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Abstract

The potential of diet-induced differences in thityfacid profile of muscle to discriminate
beef from different feeding systems and its potnise as an authentication tool was
investigated. Three canonical discriminant modedsauilt and validated using the fatty
acid profile of beef from animals fed solely onto@s or cereal-based concentrates for 11
months or on various pasture/grass silage/condertoembinations, including concentrates
enriched with plant oils. Results indicated thadeis could successfully discriminate
between grass-, partially grass- and concentratéédef (accuracy = 99%) and between
grass-fed beef and beef from animals supplemenit&dofant oils (accuracy = 96%). The
approach also showed potential for distinguishietyieen beef from exclusively pasture-fed
cattle and beef from cattle fed on pasture precégeatperiod on ensiled grass (accuracy =
89%). Models were also applied to beef samples Batifferent countries. Of 97
international samples, including samples statdmetgrass-fed, only 5% were

incorrectly classified as Irish-grass-fed beef. Séheesults suggested that the models captured
traits in the fatty acid profile that are charaistige of Irish grass-fed beef and that this feature

could be used for distinguishing Irish grass-fedfdeom beef from other regions.
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1. Introduction

Consumer preference for beef produced from spgmibiduction systems such as “organic”
or “pasture-fed” continues to increase (Garcia-@®rtLopez-Gajardo, & Mesias, 2016).
These systems are perceived as more sustainalie compatible with animal health and
welfare, and as providing wholesome products (MezbBérez-Cueto, Barcellos, Krystallis,
& Grunert, 2010; Daley, Abbott, Doyle, Nader, & kan, 2010). As the demand for beef
from pasture systems grows so does the need foemtitation methods capable of
distinguishing pasture-fed beef from concentratkHeef typically produced in intensive
feedlot systems (Monahan, Schmidt, & Moloney, 20I8E geographical origin of beef is
also an important consideration for consumers (Maneet al., 2018). Methods capable of
verifying the geographical origin of beef shouldabe developed, especially as beef
produced in a particular region may acquire adaddevin the marketplace (Cubero-Leon,
Pefalver, & Maquet, 2014; Esteki, Shahsavari, &&iandara, 2019).

The fatty acid profile has been previously usedisariminate between beef from
different production systems. Dias et al. (200&dusanonical discriminant analysis (CDA)
to differentiate between beef from conventional arghnic production systems. CDA was
also used by Garcia et al. (2008) to discrimin&tisvben grass-fed beef, partially grass-fed
beef and concentrate-fed beef, and by Alfaia €2&l09) to discriminate between beef from
cattle fed concentrates for different lengths wigtiprior to slaughter and beef from pasture-
fed animals. More recently, Monteiro, Fontes, BeBsates, & Lemos (2012) used CDA of
the fatty acid profile to differentiate betweene®mquality brands of Portuguese beef;
Martinez Marin, Pefia Blanco, Avilés Ramirez, Pé&iba, & Polvillo Polo (2013) used
CDA to classify beef from bulls fed different ragiof concentrate and maize silage.

The aim of this study was, firstly, to confirm thetential for diet-induced differences
in the fatty acid profile of muscle to discrimindtetween beef from different feeding

systems in an Irish context and, secondly, to mgate the potential use of CDA models
3
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based on the fatty acid profile of beef, as toolauthenticate grass-fed beef. The specific
objectives of this study were: (i) to develop aalgle CDA model for the discrimination
between grass-fed, partially grass-fed and conatmted beef, (ii) to investigate the possible
limitations of this model when tested against s&sflom animals supplemented with
sunflower or linseed oils which can alter the fattyd profile of beef; (iii) to evaluate
whether pasture-fed beef could be distinguisheah fioeef from animals receiving a
combination of pasture and ensiled grass; andyifi&) to explore whether CDA models
developed for classification of Irish beef prodantsystems captured characteristic traits of
Irish grass-fed beef that could be used for disorating Irish grass-fed beef from beef from

other countries.

2. Materials and Methods

2.1. Controlled feeding trials

A description of the Trial A animals and their digtas previously published by Rohrle et al.
(2011). In summary, Charolais-Limousin crossbredniiag heifers (n = 98) were weighed
and assigned at random to one of four dietaryrireats: i) grazed pasture from November to
the following October (P, n = 24); ii) grass silagféeredad libitumindoors from November
to the following April, then grazed pasture fromrApo October (SiP, n = 24); iii) grass
silage offeredad libitumindoors from November to the following April, thgrazed pasture
plus 50% of the dietary dry matter (DM) as a sup@atary concentrate from April to
October (SIiPC, n = 25); iv) concentrate and stradoors from November to the following
October (C, n = 25). The pasture/grass sward deased predominatelizolium perenne L
The composition of the concentrate was 430 g/Kgddbarley, 430 g/kg pelleted beet pulp,
80 g/kgsoybean meal, 35 g/kgolasses, 20 g/kg mineral/vitamin mix and 5 g/kggi The
daily concentrate ration of all groups was adjugtedodically to the weight gain of animals

in the P group. Grass and grass silage were sam@ekly and concentrate and straw were
4
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sampled monthly over the experimental period; athgles were frozen at -20°C until
processing for fatty acid analysis. Animals weeghtered according to European
regulations at Meadow Meats Ltd., Rathdowney, h@laAt 24 h post-mortem, the right
Longissimus thoracis et lumboryial'L) muscle was excised from each carca34. muscle
samples were vacuum packaged and transferred ga3e#&ood Research Centre, Ashtown,
Dublin 15 and stored overnight at 4°C after which&cm thick subsample was taken
between the 10th and 11th rib, vacuum packagedtaned at -20°C until fatty acid analysis.
The study was carried out under license from tish IGovernment Department of Health and
Children and with the approval of Teagasc, the @dtural and Food Development
Authority. All procedures used complied with natdand EU regulations concerning
experimentation on farm animals

Individual fatty acid data for a second group ofaals (Trial B, n = 60) were also
used in this study (mean data published by Noené&m, Monahan, & Moloney, 2007; Noci
et al., 2005). Briefly, Charolais crossbred heifeese housed and offered grass silade
libitum for two months and then assigned at random taobttee following dietary
treatments: v) grazed pasture (SiP2, n = 15); na¥g silagad libitumplus 3 kg of
concentrate offered indoors (SiC, n = 15); vii)zpd pasture plus 1.6 kg of sunflower oil-
enriched concentrate (SunO, n = 15); viii) grazastyre plus 1.6 kg of linseed oil-enriched
concentrate (LinO, n = 15). The duration of thaahgtreatments was 158 day$e sward
consisted of mainlyolium perenne LThe composition of the concentrate fed to the imdoo
animals (SiC) was 430 g/kg of rolled barley, 43kggéf molassed sugar beet pulp, 80 g/kg of
soybean meal, 45 g/kg of molasses and 15 g/kgwharal/vitamin mix; while the
composition of the supplement to the grazing catikes 670 g/kg of unmolassed sugar beet
pulp, 110 g/kg of soybean meal, 50 g/kg of molas2eg/kg of a mineral/vitamin mix and
150 g/kg of sunflower oil or linseed oil. At 24 bgg-mortemLTL muscle was excised and

stored as described for Trial A.
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2.2. Irish commercial beef samples

Two sets of Irish commercial beef samples wereect#ld: organic pasture-fed beef striploins
(Ir-Org, LTL muscle, n = 18) obtained from a local producer (GabeefDirect,
Ballymacarbry, Clonmel, Co. Tipperary, Ireland) aanples of unknown dietary
background (Ir, n = 8) purchased from a local soaeket (Superquinn, Ballinteer, Dublin

16). All samples were stored at -20°C until fattydaanalysis.

