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Abstract 13 

 14 

The experimental data on the bacterial reverse mutation test (under various conditions) on C60 15 

nanoparticles for the cases (i) TA100, and (ii) WP2uvrA/pkM101 are examined as endpoints. 16 

By means of the optimal descriptors calculated with the Monte Carlo method a mathematical 17 

model of these endpoints has been built up. The models are a mathematical function of eclectic 18 

data such as (i) dose (g/plate); (ii) metabolic activation (i.e. with  mix S9 or without mix S9); 19 

and (iii)  illumination (i.e. darkness or irradiation). The eclectic data on different conditions 20 

were represented by so-called quasi-SMILES. In contrast to the traditional SMILES which are 21 

representation of molecular structure, the quasi-SMILES are representation of conditions by 22 

sequence of symbols. The calculations were carried out with the CORAL software, available on 23 

the Internet at  http://www.insilico.eu/coral. The main idea of the suggested descriptors is the 24 

accumulation of all available eclectic information in the role of logical and digital basis for 25 

building up a model. The computational experiments have shown that the described approach 26 

can be a tool to build up models of mutagenicity of fullerene under different conditions.  27 
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1. Introduction 37 

During last decades, a list of traditional substances has expanded and a new group of 38 

species – nanomaterials has been introduced both in research laboratories and in the everyday 39 

life.  Nanomaterials already play significant role in many aspects of modern life, such as 40 

chemical and pharmacological industries, medicine, ecology, toxicology. For the case of the 41 

majority of organic compounds the estimation of their dangerous and attractive properties 42 

(endpoints) can be done by means of well-known quantitative structure – property / activity 43 

relationships (QSPRs/QSARs) (Salahinejad and Ghasemi, 2014; Wang et al., 2015; Peric et al., 44 

2015). Thus, endpoints related to nanomaterials are waiting for predictive QSPR/QSAR models 45 

(Fourches et al., 2010; Leszczynski, 2010).  46 

However, the simply application of the classic approaches based on the representation of 47 

various substances by the structure of their molecules is impossible for majority of 48 

nanomaterials. Moreover, the classic QSPR/QSAR models are based on manipulation with 49 

considerable large databases, where the number of available substances can be hundreds or 50 

even thousands. In the case of nanomaterials as rule their synthesis and identification are very 51 

difficult actions and as result, the number of nanomaterials which are examined in some 52 

standardized conditions is very small (units or tens, in the best case). 53 

Therefore, in the case of nanomaterials one cannot expect large databases to be available 54 

in the near future. Consequently, predictive models for endpoints related to nanomaterials 55 

should focus and be developed using small data sets. Moreover, molecular structure of majority 56 

of nanomaterials has no convenient representations (for the QSPR/QSAR analyses) such as 57 

molecular graph (Toropov and Toropova, 2002; Toropov and Toropova, 2003; Toropov and 58 

Roy, 2004) or simplified molecular input-line entry system (SMILES) (García  et al., 2010, 59 

Garro Martinez et al., 2011; Ibezim et al., 2011). 60 

Thus, for the case of nanomaterials, the traditional classic QSPR/QSAR theory and praxis 61 

should be cardinally modified. International organizations such as, OECD (Organisation for 62 

Economic Co-operation and Development) (OECD, 2006-2010) and REACH (Registration, 63 

Evaluation, Authorisation and Restriction of Chemicals) (REACH, 2011) pay attention on 64 

necessity of the further evolution of knowledge related to nanomaterials. Multiple toxicity of 65 

nanomaterials have been carried out in the last decade. However, most of these works used 66 

non-standardized testing protocols leading to  unreproducible and poorly comparable results, 67 

which therefore are insufficient for estimation of hazard and risk assessment (Burello and 68 

Worth, 2011; Richarz et al., 2015). In addition, the unavailability of consistent physico-69 

chemical characterization data in the same studies makes it difficult to identify which material 70 



characteristics determine the documented toxic effects. In other words, the need for 71 

standardization and new approaches in the nanosafety area has been recognized (Salahinejad, 72 

2015). 73 

The possible way, to estimate endpoints related to nanomaterials with using so-called 74 

optimal descriptors has been suggested (Toropova and Toropov, 2013; Toropova et al., 2013; 75 

Toropova et al., 2015). The advantage of the approach is the possibility of standardization of 76 

eclectic data. In the case of traditional QSPR/QSAR analyses, the paradigm "Endpoint = 77 

