suitability
of global croplands for these weeds. Previous studies listed the 10 serious weed species
that have the largest negative impact on global agriculture. Here, we used Maxent
modeling (an HSM with good performance) to quantify the habitat suitability of global
croplands for these 10 weed species using occurrence records and environmental variables
(i.e., climate factors, soil properties, and human footprint). We compared the habitat
suitability values of these 10 serious weed species in 174 different types of cropland. The
habitat suitability values for all the weed species studied was high in global croplands.
Furthermore, habitat suitability may depend on the type of cropland and the spatial
variation created by varying climate factors, soil properties, and human footprint. Cynodon
dactylon, Echinochloa crus-galli, Eleusine indica, Panicum maximum, and Sorghum halepense
had the highest habitat suitability values in chicory plantations. Cyperus rotundus and
Echinochloa colona had the highest habitat suitability values in olive plantations. The
habitat suitability values for Imperata cylindrica was the highest in mustard plantations,
Eichhornia crassipes was most suited to expansion in raspberry plantations, and the habitat
suitability values for Lantana camara was the highest in chickpea plantations. Risk pre-
vention and control should be based on the cropland type for these 10 serious weed
species, taking into account climate factors, soil properties, and human activities. Our
study provides guidelines for effective management of weed risk in different croplands
globally.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Weeds can adapt to disturbed environmental conditions and become dominant when introduced to new areas (Holm,
1969; Eue, 1986; Clements and Ditommaso, 2011). They may compete with the desired crop for the available resources
(e.g., direct sunlight, soil nutrients, water, and space for growth), which potentially threatens agricultural food production
(Patterson, 1995; Clements and Ditommaso, 2011; Tshewang et al., 2016). Furthermore, environmental changes have the
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potential to enhance the negative effects of weeds on agriculture on a global scale (Neve et al., 2009; Ziska, 2016). Rapid
climate change could drive weed species with broad ecological niches to adapt to new environmental conditions that differ
from their endemic regions (Clements and Ditommaso, 2011; Crossman et al., 2011; Roger et al., 2015). For example, there are
many invasive weed species in China, Australia, South Africa, and the United States, and the range of suitable habitats may
expand due to climate change (Vardien et al., 2012; Beaumont et al., 2014; Roger et al., 2015; Allen and Bradley, 2016; Wan
et al., 2017a). Human-mediated processes (e.g., seed dispersal) play an important role in weed expansion at larger scales
(Pickering andMount, 2010;Wan et al., 2017b). Furthermore, variation in soil properties may lead toweed seed banks in soils,
and vertical distribution of weed seeds within the soils (Benech-Arnold et al., 2000). Holm (1969) listed 10 serious weed
species (i.e., purple nutsedge, bermudagrass, barnyard grass, junglerice, goosegrass, johnsongrass, guineagrass, water-
hyacinth, cogongrass, and lantana) that cause the largest damages to agriculture globally. These species have a strong ability
to adapt to different environmental conditions, and globally have broad expansion ranges (Holm,1969). In particular, they can
be a threat to croplands, resulting in the loss of food and feed beneficial to human beings (Holm, 1969). Hence, it is necessary
to explore the expansion risk of these 10 weed species worldwide.

Habitat suitability is becoming an increasingly effective indicator of weed expansion risk on a global scale (Crossman et al.,
2011; Richter et al., 2013). Habitat suitability models (HSMs) are widely used to project suitable habitat distributions of weed
species on large spatial scales (Ervin and Holly, 2011; Goncalves et al., 2014; Fan et al., 2018; Wan and Wang, 2018, 2019). For
example, Ervin and Holly (2011) used HSMs to project suitable habitat distribution of Imperata cylindrica in the United States,
Goncalves et al. (2014) generated habitat suitability maps of Lantana camara across continents using HSMs, and Palma-Ordaz
and Delgadillo-Rodríguez (2014) assessed the invasion risk of Cynodon dactylon in Mexico based on the habitat suitability
concept. However, these studies on HSMs for weed risk assessments only focused on one specific species or region, while they
did not consider habitat suitability for all 10 weed species across global croplands. Croplands are typically devoted to agri-
culture worldwide (Ramankutty et al., 2008; West et al., 2010; Cassidy et al., 2013). Therefore, they cannot provide robust
references for the prevention and control of weed expansion for global agriculture. In the present study, an HSM was used to
map the habitat suitability of different global croplands for these 10 weed species to improve the prevention and control of
weed expansion.

