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Abstract

We report the preliminary results from a project (GAPSS-Geothermal Area Passive Seismic Sources), aimed at testing the
resolving capabilities of passive exploration methods on a well-known geothermal area, namely the Larderello-Travale
Geothermal Field (LTGF). Located in the western part of Tuscany (Italy), LTGF is the most ancient geothermal power field of
the world. GAPSS consisted of up to 20 seismic stations deployed over an area of about 50 x 50 Km. During the first 12 months
of measurements, we located more than 2000 earthquakes, with a peak rate of up to 40 shocks/day. Preliminary results from
analysis of these signals include: (i) analysis of Shear-Wave-Splitting from local earthquake data, from which we determined the
areal distribution of the most anisotropic regions; (ii) local-earthquake travel-time tomography for both P- and S-wave velocities;
(iii) telesismic receiver function aimed at determining the high-resolution (<0.5km) S-velocity structure over the 0-20km depth
range, and seismic anisotropy using the decomposition of the angular harmonics of the RF data-set; (iv) S-wave velocity profiling
through inversion of the dispersive characteristics of Rayleigh waves from earthquakes recorded at regional distances. After
presenting results from these different analyses, we eventually discuss their potential application to the characterisation and
exploration of the investigated area.
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1. Introduction

Many geothermal areas exhibit higher background seismicity than their surrounding regions, and the potential of
such signals as a prospecting tool was first pointed out by [1]. Since then, substantial advances have been made in
the development and application of methodologies aimed at reconstructing the distribution of seismological
parameters (mostly velocities) at depth. In common with all other geophysical exploratory disciplines, passive
seismic methods have both advantages and disadvantages. On the positive side, they can sample rock volumes which
would be unreachable otherwise, and they are usually cost-effective as they do not require the utilisation of
expensive artificial sources. On the negative side, they usually require long acquisition times, and they do offer a
non-uniform imaging of the rock volumes under investigation as a consequence of the uneven distribution of
sources. Notwithstanding these limitations, the application of passive seismic methods to the improved
understanding of geothermal areas is constantly growing in response to the greater keenness in exploiting geothermal
resources.

Within this general context, this paper aims at presenting an integrated application of different, complementary
passive seismic methods. Our target is the Larderello-Travale Geothermal Field (LTGF; Italy), whose internal
structure is well constrained through direct probing and geophysical exploration, and which is presently the object of
renewed exploration programs.

2. Geological outline

The Larderello-Travale geothermal field (Fig. 1) is a large area of the Northern Apennines where, since the Pliocene,
the emplacement of shallow-level intrusions has led to the development of diffuse thermal aureoles and associated
hydrothermal systems, both sampled by several wells drilled for geothermal exploration and exploitation ([2], [3],
[4], [5]). Larderello is a steam-dominated geothermal field whose exploitation dates back to 1905. The whole
geothermal area is about 400 km2 and has a production of more than 1000 kg/s of super-heated steam, with a
running capacity of about 700 MW [6]. Hydrothermal systems, located at depths ranging between 500 and 4000 m,
show an evolution from an early stage, coeval with granitic intrusions, dominated by magmatic and metamorphic
fluids, to the present-day stage dominated by meteoric fluids. The growth of hydrothermal mineral assemblages
within brittle veins and/or fracture systems is regarded as evidence of fluid circulation coeval with repeated episodes
of brittle deformation. The tectonic structure of the geothermal field consists of a stack of Alpine tectonic units,
namely the Ligurian Unit and the Tuscan Nappe (Fig. 1), which overlie the Tuscan Metamorphic Complex. The
latter is a buried complex of low-grade metamorphic units made up of terrigenous and carbonatic successions of
Permian-Triassic [5] and Palacozoic age rocks [7]. Shallow-level emplacement of Pliocene intrusive rocks in the
metamorphic tectonic units led to the development of broad low pressure — high temperature (0.15-0.2 GPa — 500° -
650° C) contact aureoles with development of medium to high grade hornfels rocks and associated hydrothermal
systems [3] [4] [S]. A noteworthy feature of the geothermal field is the occurrence of seismic reflectors, named the
K-horizon and H-horizon ([8] and references therein). The K-horizon is located at depths in between 3 and 6 km, and
it corresponds to the top of the Quaternary granites [7]. This horizon is characterized by a strong amplitude signal of