F(structure)" is the basis to build up a predictive model. In this case, SMILES is the 78 

representation of the molecular structure. In the case of the predictive modelling for 79 

nanomaterials, an alternative paradigm can be defined as "Endpoint = F(eclectic data)". The 80 

eclectic data can be represented by sequence of symbols similar to SMILES, but where 81 

symbols are a representation of a list of eclectic conditions. These sequences of symbols should 82 

be denoted as "quasi-SMILES" in order to avoid their false interpretation as the "traditional 83 

SMILES". Since these models are based on list of eclectic conditions (not on structure), instead 84 

of QSPR/QSAR one should use some other terminology for these researches, e.g.  “quantitative 85 

conditions - property / activity relationships” (QCPR/QCARs). 86 

 The aim of the present work is to estimate QCAR based on data (conditions) related to 87 

(i) dose (g/plate); (ii) metabolic activation (with or without mix S9); and (iii) illumination (dark 88 

or irradiation) as a tool to predict two endpoints. The  endpoint-1 is the bacterial reverse 89 

mutation test that was conducted using Salmonella typhimurium strains TA100; and the 90 

endpoint-2 is mutagenic effect of fullerene for  Escherichia coli strain WP2 uvrA/pKM101 91 

(Shinohara et al., 2009). 92 

 93 

2. Method 94 

2.1. Data 95 

Data on (i) the bacterial reverse mutation test that was conducted using Salmonella 96 

typhimurium strains TA100 in the presence and absence of metabolic activation under dark 97 

conditions and irradiation are taken in the literature, and (ii) the numerical data on the bacterial 98 

reverse mutation test that was conducted using Escherichia coli strain WP2 uvrA/pKM101 in 99 

the presence and absence of metabolic activation under dark condition and irradiation are taken 100 

in the literature (Shinohara et al., 2009). Twenty quasi-SMILES have been defined for the 101 

above data. These twenty quasi-SMILES were randomly split into the training, calibration, and 102 

validation sets. The training set is basis to build up a model. The calibration set is used to avoid 103 

the overtraining (situation where the excellent statistical quality of a model for the training set 104 



is accompanied by poor statistical quality of the model for external quasi-SMILES). The 105 

validation set is utilized for the final estimation of the predictive potential of the model. For 106 

each endpoint three random splits were examined. 107 

2.2. Optimal descriptor 108 

The optimal descriptors used in this study are calculated as the following 109 

)(),( kEpoch SCWNTDCW                                                                     (1) 110 

where Sk is a symbol for representation of conditions listed in Table 1. 111 

The CW(Sk) are correlation weights of a symbol from quasi-SMILES. The correlation 112 

weights of symbols are calculated with optimization by the Monte Carlo technique. The 113 

correlation weights should provide maximal value of the correlation coefficient between the 114 

DCW(T,NEpoch) and experimental data on the TA100 or WP2 uvrA/pKM101.  The T and the 115 

Nepoch are parameters of the optimization: the T (threshold) is coefficient for classification of 116 

impacts into two categories: rare and not rare. Correlation weight for rare impact is fixed equal 117 

to zero. Therefore rare attributes are not involved in the model. The Nepoch is the number of 118 

epochs of the Monte Carlo optimization. 119 

Having data on optimal correlation weights, one can:  120 

(i) calculate DCW(T, Nepoch) for all quasi-SMILES;  121 

(ii) calculate (with data on the training set) a model for TA100 or for WP2 uvrA/pKM101: 122 

 123 

),(100 10 epochNTDCWCCTA                                                                        (2) 124 

 ),(101/2 10 epochNTDCWCCpKMuvrAWP                                           (3) 125 

 126 

These models should give preferable statistical quality for the calibration set, i.e. the best 127 

quality for a preliminary external set: quasi-SMILES from the calibration set are visible but 128 

their role is passive checking up “whether overtraining happens?”. If yes, the process should be 129 

stopped and restart of the optimization till Nepoch-1, where overtraining is not reached should be 130 

carried out (Toropova et al., 2011);  131 

and  132 

(iii) predictive potential of the model should be checked up with an external validation set. The 133 

quasi-SMILES  of the validation set are not involved in building up model. 134 

3. Results and Discussion 135 

The utilization of the optimal descriptors calculated according to scheme suggested in the 136 