The objective of our study was to predict habitat suitability across different croplands globally for the 10 serious weed
species. Here, we proposed two hypotheses: 1) there may be significant differences in the habitat suitability of croplands and
non-croplands in the weeds, and 2) the habitat suitability for a weed species may differ depending on the type of cropland. If
the first hypothesis was established, we could conclude that the expansion of the 10 serious weed species was propagated by
croplands on a global scale. For the second hypothesis, we selected 174 key global crop regions from the study by Ramankutty
et al. (2008). We expected that the distribution of the weed species would overlap with the habitat suitability of specific crop
areas. Hence, the effectiveness of the indicators developed can be further tailored to improve the prevention and control of
the weeds, because we would be able to recommend the necessary weed-risk preventative and management practices for
these 10 species depending on the type of cropland across the entire world.

To test these hypotheses, we used MaxEnt modeling (an HSM with good performance) to quantify the habitat suitability
for 10 serious weed species worldwide based on occurrence records and environmental variables (i.e., climate factors, soil
properties, and human footprint). Thereafter, we used a paired t-test to explore the differences in habitat suitability of
croplands and non-croplands for these 10 weed species. We then compared the average habitat suitability of 174 different
croplands for these 10 serious weed species. Lastly, we provide suggestions on the prevention and control of these 10 serious
weed species that vary depending on the type of cropland, based on the relationship between habitat suitability and cropland
type.

2. Materials and methods

2.1. Data on the 10 serious weed species

Holm (1969) listed the 10 serious weed species, which are as follows: purple nutsedge (Cyperus rotundus), bermudagrass
(Cynodon dactylon), barnyard grass (Echinochloa crus-galli), junglerice (Echinochloa colona), goosegrass (Eleusine indica),
johnsongrass (Sorghum halepense), guineagrass (Panicum maximum), water hyacinth (Eichhornia crassipes), cogongrass
(Imperata cylindrica), and lantana (Lantana camara). We obtained the occurrence records of these 10 weed species from the
Global Biodiversity Information Facility (GBIF; www.gbif.org; accessed in February 2019). The bias and error of the occurrence
records were corrected using the following methods: (1) duplicate records were removed when within an area of 10.0-arc-
minute spatial resolution to reduce the effects of the geographic autocorrelation of the data on the HSM; (2) records with both
longitude and latitude ¼ 0� were removed; (3) records with identical geographic coordinates (i.e., longitude ¼ latitude) were
removed; and (4) the records with incorrect species names were removed (García-Rosell�o et al., 2015; Wan andWang, 2019).
In total, between 1795 and 7931 occurrence records were found for each of 10 weed species used in our study.

2.2. Data on environmental variables

To run the HSM, four climatic variables [annual mean temperature (�C*10); temperature seasonality (standard
deviation*100); annual precipitation (mm); and precipitation seasonality (coefficient of variation)] were downloaded at 10.0
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arc-minutes resolution from the WorldClim database (averaged from 1950 to 2000; https://www.worldclim.org). Eight soil
variables [bulk density (kg/cubic meter); cation exchange capacity (cmolc/kg); soil texture fraction clay (%); coarse fragments
volumetric (%); soil organic carbon stock (tonnes per ha); soil organic carbon content in ‰ (g kg�1); soil pH; soil texture
fraction silt (%); and soil texture fraction sand (%)] were obtained at 0.5 arc-minutes resolution from SoilGrids (https://www.
soilgrids.org); and the global human footprint with a resolution of 0.5 arc-minutes was from Socioeconomic Data and Ap-
plications Center (SEDAC; https://sedac.ciesin.columbia.edu/data/set/wildareas-v2-human-footprint-geographic). The data
resolution of the soil and the human footprint variables were transformed from 0.5 arc-minutes to 10.0 arc-minutes using
ArcGIS 10.6 (https://www.esri.com/software/arcgis/arcgis-for-desktop). These environmental variables can potentially have a
large effect on habitat suitability for weed species at large spatial scales (Holm,1969; Beaumont et al., 2014; Roger et al., 2015;
Wan et al., 2017a). The Pearson’s correlation coefficients of the environmental variables with other variables were lower than
the absolute values of 0.75, indicating a negligible effect of multicollinearity on the adjustment of the HSM.