2.3. International beef samples

Beef samples (97) were collected from 9 countesstria (Aus, n = 4), France (Fr, n = 4),
Germany (Ger, n = 6), Italy (It, n = 18), Spain (8p= 7), UK (UK, n = 19), Brazil (Br, n =
17) and US (n = 22). European samples were obtdroedn from personal contacts of the
authors. Brazilian samples were obtained from D&emms Ltd., Naas, Co. Kildare, Ireland.
Beef samples from the US were acquired throughti@&MN Inc. (IdentiGEN North
America, Inc. Lawrence, KS), 10 of which were okoawn dietary background (US, n = 10)
and 12 reputedly pasture-fed (US-P, n = 12). Asifapossible, striploin muscle was
obtained but, while samples varied from countrgdantry; all could be classified as beef
striploin (LTL muscle), sirloini1. gluteusmediu$ or round M. semimembranosysTable 1
summarises the various treatments/dietary backgioahall sample sets (Trial A, Trial B,

commercial and international).

2.4. Feed chemical and fatty acid analysis

The chemical composition of feed samples from TAigbooled on a monthly basis, was
analysed as described by Moloney, Read, & Kean@g)1Td he fatty acid composition of
feedstuffs was determined as described by SukhFa&nquist (1988) with the minor

modification that toluene was used instead of beaze
6



143

144  2.5. Muscle intramuscular fat and fatty acid analys

145  Extraction of intramuscular fat (IMF) and methytatiof the fatty acids for Trial A and

146 international samples were conducted as for Tri@l&ci et al., 2005). To determine the
147 IMF in the beef samples, the lipid extract was Wwe&gd after drying to a constant weight
148 under a stream of NResults are expressed as g/100 g of muscle. THeylagbn procedure
149  was carried out directly on the lipid extract, witih separation of neutral and polar lipid
150 fractions.

151

152  2.6. Gas Chromatographic Analysis

153  Fatty acid methyl esters (FAME) were separateddsyanromatography using a Varian 3800
154  GC (Varian Medical Systems Inc. Palo Alto, CA, Upéquipped with a CP-Sil 88 capillary
155  column (100 m x 0.25 mm i.d., 0.2 pm film thickneSsrompack, The Netherlands) and a
156  Varian 8400 autosampler. The injector and the flaaneation detector were kept at

157  constant temperatures of 250 and 260 °C, respéctiiee FAME profile of a 2 pul sample
158 injected at a split ratio of 1:50 was determineishgishe temperature programme described
159 by Shingfield et al. (2003). The total run time v&smin and Hwas used as the carrier.
160 Peaks were identified by comparison of retentiores with a standard mix of 37
161 FAME (Supelco Inc., Bellefonte, PA, United Statasyl individual standards (Matreya Inc.,
162  Pleasant Gap, PA, United States) for those FAMEcantained in the mix. Fatty acids for
163  which no commercial standards were available waatified by reproducing identical

164 chromatographic conditions as Shingfield et alO@0and comparing the retention times to
165 their reference chromatograms. Identified FAME waakesulated as g/100 g of total FAME
166 detected using tricosanoic acid (C 23:0) as amnatestandard.

167

168 2.7. Data analysis



169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

Data analysis was performed in R (R Core Team, R04i9g various packages including
Agricolag MASS CANDISC, CaretandKlar as well as in-house functions. Fatty acid data
were first examined for non-detected values. Ifghaportion of non-detected FAME in a
treatment or country group was < 50 %, non-detectdakes were replaced with 0.5 limit of
detection (LOD = 0.04 g/100 g of total FAME), et proportion of non-detected FAME was
> 50 %, the FAME was regarded as non-detectechéofull treatment group (EPA, 2000).
Statistical analysis was performed after correctorghon-detected values and for analyses
which require normally distributed data, only FANMBving less than 15% non-detected
values in each dietary treatment were selected.

One-way analysis of variance (ANOVA) followed byKBy's multiple-comparison
test was performed to investigate whether the ptapws of individual FAME and families
of FAME differed significantly between the feediggpups (P, SiP, SiPC and C) in Trial A.
The possibility of classifying beef samples accogdio the animal’s dietary background
based on the FAME profile was examined via CDA.eEnEDA models were developed
using different combinations of Trial A and Trialdata. For Model 1, 3 feeding regimes
from Trial A data were considered: G (grass-fed+=%iP), SiPC and C. For Model 2, five
feeding regimes from a combination of Trial A and&asets were considered: Gt (total
grass-fed samples = P + SiP + SiP2), GC (grass@mentrate = SiPC + SiC), C, SunO and
LinO. For Model 3, all 4 feeding regimes from TrAawere considered: P, SiP, SiPC and C.
A stepwise variable selection procedure was addptedlect the FAME giving the best
discrimination between feeding groups based omdbelts of a leave-one-out cross-
validation (CV-LOO) and using a 2% minimum improv&amin a model’s discriminating
ability as a criterion for variable entry. CDA mdslevere then developed based on the
selected variables. CDA generates a set of canatigiminant functions (CDF) that
provide the best discrimination between dietaryugeo(Cui, 2010). The relevance of each

CDF was evaluated through the Wilks’ lambda test.
8
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The performance of the models was first assess&MayOO, using parameters such
as sensitivity, specificity and overall accuracyblnary classifications, sensitivity refers to
the proportion of positive samples that are colyadentified by a model, while specificity
refers to the proportion of negative samples thatcarrectly identified (Han & Kamber,

2011; Tharwat, 2018). For multi-group classificatisensitivity and specificity are

calculated for each group (i.e. dietary treatmelmysjomparing each group to the remaining
groups (i.e. a "one versus all" approach) (Kuh®&0Overall accuracy is defined as the
ratio between the number of correctly classifiethgl@s and the total number of samples
(Tharwat, 2018). Models were externally validatgdbedicting additional samples (i.e., test
set) that were not part of the original training(éménez-Carvelo, Gonzalez-Casado, Bagur-
Gonzalez, & Cuadros-Rodriguez, 2019). Model 1 ane@ validated using Trial B

samples. For Model 2, validation was performed gisast sets created by randomly splitting
the combined data set (Trial A and Trial B) intaiing and test sets, 3 times (split ratio =
0.8). Model 2 cross validation and external valmlaresults were expressed as an average of
the three repeats. All models were tested agdwestammercially available Irish samples

and the international sample set.

3. Results and discussion

3.1 Chemical composition of feedstuffs

The chemical and fatty acid composition of thealgttomponents used in Trial A are shown
in Table 2. Pasture and grass silage had simitasgrompositions, while the concentrate had
higher DM digestibility and lower levels of ashppein and oil B than the forages.
Concentrates had higher proportions of C16:0, GB8ahd C18:8-6, and a lower

proportion of C18:8-3 than the pasture and grass silage. Polyunsatuiatty acids (PUFA)

were the main fatty acid family in grass and gsalsgye & 65 %) and saturated fatty acids
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(SFA) predominated in the concentratedéd%). These results are in general agreement with

previous studies (Moloney & Drennan, 2013; Warreal ¢ 2008).

3.2. Intramuscular fat and fatty acid composition ¢ beef samples

TheIMF content and the fatty acid composition of LTluscle of Trial A animals are
presented in Table 3. Muscle from grass-fed anifiaISiP) had a lower IMF content (p <
0.01) than muscle from concentrate-fed animals (@)scle from partially grass-fed animals
(SiPC) was intermediate, indicating that the higherconcentrate input, the higher the IMF
content in muscle. These results are consistehtprévious studies (Alfaia et al., 2009;
Fruet et al., 2018). To avoid confounding effedtfatness on muscle fatty acid composition,
i.e. higher IMF content results in higher levelsradividual fatty acids, the fatty acid profile
was expressed as proportion of FAME.