bright-spot type, suggesting the presence of fluids of either magmatic or metamorphic origin hosted within cracks
and/or micro-cracks. The K-horizon is thus thought to represent the top of a fluid-rich level [4] [7] that cyclically
undergoes episodes of fluid overpressure, as also indicated by concentration of seismic activity [8]. The K-horizon
culminates at a depth of nearly 3000 m in the Lago area (south of Larderello; Fig. 1) where the former was reached
by the San Pompeo 2 well, which exploded upon reaching the horizon. The overlying H-horizon occurs at shallower
depths (2-4 km) in correspondence of the contact aureole of the Pliocene granites and it is regarded as a fossil K-
horizon [8]. Main faults in the Larderello geothermal fields are normal faults associated with the latest extensional
episode which is lasting since late Pliocene. Faulting affects very shallow crustal levels (about 1 km depth) with
major NW-trending, NE-dipping and NE-trending normal to strike-slip steeply dipping fractures [9].
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Fig. 1. Geological sketch map of the Larderello-Travale Geothermal field (redrawn after [8]).

3. Data

Data used for this study were gathered in the frame of a specific project (GAPSS - Geothermal Area Passive
Seismic Sources), which lasted from early May, 2012, through late October, 2013. It consisted of up to 20 temporary
seismic stations deployed over an area of about 50x50 Km, with average station spacing of 10 km. Stations were
equipped with either broadband (40s and 120s) or intermediate-period (5s), 3-components seismometers. LTGF is
seismically active, and for the the first 12 months of measurements we located more than 2000 earthquakes, with
peak rates of up to 40 shocks/day (Fig.2). The largest observed magnitude is M;=3, and hypocentral depths are
generally shallower than 8 km.

4. 4. Analysis
4.1. Travel-time tomography

We inverted P- and S-wave arrival times from local earthquake using the inversion procedure described by [10].
The method uses the finite differences technique to compute theoretical travel times by solving the Eikonal equation
through a complex velocity structure and the least squares LSQR algorithm for simultaneous inversion of velocity
parameters and hypocenter locations. Also, smoothing constraint equations are used to regularize the solution by
controlling the degree of model roughness allowed during the inversion procedure. The 1-D reference velocity
model has been obtained using a preliminary 1D inversion. From the initial data set, we selected earthquakes having
azimuthal gap smaller than 180°, RMS of time residuals smaller than 1s, and location errors smaller than 0.5km. The
selection resulted in 840 events having an average of 10 P- travel-time readings and provided a final dataset
consisting of 9680 P- and S-wave arrival times. The distribution of stations/events allowed to investigate a volume
of 45 x 30 x 10 km3 with the top at 1 km above the sea level. The investigated volume has been discretised by using
uniform velocity cells having size 0.5x0.5x0.5 km®. Hypocentral depths span the 0-8 km depth range; accurate
resolution analyses using both spike and checkerboard tests indicate that velocity anomalies are better resolved at
depths shallower than 6 km.

Figure 3 illustrates an EW vertical cross-section of the inverted Vp velocity structure passing through the Travale
area.
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Fig. 2. Map of seismicity recorded during the first three months of the GAPSS experiment (filled, colored circles). The color of the symbols
indicate source depth, according to the color scale at the upper left. White dots are those hypocenters located at depths larger than 10 km.
Temporary GAPSS stations are marked by black triangles. Dashed line represent the surface trace of the tomographic cross-section in Fig. 3.
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Fig. 3. EW vertical cross-section through the inverted Vp model. The surface trace of this section is indicated by a line in Fig. 2.

The main features emerging from that image are: (i) a dome-like, positive velocity anomaly spanning the central
sector of the geothermal field, and (ii) two positive anomalies located in the eastern sector, constituting short-
wavelength ripples in the dome-like profile at offsets of about 25 and 32 km into the section. Taken together, the
shape of the large- and small-scale anomalies exhibit a striking correspondence with the profiles of the quaternary
batholite and Pliocenic granites, respectively, as schematically illustrated in [11]. The top of the deepest, youngest
body (i.e., the quaternary pluton) would correspond to the K-horizon, while the upper profile of the two shallowest
anomalies (corresponding to the oldest intrusions of Pliocenic age) would mark the H-horizon. This finding is
particularly relevant, in light of the fact that this latter horizon is very often associated with fractured, fluid-filled
levels, whose detection is of primary importance for the exploitation of the geothermal resource.
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4.2. Shear-wave splitting