2.3. Data on croplands

All the cropland maps, including the areas of distinct crops, were downloaded from EarthStat geographic data sets (http://
www.earthstat.org/). The details of the global cropland maps, including the locations of 174 distinct crops, were obtained
from the study by Ramankutty et al. (2008). These maps were produced by combining agricultural inventory data with
satellite-derived land cover data. The grid resolution of these cropland maps was 5.0 arc-minutes (ca. 10 km � 10 km at the
equator). The details of the 174 distinct crops are shown on the website (http://www.earthstat.org/harvested-area-yield-175-
crops/and Table S2).

2.4. Habitat suitability modeling

Maxent modeling was used to project current and future habitat suitability maps for the 10 weed species based on
occurrence records and environmental variables (Phillips et al., 2017). We set theMaxent modeling parameters for each weed
species as follows: 1) the regularization multiplier (beta): 2.0 to produce a smooth and general response shape, which
represents biologically realistic behavior (Radosavljevic and Anderson, 2014); 2) themaximumnumber of background points:
10,000, while maintaining the same bias as the buffer of occurrence records on a global scale (Merow et al., 2013); and 3) the
output of Maxent modeling: complementary log-log (cloglog; Phillips et al., 2017). A five-fold cross-validation approach was
used with 80% of the occurrence data acting as a training set, with the remaining 20% of the occurrence data used as the test
set in each run of five replicates to remove bias in recorded occurrence points, thereby improving the robustness of the HSM
(Merow et al., 2013). The modeling output was the average of five replicates in a fold cross-validation approach. The cross-
validation approach has one large advantage over using a single training and test division. The other sets were the same
as those reported byMerow et al. (2013) andWan andWang (2019). The cloglog output format assigned each grid cell a value
between 0 and 1, with 0 representing the lowest habitat suitability for the weed species and 1 the highest habitat suitability
(Phillips et al., 2017). In the present study, we evaluated the predictive accuracy of the HSM using the area under the curve
(AUC) of the receiver operating characteristic (ROC; Phillips et al., 2017) based on each HSM from the cross-validation
approach. In this way, we used five AUC assessments for the HSM of each weed species, based on the cross-validation
approach. Here, the modeling accuracy was high for these 10 weed species because the AUC was over 0.7 based on each
run from the cross-validation approach (García-Callejas and Araújo, 2016; Jarnevich et al., 2018; Table S3).

2.5. Synthesis

First, we used ArcGIS 10.6 (https://www.esri.com/software/arcgis/arcgis-for-desktop) to overlay the occurrence records on
croplands (containing 174 distinct crops) to quantify habitat suitability for the 10 weed species on a global scale. Convertino
et al. (2014) used 0.6 as the optimal habitat suitability that would indicate the most areas of suitable habitats for a species
based on global sensitivity and uncertainty analyses. Therefore, we used 0.6 (the result of Maxent modeling) as the threshold
for high habitat suitability for weed species, as per the study by Convertino et al. (2014).

Second, climate factors and soil properties were quantified using a principal component analysis (PCA) based on envi-
ronmental variables extracted from occurrence records in croplands. We set the first principal components (PCs) to represent
climate factors and soil properties affecting habitat suitability for weed species in croplands. Then, we used simple linear
regression modeling or binary linear regression modeling to explore the relationships between PCs (representing climate
factors and soil properties) and the human footprint, and habitat suitability for the 10 serious weed species. We selected a
model with a high coefficient of determination (R2) to explain the effects of environmental factors on the habitat suitability of
croplands across the world for 10 weed species (Low-D�ecarie et al., 2014).