The proportions of SFA and monounsaturated fatiysao muscle were not
influenced by diet. Muscle from P and SiP animald the highest proportion of PUFA,
followed by muscle from SiPC animals while musetani C animals had the lowest
proportion. The decrease in the proportion of PUirAuscle as the amount of dietary
concentrates increases agrees with previous st(Rlesdini, Duckett, Brito, Dalla Rizza, &
De Mattos, 2004). The proportion o3 PUFA in muscle from P and SiP animals was also
higher compared to muscle from SiPC and C aninpats{.01), indicating that the higher the
concentrate input, the lower the proportiomeé® PUFA in muscle reflecting the fatty acid
composition of the diet. In contrast, the propartad n-6 PUFA in muscle increased as the
amount of concentrate in the diet increased (0&)0Muscle from grass-fed beef had the
lowestn-6:n-3 PUFA ratio (= 1) followed by SiPC € 2), while muscle from concentrate-
fed animals had the highest ratio (6.2). The pradant fatty acid in intramuscular lipid was
oleic (C18:19), followed by palmitic (C16:0) and stearic (C18:0inoleic acid (C18:8-6)

was the majon-6 PUFA while linolenic acid (C18r83) was the predominant3 PUFA.
10



246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

Muscle from grass-fed animals had lower proportiein€18:21-6 and higher proportions of
C18::-3 compared to muscles from concentrate-fed anifpats0.01). This outcome was
consistent with the composition of the feedstuftse C18:29,t11 isomer of conjugated
linoleic acid (CLA) andransvaccenic acid (TVA, C18t11) were higher in grass-fed beef
(p < 0.01). High levels of CLA and TVA in beef miestave been previously associated
with grass-based diets (Daley et al., 2010; Freti., 2000). Other statistically significant
differences between grass and concentrate-fediaatied the proportions of C14:0, C15:0,
C16:0, C16:29,c12, C20:3-6, C20:%-3, C22::-3 and various C18:1 isomers. Overall,
differences in the muscle fatty acid compositiomaMargely consistent with previous studies
(Alfaia et al., 2009; Daley et al., 2010; Frenclalet 2000; Garcia et al., 2008; Realini et al.,
2004;Warren et al., 2008)

The fatty acid proportions of Trial B samples usadhe current study were C18:3
3, C18:2-6, C18:111, CLACSt11, C15:0 and C17c®. In the same order, the mean
proportions of these fatty acids for each treatngeotip were: 1.37, 2.35, 3.08, 0.73, 0.48
and 0.57 g /100 g total FAME for SiP2; 0.81, 2.632, 0.49, 0.42, 0.58 g /100 g total
FAME for SiC; 0.87, 3.17, 8.56, 1.78, 0.45, 0.480§ g of total FAME for SunO; 1.34,
2.59, 6.32, 1.26, 0.48, 0.48 g/100 g of total FAMELInO (Noci et al., 2005, 2007).

The IMF content and the fatty acid proportions afenercially available Irish and
international samples are presented in Table 4rdllyéhe fatty acid proportions of the Irish
samples were intermediate between the proportimmB br SiP and SiPC from Trial A while
the fatty acid proportions for the internationaingdes did not clearly align with any of the
dietary groups from Trial A. The diversity in fatéigid profile likely reflects variation in

production systems across the different countries.

3.3. Discrimination according to dietary background

11
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In this study, three CDA models were developedaraduated as potential tools for

discriminating beef according to its dietary backgrd.

Model 1
Model 1 was developed to discriminate between giedspartially grass-fed and
concentrate-fed beef. Data from Trial A were used R and SiP were combined as G (grass-
fed). The stepwise variable selection procedurecsetl C18:6-3, C18:2-6 and C18:111
for the discrimination. CDA generated two CDF basedhese fatty acids of which only the
first function (CDF1), which explained 99.6 % o€&thetween-class variance, was relevant
for the discrimination (Wilks’ lambda < 0.06). Seoralues for CDF1 are displayed in Fig.
la. Beef samples were clearly separated accordiagimal diet. Muscle from grass-fed
animals was associated with low CDF1 score valmescle from partially grass-fed animals
with intermediate values and muscle from conceatfadl animals with high values. The
contribution of each fatty acid to a CDF can beleated through the standardized
coefficients; while the degree to which each faitid is related to the CDF can be better
assessed by the structure coefficients (Cui, 2@dth standardized and structure
coefficients for Model 1 are shown in Table S1. Strecture coefficients for CDF1 are also
displayed in Fig. 1bC18:3-3 was highly correlated with CDF1 (structure cadint value
of -0.91), followed by C18111 (-0.77) and C18r26 (0.57). C18:8-3 and C18:fiL1
influenced the model (CDF1) in a negative directiodicating that high proportions of
C18:3-3 and C18:fl1 were associated with grass-based diets; wiel@dsitive direction
for C18:21-6 indicates that high proportions were relateddoncentrate-based diets. These
relationships agree with the results of ANOVA (T&B).

Classification results obtained by CV-LOO (Tablarg)icated that Model 1 can
successfully classify beef samples according to thetary background (accuracy = 99%).

Group-specific performance corroborated these t®slihe grass-fed group had a sensitivity
12
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of 98% indicating that most of the grass-fed sasplere correctly identified and a
specificity of 100%, which means that the modelmld predict any non-grass-fed beef
samples as “grass-fed”. These results agree withi&at al. (2008) who reported 94, 78 and
100% of correctly classified cases (i.e. sensyvih cross validation for discrimination
between grass-fed beef, partially grass-fed besgicancentrate-fed beef, respectively, and
with Alfaia et al. (2009) who reported 100% correletssification of beef from cattle fed
concentrates for different times prior to slauglated beef from pasture-fed animals. Garcia
et al. (2008) also reported C18:3 and C18:8-6 , among others, as relevant fatty acids for
the discrimination between grass and concentratedbdiets.

The model was further evaluated by predicting tloeig membership of an
independent set of samples of similar dietary bemkgds (SiP2, SiC) and the commercial
samples labelled as “organic pasture-fed” (Ir-Ofidie predictions are shown in Table 5. All
SiP2 and SiC samples were correctly classifiedassgfed and partially grass-fed beef,
respectively For the Ir-Org set, 15 samples weassified as “grass-fed” and 3 as “partially
grass-fed” (SiPC). This could reflect variationsoss organic production systems, e.g.
inclusion of organic concentrates and differencethé sward type and/or the grazing period
(EC, 1999) which would influence the fatty acid qmsition of beef (Scollan et al., 2006).
This highlights the need for discriminant modeldthusing training sets with commercial
samples of known dietary background.

Model 1 was also tested against SunO and LinO sssnphis is important from an
authentication perspective since these samplesl t@uérroneously classified as grass-fed
due to the effect of dietary vegetable oils on batty acids. Noci et al. (2007) reported that
supplementation with sunflower oil decreased tlopprtion of C18:8-3 and increased the
proportions of C18:2-6,CLAc9t11 and C18:l1 in muscle compared to muscle from
unsupplemented grass-fed animals. In contrast,|eogmtation with linseed oil increased

the proportions of CLAc9t11 and C18t1 but resulted in proportions of C18:3 and
13
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C18:21-6 that were similar to those in muscle from undep@nted grass-fed animals. All
SunO and LinO samples were predicted to belongagtass-fed group (Table 5).
Therefore, the model failed to distinguish theseas from true grass-fed beef. In Model 1,
a sample is classified as G if it has a low praparbf C18:2-6 and high proportions of
C18:3-3 and C18:f11. Thus, the model performed as expected for lsa@ples, which
had similar proportions of C1&1&3 and C18:8-6 and higher levels of C181l1 than G
samples. Results for SunO samples were somewhapected since the proportions of
C18:3-3 and C18:8-6 in SunO samples were more comparable to thoseredd in
partially grass-fed samples (SiPC) than in G sampiewever, SunO samples had notably
higher proportions of C18t11 than G samples. These results demonstratedebatise of
the influence of oil supplementation on the fattidgprofile of beef, new classification

models that accounted for this effect were needed.