literature (Toropova et al., 2013) gives the following models: 137 



 138 

TA100 =  69.4243 +  25.9161*DCW(2,2)                                                                          (4) 139 

 n= 10, r
2
=0.7551, s=7.67, F=25 (sub-training set) 140 

n=5, r
2
=0.9032, s=19.0 (Calibration set) 141 

n=5, r
2
=0.6826, s=14.4 (Validation set) 142 

 143 

TA100 =  94.0379 +  14.8826 * DCW(2,12)                                                                      (5) 144 

 n= 10, r
2
=0.6318, s=9.00, F=14 (sub-training set) 145 

n=5, r
2
=0.7867, s=18.7 (Calibration set) 146 

n=5, r
2
=0.7108, s=25.8 (Validation set) 147 

      148 

TA100 = 117.813 +  12.3159 * DCW(2,3)                                                                         (6) 149 

 n= 10, r
2
=0.6810, s=9.78, F=17 (sub-training set) 150 

n=5, r
2
=0.9396, s=7.91 (Calibration set) 151 

n=5, r
2
=0.7884, s=7.79 (Validation set) 152 

                                                  153 

WP2uvrA/pKM101 = -30.1488  +   91.6017 * DCW(3,3)                                                  (7) 154 

n=9,  r
2
=0.7877, s=16.2, F=26 (sub-training set) 155 

n=6,  r
2
=0.8729, s=12.6 (calibration set) 156 

n=5,  r
2
=0.8138, s=23.2 (validation set) 157 

 158 

WP2uvrA/pKM101 = -11.3863 +   46.37* DCW(2,3)                                                        (8) 159 

n=9,  r
2
=0.8206, s=15.4, F=32 (sub-training set) 160 

n=7,  r
2
=0.8767, s=36.7 (calibration set) 161 

n=5,  r
2
=0.8185, s=39.7 (validation set) 162 

         163 

WP2uvrA/pKM101 =  84.9481 +   16.1111 * DCW(3,6)                                                 (9) 164 

n=10,  r
2
=0.6805, s=12.1, F=17 (sub-training set) 165 

n=5,  r
2
=0.7480, s=16.5 (calibration set) 166 

n=5,  r
2
=0.8367, s=25.7 (validation set) 167 

         168 

Table 1 contains definition of symbols used in quasi-SMILES. Table 2 contains 169 

numerical data on TA100 together with the general scheme of construction of quasi-SMILES. 170 

Table 3 contains the QCAR model for TA100. Table 4 contains correlation weights for 171 



calculation of the optimal descriptors used in Eq.4, Eq.5 and Eq.6. Table 5 contains an example 172 

of the calculation of TA100. Table 6 contains the QCAR model for WP2uvrA/pKM101. Table 173 

7 contains the correlation weights for calculation with Eq. 5. 174 

Mechanistic interpretation: Having data on several runs of the Monte Carlo procedure 175 

one can classify the conditions in accordance with their correlation weights: if every time the 176 

correlation weight is large in all probes, the condition should be estimated as a promoter of 177 

endpoint increase; if every time the correlation weight is small in all probes, the condition 178 

should be estimated as a promoter of endpoint decrease; if correlation weight has unstable 179 

value in several probes of the runs of the Monte Carlo procedure, one should estimate the 180 

condition as undefined. One can see, that in the case of TA100 (Table 4), darkness is promoter 181 

of TA100 increase, irradiation is promoter of TA100 decrease; doses 200, 400, and 100 g/plate 182 

are promoter TA100 increase; and presence or absence of Mix S9, and impacts of doses 50 and 183 

100 g/plate are undefined (i.e. these are not stable promoter of increase or decrease of the 184 

endpoint). In the case of WP2uvrA/pKM101 (Table 7), presence of Mix S9 is promoter of 185 

decrease and absence of Mix S9 is promoter of increase of the mutagenicity; darkness is 186 

promoter of decrease and irradiation is promoter of increase of the endpoint; dose 1000 g/plate 187 

is promoter of the endpoint increase; and impact of doses 50, 100, 200, and 400 g/plate are 188 

undefined. 189 

Domain of applicability. The defect of quasi-SMILES (Toropova et al., 2015) is a 190 

criterion to detect outliers. Table 3 contains data on quasi-SMILES which are recognized as 191 

outliers for TA100 models according to the above statistical defect of quasi-SMILES 192 

(Toropova et al., 2015). Table 6 contains the similar data for WP2uvrA/pKM101 models.  193 

The comparison of dispersion of the experimental definition and standard error of 194 

estimation of models which are calculated with Eqs. 4-9 indicates that accuracy of  calculated 195 

mutagenicity is lower than the accuracy of  experimental definition, but these are comparable. 196 

Thus the possibility of the prediction the numerical data on TA100 and WP2uvrA/pKM101 for 197 

fullerene nanoparticles under different conditions is demonstrated. In our previous work 198 