Third, we calculated the average habitat suitability value for each weed species based on both the cropland maps and the
map of the areas where the 174 distinct crops grew, respectively. Finally, a paired t-test was used to explore the differences in
habitat suitability between croplands and non-croplands for the 10 weed species. Habitat suitability for the 10 weed species
in the 174 distinct crop areas was compared, checking for high habitat suitability. All analyses were performed in JMP 11.0
(https://www.jmp.com/).

https://www.worldclim.org
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3. Results

The 10 serious weed species had the highest habitat suitability (average values higher than 0.6, based on occurrence
records) in global croplands (Fig. 1). Croplands had the highest habitat suitability value for S. halepense, while the habitat
suitability value for I. cylindricawas highest in non-croplands globally (Fig. 1). Furthermore, there were significant differences
in habitat suitability between croplands and non-croplands for C. dactylon, C. rotundus, E. colona, E. crus-galli, E. crassipes, I.
cylindrica, and S. halepense (Fig. 1). Habitat suitability for C. dactylon, E. crus-galli, E. crassipes, I. cylindrica, and S. halepensewas
significantly higher in croplands than in non-croplands, whereas C. rotundus and E. colona showed the opposite result of these
five weed species, more suited to non-croplands instead. (Fig. 1). All the serious weed species were distributed mainly in the
southern regions of both North and South Americas, Southeastern Asia, and the southeastern regions of Australia (Fig. 2). C.
dactylon, E. crusgalli, and S. halepense had the highest habitat suitability in Europe (Fig. 2). The habitat suitability of C. rotundus,
E. colona, E. indica, and I. cylindrica were highest in China and India (Fig. 2).

Based on the PCA, the first three PCs potentially represented more than 60.0% of the environmental factors affecting the 10
weed species in global croplands. PC1 represented annual mean temperature, precipitation seasonality, soil organic carbon
stock, and soil organic carbon content, PC2 represented annual precipitation and soil pH, and PC3 represented soil texture
fraction clay, and soil texture fraction sand (Table 1). Here, we used the results of binary linear regression modeling to explain
the effects of environmental factors on the habitat suitability of global croplands for weed species, because its R2 value is
higher than in the simple linear regression modeling (Table S1). PC1 had the largest exploratory power on habitat suitability
for E. colona and E. crus-galli (Table 1). PC2 mainly explained habitat suitability for C. dactylon, C. rotundus, E. colona, E. crus-
galli, E. indica, I. cylindrica, and P. maximum, and PC3 had the greatest exploratory power for I. cylindrica (Table 1). HF explained
the habitat suitability for most of the weed species, except for C. dactylon, E. colona, and I. cylindrica (Table 1).

Suitable habitats for the 10 serious weed species were found to bewidely distributed across 172 distinct croplands globally
(Tables 2 and S2). Of these different croplands, habitat suitability for weed species was high (average habitat suitability value
of greater than 0.6 based on occurrence records) in 53 distinct croplands (Tables 2 and S2). C. dactylon, E. crus-galli, E. indica, P.
maximum, and S. halepense were well-suited to chicory plantations, while C. rotundus and E. colona had the highest habitat
suitability values in olive plantations (Table S2). The habitat suitability value for I. cylindrica was highest in mustard plan-
tations, the habitat suitability value for E. crassipeswas highest in raspberry plantations, and the habitat suitability value for L.
camara were highest in chickpea plantations (Table S2).
4. Discussion

Our results showed that habitat suitability for the 10 serious weed species was extremely high (over 0.6) in both croplands
and non-croplands worldwide, indicating that the prevention and control of weeds is a global issue. Furthermore, C. dactylon,
Fig. 1. Average habitat suitability for the 10 serious weed species in croplands and non-croplands. A paired t-test was used to explore the differences in habitat
suitability between croplands and non-croplands across the 10 weed species. ***P < 0.001, **P < 0.01, *P < 0.05 and nsP < 0.05.



Fig. 2. Distribution maps of the highest habitat suitability of the 10 serious weed species in global croplands.
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Table 1
Explanatory power of environmental factors on habitat suitability for 10 serious weed species in croplands based on binary linear regression modeling.