Model 2

Model 2 was developed to discriminate between giedspartially grass-fed, concentrate-
fed, SunO and LinO samples. Five feeding regima® fa combination of Trial A and B
datasets were considered: Gt (total grass-fed ssmpP + SiP + SiP2), GC (grass and
concentrate = SiPC + SiC), C, SunO and LinO. Fbesqguent external validation, data were
randomly split into training (80%) and test (20%)ss3 times (repeats). For each repeat the
stepwise procedure selected the same three fatty as for Model 1:C18t11, C18:2-6

and C18:8-3. CDA then generated three CDF of which onlyftret two were relevant for
the discrimination. On average, CDF1 explained @604 the between-class variation, while
CDF2 explained 33.6%. The standard and structugéficents for one repeat are shown in
Table S2. The score plot for CDF$CDF2 obtained for one repeat is shown in Fig. 2.
Samples were clearly clustered according to anthedl CDF1 was responsible for the

separation of the GC and C groups, while CDF1 mlwoation with CDF2 separated SunO
14
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and LinO groups from the G group (Fig 2). CDF1 \Wwaghly correlated with C18t11 (~ -
0.88) and C18133 (~57); while CDF2 was highly correlated with CA83 (~ -0.72). Thus
C18:111 and C18:6-3 were the main fatty acids for the discriminatishich agrees with
Noci et al. (2007) who reported significant diffeces in C18:8-3, and C18:tl1 between

beef from grass-based diets and beef from dietsleo@nted with sunflower or linseed oil.

Classification results obtained by CV-LOO are shamwihable 5. The model
discriminated between all five feeding regimes vathoverall accuracy of 96%. The model
correctly classified 48.7 (average of the 3 repeaus of 50 Gt samples (sensitivity = 97.3%)
and misclassified 0.3 samples as GC and 1 sangplen® samples. The high specificity for
Gt (100%) indicated that the model could succebstlistinguish non grass-fed samples
from true grass-fed samples. Validation with teshgles (20% of the dataset) further
demonstrated the model’s ability to distinguishnen the five feeding regimes. Test
samples from GC and LinO groups were 100% corretdgsified, while one C sample was
predicted as belonging to the GC group and onexfapte was misclassified as LinO in one
of the repeats. The latter, together with CV-LOGuits (one Gt sample was classified as
LinO in one repeat), suggested that discriminatietween Gt and LinO may be more
difficult to accomplish than between Gt and Sun@iswas expected because Gt and LinO
samples had similar proportions of C183and C18:8-6. Ir-Org samples were mostly
classified as Gt (63% of samples), but also as ZCGo(of samples) and LinO (13% of
samples). Since the actual diet of cattle in tloeganic systems is unknown, it is difficult to
evaluate whether classifications were correct. Reegess, the model did not classify any Ir-
Org sample as C, which is the category to whicbrganic sample would be unlikely to

belong.

Model 3
15
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Consumers are increasingly interested in animaianebnd pasture is perceived as a more
welfare friendly environment than indoors (Verbekal., 2010). Authentication models that
could distinguish between beef from grazing aninfraish animals that were fed a pasture-
based ration indoors would be useful in this regitadel 3 was developed to investigate the
possibility of discriminating between two similarags feeding systems: pasture only for 11
months (Pys grass silage for the first 5 months and pasturéhe following 6 months
(SiP);in addition todistinguishing each from concentrate-based dieBq%nd C).

Four fatty acids, i.e. C18133, C18:2-6, C15:0 and C17cB, were selected during
the stepwise variable selection step giving ristatee CDF. CDF1 and CDF2, which
explained 97.67% and 2.29% of the between-clasanae, respectively, were the only
relevant functions for the discrimination (Wilksirhbda CDF1 < 0.06, CDF2 < 0.75). The
standardized and structure coefficients of Modate€8shown in Table S3. The score plot of
CDF1vsCDF2 together with the structure coefficients asplayed in Fig. 3. CDF1 was
responsible for the discrimination of samples adwy to their concentrate input and
contributed to separation of the P and SiP growpde CDF2 further separated these groups.
C18:3-3 was highly correlated with CDF1 (structure vahiie0.93) and was the main fatty
for the discrimination between grass-fed (P and,Si&rtially grass-fed (SiPC) and
concentrate-fed beef (C); while the separatiohefR from SiP groups was mostly attributed
to C15:0 and C17cD and, to a lesser extent, to CX83 High proportions of C15:0 and
C17:1c9 were associated with a combined silage-pastetq 8iP) while lower proportions
were attributed to an exclusively pasture dietsTitisupported by the results of the ANOVA
(Table 3). To our knowledge, few studies have caegbéhe effects on the fatty acid profile
of beef from cattle fed on pasture, pasture-bastdrrindoors or combinations of those as in
the current study.

Classification results obtained by CV-LOO (Tablecbiroborated results illustrated

by the score plot. With an overall accuracy of 8%86del 3, like Model 1 and 2, could
16
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successfully classify SIPC and C samples (sensitivB6% for both). However, seven
samples (29.1%) from the SiP group were misclasbdis P and two samples (8.3%) from
the P group were misclassified as SiP. Externatlaabn suggested that the model had little
ability to differentiate between pasture and sitpgsture diets since 12 out of 15 samples
from the SiP2 group were classified as P (Tabléibjvever, while SiP and SiP2 diets were
similar, in SiP, animals were offered grass sileigeé months before moving to pasture
while, in SiP2, animals were offered silage for @ntis. As for Model 1, satisfactory
predictions were obtained for SiC samples, witlyamle sample misclassified as C, and for
the Ir-Org samples with no sample classified aM@del 3 was also used to predict the
dietary background of the SunO and LinO samplesh\firteen samples predicted as SiPC
and two as C, predictions for the SunO samples wansiderably more accurate than those
obtained with Model 1. This improvement comparetitwlel 1 could be attributed to
inclusion of C17:&9 as a predictor, which in Model 2 was relevanttii@ separation of both
LinO and SunO samples from grass-fed samples. Hexvavxed results were obtained for
the prediction of the LinO group with six sampléasssified as P, four as SiP and five as
SiPC. This corroborates the need for calibratisnsh as in Model 2, that include the
characteristic variation of beef from animals féanp-oil enriched concentrates.

Overall, all models could discriminate between giesl beef and non-grass-fed beef.
Model 1 demonstrated that CDA based on the faity pofile of beef can successfully
discriminate between grass-, partially grass- amtentrate-based diets and highlighted the
need to consider possible variations in the feedysgems such as supplementation with
various plant oils. Model 2 by including diets witant oils had greater applicability; while
Model 3 demonstrated that this approach has patdntdistinguish between beef from
grazing animals and beef from animals offered gtagass subsequent to ensiled grass.
However further validation using pasture/silage borations are required to improve and

evaluate the accuracy of the method.
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The proportion of C18111 was selected as important predictor for Modahd
Model 2. However, C18t11 is often incompletely resolved from C18:Q during analysis
using gas chromatography and there are many mpoetsan the literature that show CLA
c9tl1 alone rather than CL£0t11 and C18:1l1 e.g. Garcia et al. (2008). Models based on
FAME other than C18111 may therefore be more applicable to FAME dasa$ett do not
report C18:111. The stepwise variable selection procedurerepsated excluding C1811
as a possible predictor. C18:3, C18:2-6 and CLAOt11 were selected for the
discrimination between G, SiPC and C (Model 1b) @i8d:3-3, C18:2-6, CLAcSt11 and
C17.19 for the discrimination between Gt, GC, C, Sun@ bBmO (Model 2b). Cross-
validation and test results for these models apgvahin Supplementary Tables; coefficients
in Table S4 (Model 1b) and in Table S5 (Model Agpre plots in Fig. S1 (Model 1b) and in
Fig. S2 (Model 2b). Model 1b had a total accuracZV of 98%; while Model 2b had a total
accuracy of 96.5%. Thus, if confident quantificatmf C18:111 is not possible, accurate
models for discrimination between grass-fed, plytgrass-fed and concentrate-fed beef
could also be used based on the proportions of@@UA. Similarly, discrimination between
Gt, GC, C, SunO and LinO beef samples could besaeliby using the proportions of
CLACOt11 and C17:1c9. The fact that Ce#t11 was selected as a substitute for Ctia:1
was expected since both FAME are correlated amease together in beef in response to an
increase in grass or vegetable oil consumptionatiyec(Daley et al., 2010; Noci et al., 2005),

confirmed by the results of ANOVA in the presentdst (Table 3)

3.4. Investigation of a characteristic fatty acid pofile related to the country of origin

Since the fatty acid profile of beef is highly iéinced by the diet of the animal (Scollan et
al., 2014), it may be indirectly influenced by tiegion where animals are raised due to the
use of feedstuffs characteristic of that regiorthis section, we explored whether the models

developed above would capture traits in the fattgl profile that are characteristic of Irish
18
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grass-fed beef and subsequently, whether the modeld be used to authenticate the
geographical origin of beef. Since the 3 modelsewdmveloped based on the variation in the
fatty acid profile of Irish beef, we hypothesisedttmodels are rather specific for Irish beef
and of the various dietary treatments examinedgthss-fed group may be the more
country/region dependent. Hence, our models maysb#ul to differentiate Irish grass-fed
beef from beef from another region. Our exploratitverefore, did not aim to predict the
dietary background or origin of the internationatples, but to explore whether our models
would “misclassify” any of these samples as Irisaisg-fed beef.