Shear-wave splitting (SWS) is a powerful passive exploration tool to detect the geometry of fracture system, the
intensity of cracking and possibly, changes in fluid pressure within the rock medium. The method is based on the
observation that a shear-wave propagating through rocks with stress-aligned micro-cracks (also known as extensive
dilatancy anisotropy or EDA-cracks) will split into two waves, a fast one polarized parallel to the predominant crack
direction, and a slow one, polarized perpendicular to it [12]. The differential time delay between the arrival of the
fast and the slow shear-waves (in the order of few ms) is proportional to crack density [13]. The measurements from
the GAPSS recordings are obtained using the method proposed by [14]. Results are suggestive of a pervasive and
heterogeneous system of fluid-filled micro fractures. The overall direction obtained stacking the entire dataset
composed by 640 SWS estimation indicate a prevalent direction along N120°, coherent with the regional stress field.
The maximum delay time reaches a peak of 0.16 s compatible with SWS measurements in neovolcanic zones of
Iceland where shear-wave splitting of 0.1-0.3s has been observed [15]
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Fig. 4. Distribution of SWS measurements. The orientation of the line segments corresponds to the polarisation direction of the fast S-wave; the
length of the lines is proportional to the delay time, according to the scale at the bottom right.

4.3. Surface wave dispersion

Here we analyse the dispersive properties of Rayleigh waves from earthquakes recorded at regional distances, in
order to gain clues on the shear-wave velocity profiles. For the analyses we selected 32 earthquakes with magnitudes
between 4 and 6, and epicentral distances spanning the 100-200km range. Under the circular wave-front assumption,
for each earthquake we calculated velocity-frequency power spectra derived for tentative phase velocities spanning
the 2-5 km/s interval. The velocity-frequency power spectra associated with the different earthquakes are then
stacked to obtain a single spectrum, whose maxima individuate the fundamental-mode Rayleigh-wave dispersion
curve over the 3-20s period range (Fig. 5a). Using a linearised procedure, this curve is then inverted for a shear-wave
velocity profile down to 20 km depth (Fig. 5b). The retrieved velocity profile represents an average of the actual S-
wave velocity structure beneath the array of stations. Vs varies within a range which is compatible with what derived
from earthquake tomography; particularly significant is the low-velocity zone spanning the 5-10km depth range,
which could be indicative of the hot rock volumes associated with the most recent granitic intrusion.
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Fig. 5. (a) Velocity-frequency power spectrum derived from stacking of individual spectra from 32 regional earthquakes. Dots indicate the
dispersion curve of fundamental-mode Rayleigh waves obtained from the peaks of the power spectrum at individual periods. The black line is the
dispersion curve predicted by the velocity structure retrieved by the inversion. (b) Shear-wave velocity structure derived from inversion of the
dispersion curve in (a).

4.4. Receiver functions

The Receiver Function (RF) technique is a widely used tool to reconstruct the S-velocity structure beneath a
stand-alone broadband seismic station. A teleseismic P-wave is converted into an S-wave as it crosses a velocity
discontinuity. The signal generated by each of these conversions is recorded in the P-wave coda and can be
extracted from the raw seismic records by deconvolving the vertical-component seismogram from the radial and the
transverse ones. The deconvolved signals, called radial and transverse Receiver Function (R-RF and T-RF),
represent a time-series of P-to-s (Ps) converted waves. Time-delays between the direct-P, arriving at t=0, and the Ps
phases are used to “measure” the depth of the velocity contrast which generated such Ps phases.
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Fig. 6. (a) Epicentral distribution of the teleseisms recorded during the GAPSS experiment (red stars). Numbers dispaly epicentral distance. (b)
Examples of teleseismic records and receiver fucntion. Z, R and T labels indicate Vertical, Radial and Transverse component of the P-wave of an
earthquakes occured in Iran. R-RF and T-RF mark the Radial and the Transverse receiver function, respectively, obtained from the deconvolution
of the Z trace from the R and T traces. Prominent negative phases on the R-RF within the first 3 seconds possibly indicate the occurrence of a
low S-velocity zone at depth. The presence of significant energy on the T-RF, in the first seconds, is a marker for anisotropy at shallow crustal
depth.