Species PC1 PC2 PC3 HF

R2 P-values R2 P-values R2 P-values R2 P-values

Cynodon dactylon 9.4% <0.0001 14.9% <0.0001 8.8% <0.0001 6.7% <0.0001
Cyperus rotundus 4.3% <0.0001 21.9% <0.0001 4.7% <0.0001 16.1% <0.0001
Echinochloa colona 16.1% <0.0001 25.0% <0.0001 1.5% <0.0001 3.2% <0.0001
Echinochloa crus-galli 16.8% <0.0001 12.0% <0.0001 3.4% <0.0001 20.0% <0.0001
Eichhornia crassipes 7.0% <0.0001 0.7% 0.0054 1.2% <0.0001 18.7% <0.0001
Eleusine indica 4.9% <0.0001 12.5% <0.0001 3.2% <0.0001 33.4% <0.0001
Imperata cylindrica 5.4% <0.0001 22.8% <0.0001 13.9% <0.0001 5.0% <0.0001
Lantana camara 4.6% <0.0001 5.6% <0.0001 4.4% <0.0001 17.7% <0.0001
Panicum maximum 7.2% <0.0001 11.3% <0.0001 0.2% 0.2994 16.3% <0.0001
Sorghum halepense 7.4% <0.0001 7.8% <0.0001 5.4% <0.0001 24.8% <0.0001
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E. crus-galli, E. crassipes, I. cylindrica, and S. halepense had significantly higher habitat suitability values in croplands than in
non-croplands, indicating that the development of heavy agricultural activity may be responsible for weed expansion
globally. Agricultural activities were positively correlated to the footprint of human activity (Sanderson et al., 2002). The
global expansion of these 10 weed species may be due to human introduction (e.g., transportation; Shimono and Konuma,
2008; Pickering and Mount, 2010; Wan et al., 2017b). Furthermore, climate factors and soil properties can affect the
habitat type suitable for these weed species, but the effects may differ depending on the weed species (Table 1). E. crassipes, a
floating plant native to the Neotropics that originated from the Amazon Basin in Brazil, spread widely across the world as an
ornamental plant (Holm,1969; Koutika and Rainey, 2015). This weed species has negative effects on its environment (Koutika
and Rainey, 2015). S. molesta can spread rapidly by vegetative reproduction (Koutika and Rainey, 2015). The biomass of this
weed species increased with a decrease in pH, which was partly consistent with our results (Koutika and Rainey, 2015, Table
1). Previous studies (e.g., Clements and Ditommaso, 2011; Ervin and Holly, 2011; Beaumont et al., 2014; Roger et al., 2015;
Wan et al., 2016, 2017a) have shown that climate change increases the invasion risk of weed species (e.g., I. cylindrica) across
different regions around the world. Phenotypic plasticity and rapid genetic change can enhance their ability to invade new
areas under climate change (Clements and Ditommaso, 2011;Wan et al., 2020). Therefore, we should bemindful of the effects
of climate change on weed expansion on a global scale.

Our results show that habitat suitability for the 10 serious weed species may differ depending on the type of crop,
indicating that weed expansion and invasion are dependent upon the type of crop being grown, and this applies to the whole
world. The competition between the weed species and the invaded crop species for growth space and access to nutrient
resources determines weed expansion over large spatial scales (Holly and Ervin, 2007; Bajwa et al., 2017; Dass et al., 2017). For
example, Holly and Ervin (2007) showed that seedlings growing in high-nutrient soil performed the best for I. cylindricawith
the amount of light available (directly affected by growth space). Different types of croplands could lead to variations in
growth space and available nutrient resources (Ryan et al., 2009; Bajwa et al., 2017; Dass et al., 2017). Furthermore, Ryan et al.
(2009) indicated that weedecrop competition may differ between organic and conventional cropping systems. Weedecrop
competition may depend on the type of cropland. Therefore, we should conduct different management systems for the 10
serious weed species depending on different types of croplands.