Models were applied to the commercially availabighl beef samples of unknown
dietary background and to the international samplesdictions obtained using each model
are shown in Table 5. Ir samples were mainly deskas grass-fed and partially grass-fed
beef (approx. 50% in each category) suggestingltisamples came from cattle fed
principally grass or in combination with some s@opéntal concentrate during the finishing
period. This is consistent with grass being themfeed constituent in beef production in
Ireland (Bord Bia, 2017). Austrian, French and Gammamples were mainly classified as
partially grass-fed (SiPC or GC). However, Modelit 3 predicted two German samples as
grass-fed. This indicates that if these models weesl as an authentication tool to
simultaneously verify the origin (Irish) and digréss), most of these samples would be
classified as partially grass-fed; however, the @@man samples would be erroneously
labelled as “Irish grass-fed beef”. Italian and idph beef samples were mainly classified as
belonging to the C group. Most of the UK samplesenadso assigned to the C group;
however, 3 to 4 samples, depending on the modeg wlassified as grass-fed. Similarly,
most of the Brazilian samples were identified asigéy-grass fed and concentrate-fed,
however two samples were identified as grass-feblbgel 3. An aspect to take into account

is the type of muscle used in the analysis. Far¢hudy however, striploin, sirloin and round
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muscle were used and according to Pavan & DucRettl), little differences exist in the
proportions of FAME between these beef cuts.

Overall, the low number of samples “misclassified”Irish grass-fed beef indicated
that the models, , captured traits in the fattyl geofile that are characteristic of Irish grass-
fed beef and that this feature could be used tindigish Irish grass-fed beef from beef from
other countries. Furthermore, none of the samptes the US, including the pasture-fed
samples were classified as Irish grass-fed. Thisoestrates that the fatty acid profile could
be used to authenticate the country of origin asgffed beef but not grass-ieer seand
supports the hypothesis that the fatty acid prafilgrass-fed beef is rather characteristic of
the country of origin. These results however aedan a limited number (n = 12) of
pasture-fed samples, which may not be represeatafildS pasture-fed beef. Further
validation involving larger sample sizes of be@infrvarious countries/regions and of known
dietary background, especially from pasture/grassed diets, are required to
comprehensively evaluate whether CDA models bardtiefatty acid profile of Irish beef
can successfully discriminate Irish grass-fed Ihe#h grass-fed beef from other countries.

Nonetheless, this exploratory analysis indicated the approach holds potential.

4. Conclusion

Beef from different production systems can be disicrated by application of CDA models
based on the muscle fatty acid profile of beef. @&pproach can be successfully applied to
distinguish between grass-, partially grass- angtentrate-fed beef as well as distinguishing
grass-fed beef from beef fed concentrate supplezdesith sunflower and linseed oils. The
approach also has potential to discriminate betvibeer from grazed pasture systems and
beef reared in combined pasture and ensiled-gyassnss, but further studies are required to
comprehensively evaluate this possibility. Modaldtlusing fatty acid data from Irish beef

raised under various production systems could riffeate Irish grass-fed beef from grass-
20
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fed beef from other regions such as the US. Olé¢nid study demonstrates that successful
classification models based on the proportionsatiffacids in muscle can be developed
which, with further development and improvementjlddoecome a reliable authentication

tool to support claims of the provenance of beef.
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Table L Summary table of the data sets and dietary tre@isn

Dataset Code n Country of Origin  Dietary Background
Trial A P 24 Ireland Pasture for 11 months.
(n=98) SiP 24 Ireland Grass silagal libitumfor 5 months.
Pasture for 6 months.
SiPC 25 Ireland Grass silagd libitumfor 5 months.
Pasture plus 50% of dietary DM as
concentrates for 6 months.
C 25 Ireland Concentrate and straw for 11 months.
Trial B SiP2 15 Ireland Grass silaga libitumfor 2 months.
(n=60) Pasture for 158 days.
SiC 15 Ireland Grass silagel libitumfor 2 months.
Grass silaged libitumplus 3 kg of
concentrate for 158 days.
SunO 15 Ireland Grass silagd libitumfor 2 months.
Pasture plus 1.6 kg of sunflower oil-enriched
concentrate for 158 days.
LinO 15 Ireland Grass silagal libitumfor 2 months.
Pasture plus 1.6 kg of linseed oil-enriched
concentrate for 158 days.
Commercial Ir-Org 18 Ireland Labelled as organistpee-fed.
(n=26) Ir 8 Ireland Unknown
International Aus 4 Austria Unknown
(n=97) Fr 4 France Unknown
Ger 6 Germany Unknown
It 18 Italy Unknown
Sp 7 Spain Unknown
UK 19 UK Unknown
Br 17 Brazil Unknown
us 10 us Unknown
US-P 12 us Labelled as pasture-fed.
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Table 2. Chemical composition of the feeds used in feedingl A (Mean + SD).

Grass/Pasture  Grass Silage Concentrate

(n=12) (n=6) (n=12)
Proximate composition, g/kg DM
Crude ash 111282 109.7+ 4.2  69.4+14.6
Crude protein 215.4 46.3 167.7+ 30.9 134.0+22.0
Fat 38.1+ 6.3 39.9+2.2 19.2+2.9
DM digestibility (g/kg) 770.1 724 866.4
Individual FAME (g/100g FAME)
C14:0 0.50+ 0.09 2.89+1.81 0.30t 0.45
C16:0 17.63 1.15 18.251.14 39.821.59
C18:0 2.39+ 0.83 2.44+ 0.11 3.38:0.28
C18:1c9 2.42+ 0.67 3.29£ 0.29 20.88: 0.92
C18:1-6 12.67+ 1.43 15.40:1.20 31.31+1.52
C18:1-3 54.84+ 4.09 50.43 2.00 2.25:0.81
C20:0 0.48: 0.09 0.63t 0.05 nd
C22:0 1.06t 0.24 1.13:0.11 0.06+ 0.22
C22:1n-9 0.65+ 0.14 0.34t 0.27 nd
C24:0 0.9+ 0.19 1.00t 0.16 0.03: 0.1
C24:1 0.49+ 0.29 0.20 0.16 nd
Families of FAME (g/100g FAME)
SFA 22.96+ 1.95 26.34+2.42 43.59+1.43
MUFA 3.56+1.25 3.82£0.48 20.88+1.13
PUFA 67.51+ 3.42 65.84+ 2.46 33.56+ 1.92

nd = not detected.

DM = dry matter.

FAME = fatty acid methyl esters.

SFA = saturated fatty acids.

MUFA = monounsaturated fatty acids.