In a perfectly isotropic medium all the conversions due to impedance contrasts at depth are observed in the R-RF
while no energy should be present on the T-RF. The presence of anisotropy or dipping interfaces in the subsurface
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causes the energy to rotate out of the plane of the incoming wave field and gives a contribution to the TRF with
known pattern of variations as a function of the backazimuth [16]. To highlight this effect a good azimuthal
distribution of events is required and, depending on the S/N and the quality of the site, this is achieved in at least one
year of continuous recording period. Due to the 360°-periodicity of the Ps phases generated by anisotropic layers,
the isotropic and anisotropic components of a RF data-set can be decoupled using an harmonic coefficent analysis.
In such case, the first harmonics, K=0, contains the contribution from the isotropic structure beneath the station (i.e.
the Ps phases generated from discontinuties in the bulk S-velocity profile), while the K=1 harmonics represents the
energy of Ps phases converted from anisotropic layers [17].

We computed a RF data-set for each broadband seismic station of the GAPSS experiment. The back-azimuth
coverage of the recorded teleseismis is almost completed (Fig. 6a) allowing the analysis of the harmonic
coefficients of the RF data-set. High S/N ratio records are selected to computed an average of about 80 RF for each
station (Fig. 6b). Overall, a number of RF data-set present prominent negative phases on the R-RF in the first 2
seconds (Fig. 7) indicating in the presence of a low S-velocity zone in the first 0-10 km in the area. Energy in the
K=1 harmonics, in the first 2 seconds, suggests anisotropy within the shallow crust.

We modelled the RF data-set using a widely-known forward code [18]. The first 4km of the crust are modelled
using the litho-stratigraphy of Sasso 22 borehole. The presence of a negative phase in the first seconds of the K=0
harmonics is reproduced using a S-wave velocity inversion at about 8km depth. The pattern in the K=1 harmonics
can be reproduced introducing two anisotropic layers at 5 and 10 km depth (Fig. 7).
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Fig. 7. Observed and synthetic RF for station LA0OS5. (a-b) Observed K=0,1 coefficents of the harmonic decomposition of the RF data-set. K=0
coefficient represents the P-to-S conversion due to S-velocity discontinuities. The K=1 coefficients shows conversion generated from anisotropic
zones at depth. (c-d) synthetic K=0,1 coefficents of the harmonic decomposition of a RF data-set generated using the model in (e). (¢) S-velocity
profile used to generate the RF in (c-d). Grey-textures indicate the anisotropic zones at depth which generates the conversion recorded on the K=1
coefficients.

5. Discussion and conclusions

In this work we presented the preliminary results from different analyses carried out on a passive seismological
data set collected at the Larderello-Travale Geothermal Field (Italy). Overall, the results obtained thus far exhibit a
reasonable correlation with the main geo-structural features of the area as established by previous, independent
exploration surveys. While providing a good spatial resolution and information on both Vp and Vs structures, Local
Earthquake Tomography is strongly limited by the shallow distribution of hypocenters, which implies lack of
illumination for crustal blocks deeper than 4-6 km. Nonetheless, the interpretation of Vp anomalies appears to be
well correlated with the inferred location of the H-marker, which generally corresponds to the metamorphic aureole
produced by the Pliocenic granitic intrusions. This marker is very often associated with the presence of fractured and
permeable levels related to the granite emplacement [11], and it currently represents the principal exploration target
in the area.
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Additional clues on the location of rock volumes mostly affected by fracturing are provided by analysis of shear-
wave splitting. In this case, the areas of intense crustal damage are well individuated by large (>0.1s) delay times,
and polarisations of the fast S-wave which depart significantly from the NW-SE trend which is expected once
accounting for the regional stress field alone. Within this framework, next steps will aim at refining location and
depth of the most significant anisotropic rock volumes, by attempting a 3D inversion of the SWS measurements
[19].

Insights into the deeper roots of the geothermal fields are obtained through the inversion of Rayleigh-wave
dispersion characteristics and receiver function analysis from earthquakes recorded at regional and teleseismic
distances, respectively. By analysing wavelenghts spanning the 3-70 km range, these two latter methods can resolve
km-size features over the 0-20 km depth interval. From these analyses, we found a main anisotropic layer at depths
around 5 km, and a significant inversion of the Vs gradient over the 8-12km (receiver function) or 5-10km (surface
wave inversion) depth intervals.

Future efforts will aim at reconciling all these different findings into a coherent image of the volumetric
distribution of compressive and shear-wave velocities beneath the LTGF. Subsequent evaluation of the sensitivities
of the investigated seismological parameters for site-relevant rocks under specific physical conditions, will
hopefully contribute to an improved imaging of the field in terms of the reservoir rock physical properties, such as
fluid content and porosity.
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