We also found that C. dactylon, E. crus-galli, E. indica, P. maximum, and S. halepense had the highest habitat suitability values
in chicory plantations, while C. rotundus and E. colona had the highest habitat suitability in olive plantations. Chicory species
are cultivated for their medicinal uses (Schmidt et al., 2007). However, weed invasion has the potential to affect chicory yield
in plantations worldwide because the crop requires a long time to grow, which may offer weed species an advantage in
growth and expansion on large scales (Sanderson et al., 2003; Li and Kemp, 2005). Thus, the annual chicory yield may be
influenced by the forage persistence and the subsequent invasion of weed species (e.g., C. dactylon, E. crus-galli, E. indica, P.
maximum, and S. halepense; Sanderson et al., 2003; Li and Kemp, 2005). Olive trees are generally cultivated worldwide for
olive oil, fine-grained wood, olive leaf, and olive fruit (Şahin and Bilgin, 2018). However, olive tree plantations may be
negatively affected by C. rotundus and E. colona because of the high habitat suitability values of these harmful weed species in
this cropland (Table S2). These two weeds can cause substantial losses in crop yield and quality in olive plantations, which
directly affect food security and safety (Holm, 1969). Furthermore, I. cylindrica and L. camara have been listed in the list of 100
of theWorld’sWorst Invasive Alien Species (Luque et al., 2014). These two invasiveweeds have a strong ability to reduce plant
species diversity and reduce productivity in agricultural lands (Holly and Ervin, 2007; Ervin and Holly, 2011; Vardien et al.,
2012). Climate change and certain soil properties can enhance the invasion of I. cylindrica and L. camara (Holly and Ervin,
2007; Ervin and Holly, 2011, Table 1). We found that I. cylindrica had high habitat suitability values in mustard plantations,
and the habitat suitability values for L. camara was highest in chickpea plantations (Table S2). The characteristics affecting
habitat suitability for these two weed species are annual precipitation, soil pH, soil texture fraction clay, and soil texture
fraction sand (Table 1). Hence, we should implement better monitoring of I. cylindrica and L. camara in mustard and chickpea
plantations, respectively, in sites across the world.
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5. Limitations

Although our study extensively assessed the habitat suitability of croplands globally for 10 serious weed species, some
limitations do exist. They are: 1) Our study did not consider the effects of climate change in the future on the distribution of
weed species. Predicting the changes in the range of suitable habitats can be beneficial for global prevention and control of
weed expansion, and so monitoring climate change and seeing its effect on weed risk may be an important contribution to
weed management practices worldwide (Bradley et al., 2010; Ortega Andrade et al., 2017; Wan et al., 2018); 2) Land use and
land cover were not accounted for in our study. For example, some weed species are likely to spread close to roads. Future
studies on the effects of land use and land cover on weed species distribution may help inform weed management efforts
(Baessler and Klotz, 2006; Armengot et al., 2011;Wan et al., 2016); 3)We did not identify whether these 10weed species were
native or invasive at the regional scale. However, these 10 weed species were identified to be the largest threats to croplands
on a global scale. Hence, identifying the region the species originated from may not necessarily affect the outcome and
implications of our study; 4) The HSM performance of our study may not be insufficiently robust based on AUC (Lobo et al.,
2008). To decrease the uncertainty in our HSM when predicting weed species presence, we used high habitat suitability
values (0.6) to assess weed risk worldwide; and 5) Feasibility of weed-risk prevention and control measures will be lower in
some countries than in others owing to cost, laws, and other country-specific issues. Future studies should focus on the small-
scale mechanisms underlying weed expansion (e.g., the relationship between functional traits and weed invasion) for these
10 serious weed species while focusing on different countries and taking future climate change scenarios into account.

6. Conclusion

The 10 serious weed species had the highest habitat suitability in global croplands. Furthermore, the suitable habitats of 10
serious weed species were widely distributed in different distinct croplands on a global scale. Different cropland systems and
environmental factors could drive the expansion of these 10 weed species worldwide. The croplands of priority prevention
and control included chicory for C. dactylon, E. crusgalli, E. indica, P. maximum, and S. halepense, olive for C. rotundus and E.
colona, mustard for I. cylindrica, rasberry for E. crassipes, and chickpea for L. camara on a global scale. The prevention and
control measures should be based on the cropland types along the spatial variation of climate factors, soil properties and
human activities.
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