PUFA = polyunsaturated fatty acids.
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658 Table 3. Fatty acid proportion of total intramuscular fabrfr LTL muscle of beef heifers
659 (Trial A) receiving pasture (P), silage followed pgsture (SiP), silage followed by pasture
660 supplemented with concentrate (SiPC) or concenftzte

= SiP SiPC C

(n=24) (n=24) (n=25) (n=25) °octM  p-value
IMF (g/100g muscle) 3.6 2.66 3.60" 417 0.199 <0.01
FAME (g/100g FAME)
C14:0 2.04 2.00 2.28" 2.36 0.079 <0.01
C14:1 0.50 0.51 0.64 0.61 0.043 0.04
C15:0 0.38 0.47 0.36 0.27 0.012 <0.01
C15:0s0 0.14* 0.18 0.12 0.08* - -
C15:(anteiso 0.36" 0.38 0.3 0.2% 0.032 0.03
C15:1 nd 0.09* 0.07* 0.12 - -
C16:0 2091 2066 2227 248 0.711 <0.01
C16:0s0 1.56" 1.79 1.38" 1.16 0.105 <0.01
C16:1c9 + C17:@nteiso 3.5 3.53" 4.24" 4.65 0.195 <0.01
C16:19 + C17:0s0 0.48 0.53 0.47 0.32 0.016 <0.01
C16:111 0.17* 0.21* 0.15* nd - -
C16:112 0.35 0.38 0.28 0.25 0.035 0.04
C16:1c13 nd 0.12* nd nd - -
C16:29,c12 0.94" 1.08 0.73¢ 0.57 0.087 <0.01
C17:0 0.86 0.88 0.83" 0.76 0.029 0.05
C17:1c9 0.76 0.90 0.88" 0.79¢ 0.028 <0.01
C18:0 13.22  12.4%* 11.03 11.32 0.484 <0.01
C18:1c9 37 3572 3934 403 0.966 <0.01
C18:19 0.08* 0.12 0.09* 0.12* - -
C18:110 0.15 0.18 0.16 0.14 0.012 0.13
C18:1c11 1.18 1.14 1.3F 1.49 0.057 <0.01
C18:111 2.43 2.40 1.79 0.61 0.134 <0.01
C18:112 0.09* 0.09* 0.08* 0.05* - -
C18:1c13 0.28 0.28 0.35" 0.36 0.021 <0.01
C18:113 0.33* 0.24* 0.19* 0.12* - -
C18:1c15 + C18:2.10.14 0.f9 019 0.17" 013 0.013 <0.01
C18:116 0.20 0.22 0.16 0.06* - -
C18:1-6 2.20 2.56 3.1% 3.49 0.143 <0.01
C18:211415 0.10* 0.10* 0.10* nd - -
C18:211c15 0.25 0.30 0.21 nd - -
CLACOt11 0.8% 0.86 0.7F 0.3° 0.042 <0.01
CLAt10c12 nd 0.06* nd nd - -
C18:2.10.13 + C18:2.11.14 0.22 0.24 0.20 0.05* - -
C18:1-3 1.38 1.7G 0.92 0.27 0.054 <0.01
C20:19 0.08 0.09 0.13 0.17 - -
C20:3-6 0.24 0.27" 0.3 0.3¢ 0.019 <0.01
C20:4-6 1.22 1.30 1.16 1.35 0.096 0.50
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C20:51-3 0.74 1.07 0.47 0.13 0.049 <0.01

C22:0 0.27 0.25 0.10* nd - -

C22:1-6 0.18 0.23 0.07* nd - -

C22::-3 1.03 1.10 0.73 0.37 0.052 <0.01
C22:6-3 0.08* 0.16 0.07* nd - -

SFA 39.65 39.00 38.64 41.04 1.109 0.43
MUFA 44.42 42.68 45.69 45.30 1.042  0.19
PUFA 9.46" 1094 8.87 7.04 0430 <0.01
PUFA:SFA 0.24 0.29 0.24" 0.18 0.016 <0.01
n-6 3.87 4.4F" 4.7 5.26 0.253 <0.01
n-3 3.58 4.38 2.50 0.85 0.145 <0.01
n-6:n-3 1.08 1.00 1.90 6.19 0.082 <0.01

SEM = pooled standard error of the means.

abcdgifferent letters within a row indicate a signifitalifference P<0.05). Only applicable to FAME
that had <15% of non-detected values in all feedaggmes.

* non-detected measurements accounted for 15-50%.

nd: non-detected measurements accounted for >50%.

FAME = fatty acid methyl esters.

CLA = conjugated linoleic acid.

SFA = sum of saturated fatty acids (C14:0 + C15@15:0so + C15:@Gnteiso +C16:0 + C16:(30 +
C17:0 + C18:0 + C22:0).

MUFA = sum of monounsaturated fatty acids (C14.C15:1 + C16:f10+ C16:111 + C16:112 +
C16:1c13+ C17:X9 + C18:14 + C18:19 + C18.19 + C18:110 + C18:t11 + C18:111 + C18:t12
+C18:112 + C18:t13 + C18:113 + C18:116 + C20.19).

PUFA = sum of polyunsaturated fatty acids (Ct8c22 + C18:2-6 + C18:211t15 + C18:211c15 +
CLAC9t11 + CLA10c12 + C18:2.10.13 + C18:2.11.14 + C183 + C18:39t11c15 + C20:2-6 +
C20:3-6 + C20:41-6 + C20::-3 + C22:2-6 + C22:%1-3 + C22:61-3).

n-6: sum of omega-6 fatty acids (C18@ + CLAt10cl2 + C20:2-6 + C20:31-6 + C20:4-6 +
C22:2n-6).

n-3: sum of omega-3 fatty acids (C1&2t15 + C18:211c15 + C18:3-3 + C20:%1-3 + C22:1-3 +
C22:41-3)
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Table 4.Fatty acid proportion of total intramuscular fairfr commercial and international beef samples witknown or stated dietary
background (mean + SD).

Ir-Org Ir Aus Fr Ger It Sp UK Br us US-P

(n=18) (n=18) (n=4) (n=4) (n=6) (n=18) (n=7) (n=19) (n=17) (n =10) (n=12)
IMF (g/100g muscle) 3.02+1.21 347+045 4.3BH9 599+210 396+1.7 283+129 282+1.1252+103 360x154 6.15+1.03 6.46+1.14
FAME (g/100g FAME)
C14.0 194+041 2191024 187+0.15 2.52400.2.33+0.82 1.81+052 193+096 1.47+0.5851+055 3.02+0.31 257+0.38
Ci14:1 0.31+0.17 0.76+0.19 0.28+0.01 0.57#0.0.73+0.29 0.25%+0.16 0.32+0.14 0.40+0.2561+0.22 0.70+£0.17 0.46+0.12
C15:0 0.57+0.18 0.40+0.07 0.37+0.01 0.31#0.0.45+0.26 0.37+0.12 0.33+0.08 0.38+0.0B41+0.14 0.54+0.10 0.52%0.11
C15:0s0 0.28+0.05 0.20+0.08 0.15+0.02 0.15+0.0517& 0.07 0.13*+0.080.12+0.04 0.12+0.07 0.26+0.10 0.09+0.03 5&2.09
C15:(anteiso 0.52+0.13 0.28+0.07 0.21+0.06 0.22+0.1133&0.15 0.61+0.24 0.38+0.22 0.48+0.32 @&48B15 0.20+0.09 0.32+0.10
Ci15:1 0.10*+0.10 nd nd nd nd 0.13+0.06 nd 0.8%:03 nd nd nd
C16:0 21.37+1.85 23.15+1.683.63+0.8825.92 +1.9220.98 +2.1321.64 +2.8520.15+5.16 18.85+2.6@1.52 +2.2923.99+1.5524.79+1.7
C16:0so 1.23+064 0.80+0.16 0.72+0.34 0.41+0.2604%059 193+093 1.78+154 171+0.71 H®IB65 0.48+0.24 0.47+0.19
C16:1c9 + C17:@nteiso  2.94+0.31 4.47+0.80 254+0.03 3.65+0.453741.65 220+058 297+101 248+1.18 3IF64 3.42+0.66 2941051
C16:19 + C17:0s0 0.47+0.24 0.10+0.06 nd 0.09+0.10 0.08*#0.0.36 +0.06 0.09*+0.09 0.12+0.08 0.17*+0.2220+0.09 0.31+0.22
C16:110 nd 0.37+0.07 0.27+0.15 0.27*+0.X¥31*+0.17 nd 0.18*+0.16 nd 0.27*+ 0.24d nd
Cil6:111 nd nd 0.15* + 0.15nd 0.06*+0.070.37+0.22 nd 0.37+0.11 nd 0.10*+0.1130 + 0.24
Cl16:112 0.21*+0.11 0.20+0.03 0.15*+0.08.17+0.06 0.21+0.05 0.23+0.05 0.17+0.05 4&D.08 0.22+0.10 0.14+0.03 0.14*+0.09
C16:1c13 0.31+0.16 0.10+0.04 0.17+0.15 0.13+0.1819+0.10 0.31+0.16 0.29+0.27 0.38*+0.8B®1+0.16 0.07+0.05 0.09*+0.07
C16:29c12 1.19+054 0622020 0.64+043 056+04995+044 160+082 1.74+132 3.05+1.67 9&®.51 0.68+0.27 0.62+0.23
C17:0 1.08+0.13 0.81+0.11 1.05+0.09 0.8780.0.82+0.35 0.76+0.19 0.72+0.29 0.79+0.2600+0.22 1.41+0.34 1.10%0.11
C17:1c9 0.65+0.13 0.74+0.10 0.54+0.03 0.56+0.0673¢0.16 0.40+0.11 0.61+0.21 0.68+0.32 @&0/19 1.07+0.32 0.62+0.11
C18:0 17.06+2.02 12.49+1.656.61+0.9 1526+1.91N145+3.2 16.53+297358+2.18 13.4+2.62 1574+3.3R.44+1.3116.18+2.95
ci18:14 0.19*+0.11 0.14+0.06 0.15+0.03 0.16+0.08.16+0.04 0.25%+0.15 0.19+0.09 0.10+0.06 56040.08 0.38+0.13 0.26+0.11
C18:1c9 20.88+£254 36.82+2.336.75+1.8137.88+1.8235.94+8.1726.81 +4.212853+7.89 28.77 £6.784.06 £ 3.3235.22 +3.1834.06 £+ 3.13
C18:19 0.23+£0.05 0.22+0.05 0.22+0.04 0.22+0.0321@0.02 0.27+0.11 0.24+0.12 0.18+0.09 @&ZD0O7 0.65+0.20 0.31+0.11
C18:110 0.43+0.34 0.24+0.08 0.23+0.10 0.31+0.0824+0.07 0.78+0.69 0.63+0.43 0.48+0.39 2&®.24 3.30+x1.35 0.75+0.55
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C18:Ir11
C18:111
C18:Ic12
C18:112
C18:1c13
C18:113

C18:1c15 + C18.2.10.14

C18:116
Cl18:n-6
C18:211t15
C18:211c15
CLACcSt11
CLAt10c12

1.13+£0.31
277+131
0.07 £0.05
0.15*+0.13
0.14 £ 0.05
0.22+0.16
0.24 £0.09
0.24 £0.05
3.02+0.98
0.12+0.03
0.39+0.16
0.71+0.21
0.08 £ 0.05

C18:2.10.13 + C18:2.11.18.17 + 0.04

Cl18:-3

C18:3x9t11c15

C20:19
C20:n-6
C20:-6
C20:4-6
C20::n-3
C22.0
C22:n-6
C22::-3
C22:4-3
SFA
MUFA
PUFA
PUFA:SFA
n-6

1.32+0.33
0.08*+0.04
0.08 £0.01
0.21+£0.08
0.11*+0.17
1.63+0.78
0.09 £0.09
0.25+0.19
0.80 +0.51
1.12+0.38
0.20+0.10
44.31 + 3.09
37.32£252
11.23 +3.00
0.26 £0.08
585+224

1.27+028 095+0.08 0.81+0520+1.19 1.12+024 140+0.74 2.03+£0.70 6&D.31 1.30+0.25 1.03+0.50
194+136 091+0.09 0.89+0.3B48+0.95 1.13+053 0.61+045 1.26+236 1EH53 095+050 191+0.75
0.05*+0.00.18+0.01 0.20+0.11 0.09+0.02 0.23+0.07 3&D.10 0.17+0.12 0.06*+0.1P.18+0.06 0.17+0.11
0.15*+0.090.14+£0.11 0.13+0.04 0.15+0.08 0.29+0.12 2&¢D.09 0.10*+0.090.18+0.13 0.21+0.14 0.18+0.13
0.32+0.10 0.16+0.01 0.22+0.0r40+0.25 0.14+0.07 0.17+0.05 0.29+0.21 6&D.09 0.38+0.12 0.22+0.12
0.23+0.14 0.18+0.09 0.25+0.18320*+0.150.32+0.16 0.12*+0.09 0.11+0.07 0.21+0.1528+0.11 0.19+0.09
0.10+£0.05 0.0920.M.07+0.03 0.11+0.02 0.15+0.05 0.11+0.08.07G:0.03 0.15+0.08 0.14+0.05 0.16+0.07
0.17+£0.04 0.27+0.04 0.18+0.0B02+0.06 0.21+0.09 0.10+x0.05 0.13+0.06 5&¢D.07 0.08+0.04 0.23+0.03
264+037 4.16+x1.20 242+13905+283 9.16+3.72 841+593 826+4.97 639.34 4.24+0.70 3.36+0.99
0.12+£0.04 0.08+0.03 0.11+0.0815+0.06 0.07*+0.040.05+0.02 0.09+0.06 0.08+0.04 0.05+0.03 0&D.03
0.24+0.12 0.17+0.02 0.13+0.0830+0.19 0.07*+0.070.06*+0.04 0.11+0.13 0.15+0.08 0.11+0.06200+0.11
0.74+0.37 030+0.03 0.32+x0.1282+0.23 0.30+0.11 0.38+0.34 0.40+0.34 9G:0.20 0.45%+0.22 0.70+x0.14
0.05* £ 0.03.03*+ 0.01 nd 0.15+0.15 nd 0.04*+0.04 0.03*+0.01 nd 0.03*+0.01
0.18+0.02 0.20+x0.02 0.17+0.06 1G¢D.04 0.11*+0.070.11+0.04 0.30+0.12 0.10+0.05 0.14+0.05 9&-D.04
1.19+0.17 145+0.26 0.58+0.2P50+1.25 0.53+0.27 0.38+0.19 1.03+1.16 3&D.31 0.24+0.12 0.57+0.23
nd nd 0.05* £ 0.0D.04* + 0.03 0.06* + 0.06 0.13+0.12 0.10+0.04 0.05*+0.08.07 £0.02 0.09+0.03
0.11+0.02 0.11+£0.02 0.15+0.0520@:0.22 0.09*+0.050.11+0.03 0.13*+0.140.13+0.05 0.12+0.04 0.09*+0.04
0.12* £ 0.070.06* £ 0.05 0.06 £ 0.02 0.09*+0.040.11+0.05 0.13+0.10 0.20+0.10 0.17*+0.0105*+0.03 0.09 +0.04
0.27+0.05 0.18+0.07 0.22+0.18.33+0.14 0.48+0.30 0.66+0.39 0.78+0.3439%0.19 0.24+0.11 0.25+0.07
1.10+0.29 0.83+0.39 0.63+0.5B27+0.88 274%+149 317+211 256+1.22 3¥H.74 0.72+0.38 0.73+0.18
0.67+0.18 0.29*+0.20.20+0.22 055+0.36 0.33+0.31 052+0.27 7GD.13 036+025 0.08+0.04 0.10%0.05
nd nd 0.03*+0.00.05*+ 0.02 0.11 +0.06 0.12+0.06 0.08* = 0.0@.05* £ 0.04 nd nd
0.20+0.04 0.10+x0.04 0.09+0.0319+0.08 nd 0.12*+0.11 0.69+0.66 0.24+0.28.06*+0.07 0.12+0.12
091+0.18 050+0.21 035+0.2377+033 068039 062+035 1.11+0.77 8843 0.16+0.11 0.30+0.14
0.21+0.12 0.08+£0.07 0.08*+0.014+0.07 nd 0.15+0.08 0.17+x0.24 0.17+0.08d nd
40.34 £ 2.684.64 £ 1.5545.68 £+ 3.4137.61 £5.9643.89+4.1739.10 + 6.72 37.28 +3.1@3.05 +3.7942.20 £ 2.5946.23 + 4.02
43.88 +1.7811.80 £1.6943.12 + 0.6343.72 +8.8633.36 £+ 4.5734.15+8.83 35.79+7.140.61 + 3.6845.15+3.3941.06 + 3.78
9.30+1.03 9.09+284 5.99443. 11.49+5.7516.33 £6.2316.68 +10.2219.13+£8.2210.21+3.377.33+1.34 7.49+1.08
0.23+0.04 0.21+0.07 0.12@9 0.30+0.13 0.38+0.18 0.48+0.38 0.53250.0.24+0.09 0.17+0.03 0.16+0.03
439+0.70 535+169 345+2.0907+3.75 1253+540252+8.36 12.51+6.18%.22+2.31 533+1.02 4.58+1.00
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686
687
688
689
690
691
692
693
694
695
696
697
698
699

n-3 3.24+066 3.33+x047 256+0.74 144+0.8241+183 1.73+£089 1.79+0.72 2.76+190362091 0.66+0.23 1.29+043
n-6:n-3 176 +041 1.33+0.21 209+0.12 24143 181+047 8.82+477 6.87+265 55182280+1.17 8.78+286 4.19+235

Ir-Org: Ireland, organic pasture-fed; Ir: Irelamshknown; Aus: Austria, unknown; Fr: France, unknpo@er: Germany, unknown; It: Italy, unknown; Sp:
Spain, unknown; UK: unknown, Br: Brazil, unknownSUunknown. US-P: pasture-fed.

* non-detected measurements accounted for 15-50%.

nd: non-detected measurements accounted for >50%.

FAME = fatty acid methyl esters.

CLA = conjugated linoleic acid.

SFA = sum of saturated fatty acids (C14:0 + C15(@15:0so+ C15:@nteiso +C16:0 + C16:Bo+ C17:0 + C18:0 + C22:0).

MUFA = sum of monounsaturated fatty acids (C14Q16:1 + C16:110+ C16:%11 + C16:112+ C16:X13+ C17:X9 + C18:14 + C18:19 + C18.19 +
C18:110 + C18:t11 + C18:111 + C18:t12 + C18:112 + C18:t13 + C18:113 + C18:116 + C20.19).

PUFA = sum of polyunsaturated fatty acids (Ct6c22 + C18:2-6 + C18:211t15 + C18:211c15 + CLAcOt11 + CLAt10c12 + C18:2.10.13 + C18:2.11.14
+ C18:31-3 + C18:89t11cl15 + C20:2-6 + C20:31-6 + C20:4-6 + C20::-3 + C22:2-6 + C22:51-3 + C22:61-3).

n-6: sum of omega-6 fatty acids (C18@ + CLAt10c12 + C20:2-6 + C20:3-6 + C20:4-6 + C22:2-6).

n-3: sum of omega-3 fatty acids (C1&t2t15 + C18:211c15 + C18:8-3 + C20:51-3 + C22:5:-3 + C22:®-3).
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700 Table 5. Classification results for models 1, 2 and 3 fileave-one-out cross-validation (CV-LOO) and prédits for 3 independent datasets
701 consisting of samples from grass and partially gfad animals (validation), samples from animaés tieceived plant oil enriched concentrate

702  (“oil-enriched” samples), and samples from varioasntries of origin (international samples).
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Model 1 Model 2* Model 3
Predictions Predictions Predictions
G SiPC C Gt GC C SunO LinO P SiP  SiPC C
CV-LOO G (n=48) 47 1 0 Gt (n = 50) 48.7 03 00 0.0 1.0 P (n=24) 22 2 0 0
SiPC(n=25) 0 25 0 GC(n=32) 00 320 00 00 00 SiP(n=24) 7 17 0 0
C (n=25) 0 0 25 C (n=20) 00 20 18.0 0.0 0.0 SiPC(n=25) 0 0 24 1
SunO(n=12) 0.0 0.0 0.0 107 1.3 C (n=25) 0 0 1 24
LinO(n=12) 0.0 00 0.0 0.0 12.0
Sensitivity (%) 97.9 100 100 Sensitivity (%) 97.3 100 90.0 88.9 100 Sensitivity (%) 91.7 70.8 96.0 96.0
Specificity (%) 100 98.6 100  Specificity (%) 100 97.5 100 100 98.0  Specificity (%) 90.5 97.3 98.6 98.6
Accuracy (%) 99.0 Accuracy (%) 96.3 Accuracy (%) 88.9
Validation SiP2(n=15) 15 O 0 Gt (n = 13) 12.700 00 00 03 SiP2(n=15) 12 3 0 0
SiC (n=15) 0 15 0 GC (n=8) 00 80 00 00 00 SiC(n=15 0 0 14 1
Ir-Org(n=18) 15 3 0 C (n=5) 00 03 47 00 00 Ir-Org(n=18)3 11 4 0
Ir-Org(n=18) 11.343 00 00 23
“Oil-enriched” samples SunO (n=15) 15 0 0 SunO (n = 3) 00 00 00 27 0.3 SunO(n=15) O 0 13 2
LinO(n=15) 15 O 0 LinO(h=3) 00 00 00 00 30 LinO(n=15) 6 4 5 0
International samples Ir (n = 8) 5 3 0 Ir (n=28) 43 36 0.0 0.0 0.0 Ir (n=28) 4 1 3 0
Aus (n =4) 0 4 0 Aus(n=4) 00 40 0.0 0.0 0.0 Aus (n =4) 0 0 4 0
Fr(n = 4) 0 3 1 Fr(n = 4) 00 30 10 00 00 Fr(n=4) 0 0 2 2
Ger (n=6) 2 3 1 Ger(n=6) 13 43 03 0.0 0.0 Ger (n=6) 0 2 3 1
It (n = 18) 0 1 17 It (n = 18) 00 1.0 170 0.0 0. It (n = 18) 0 0 0 18
Sp(n=7) 0o 0 7 Sp(n=7) 00 00 70 00 00 Sp(n=7) 6 0 0 7
UK (n = 19) 4 1 14 UK(n=19) 30 1.0 140 10 0.0 UK(h=19) 1 3 3 12
Br (n =17) o 8 9 Br(n=17) 00 80 90 00 00 Br(n=17) 0 2 7 8
US (n =10) 0 0 10 US(n=10) 0.0 00 100 0.0 0.0 US (n =10) 0 0 5 5
US-P(n=12) O 7 5 US-P(n=12)0.0 6.7 53 0.0 0.0 US-P(n=12) O 0 7 5

703

w
o~



704
705
706
707
708

G: grass-fed group (P + SiP); Gt: total grass-fienlig (P + SiP + SiP2); GC: grass-concentrate (SiFSC).

Ir-Org: Ireland, organic pasture-fed; Ir: Irelamshknown; Aus: Austria, unknown; Fr: France, unknpo@er: Germany, unknown; It: Italy, unknown; Sp:

Spain, unknown; UK: unknown, Br: Brazil, unknownSuUunknown. US-P: pasture-fed.

* model 2results are the average of 3 repeats resultimg femdomly splitting the data into training and &t 3 times (ratio =0.8).
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709  Fig. 1. Canonical score (a) and structure coefiic{) plots for the % canonical

710  discriminant function (CDF1) of model 1.

711

712  Fig. 2. Canonical score and structure coefficidot for the £'and 2 canonical discriminant
713  functions (CDF1 and CDF2) of model 2.

714

715  Fig. 3. Canonical score and structure coefficeot far the £ and 2 canonical discriminant
716  funtions (CDF1 and CDF2) of model 3.
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Highlights

1.

2.

Muscle fatty acid profile was used to discriminate beef from various feeding systems
Canonical discriminant models were validated with an independent data set

Models were applied to an international set of beef samples

Beef from cattle fed grass, concentrate or combinations can be discriminated

Grass-fed beef can be distinguished from beef supplemented with vegetable oils
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