(Toropov and Toropova, 2014) only one split into the training, calibration, and validation sets 199 

has been examined. The analysis of models represented here has shown that the statistical 200 

quality of the models significantly depend on the distribution into visible training and 201 

calibration sets and invisible validation set. However all examined models (Eqs. 4-9) have  202 

predictive potentials. In the above-mentioned work (Toropov and Toropova, 2014) the 203 

statistical characteristics of the model for mutagenicity of fullerene (the same data on TA100) 204 

are the following: n=10, r
2
=0.7549, s=7.7 (training set); n=5, r

2
=0.8987, s=18.7 (calibration 205 



set); and n=5, r
2
=0.6968, s=10.9 (validation set). Consequently, the predictive potential of 206 

models for splits 2 and 3 (Eqs. 5 and 6) slightly better or at least comparable with predictive 207 

potential of model which has been suggested in the above work.  208 

Thus, the checking up of the suggested approach (using the CORAL software, 209 

http://www.insilico.eu/coral) with other endpoints related to substances with complex and 210 

unclear molecular structure e.g. other nanomaterials and/or peptides is quite attractive task. It is 211 

to be noted that the local QCAR models for small datasets, can be integrated in joint QCAR 212 

model if corresponding experimental data will become available (Toropov and Toropova,  213 

2015; Toropova et al., 2014; Toropova et al., 2015). 214 

4. Conclusions 215 

Due to a fact that large datasets are not available for nanomaterials one needs to develop 216 

methodology that provides predictions based on small datasets. The QCAR approach developed 217 

here provides reasonable good prediction for the mutagenicity (TA100 and 218 

WP2uvrA/pKM101) of fullerene nanoparticels under different conditions.   219 
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Table 1 295 

The list of conditions  which have impact upon mutagenicty of fullerene C60 nanoparticles and 296 

which were utilized to build up models. 297 

 298 

Conditions Symbols for quasi-SMILES 

Dark or Irradiation “0” = Darkness 

“1” = Irradiation 

Mix S9 “+” = with Mix S9 

“- “= without Mix S9 

Dose (g/plate) “A” = 50 

“B” = 100 

“C” = 200 

“D” = 400 

“E” = 1000 

  299 

Covers
Typewritten Text
Tables



Table 2 300 

The numerical data on endpoints and dispersion of the experimental definition and the scheme 301 

of construction of quasi-SMILES. 302 

 303 

ID Darkness or 

Irradiation 

Mix S9 dose TA100 WP2uvrA/pKM101 

1 0 + A 146±4 113±7 

2 0 + B 141±24 106±19 

3 0 + C 159±8 112±15 

4 0 + D 160±21 115±15 

5 0 + E 177±8 145±13 

6 0 - A 143±14 160±15 

7 0 - B 139±22 162±21 

8 0 - C 169±20 174±26 

9 0 - D 168±7 179±15 

10 0 - E 152±15 220±6 

11 1 + A 129±6 114±10 

12 1 + B 131±4 105±12 

13 1 + C 138±12 113±16 

14 1 + D 137±14 110±18 

15 1 + E 160±6 123±8 

16 1 - A 136±11 127±25 

17 1 - B 136±6 133±12 

18 1 - C 138±7 121±15 

19 1 - D 164±16 117±29 

20 1 - E 172±14 138±19 

  304 



Table 3 305 

Experimental and calculated with Eq. 4,5, and 6 values of the TA100 for fullerene 306 

nanoparticles impact under different conditions  307 

ID 1
*
 2 3 Quasi-SMILES Expriment Eq.4 Eq.5 Eq.6 1

*
 2 3 

1 V V V 0+A 146 132.8046 115.3775 143.2652 Y Y Y 

2 T C V 0+B 141 145.8861 121.3559 144.0029 N Y Y 

3 T C C 0+C 159 157.1709 136.5559 157.8729 N Y Y 

4 V C V 0+D 160 162.0685 142.5034 161.6878 Y Y Y 

5 T V T 0+E 177 165.3027 143.7145 165.5465 Y N Y 

6 C C C 0-A 143 130.9643 134.7925 147.8862 Y Y Y 

7 T T C 0-B 139 144.0458 140.7708 148.6238 N Y N 

8 V T T 0-C 169 155.3307 155.9708 162.4939 N Y Y 

9 T V C 0-D 168 160.2283 161.9183 166.3087 Y Y Y 

10 T T T 0-E 152 163.4625 163.1294 170.1675 Y N N 

11 C V T 1+A 129 116.4477 113.3044 130.1540 Y Y Y 

12 T C T 1+B 131 129.5292 119.2827 130.8917 N Y Y 

13 V T T 1+C 138 140.8141 134.4827 144.7618 N Y Y 

14 T T T 1+D 137 145.7117 140.4303 148.5766 Y Y Y 

15 C V T 1+E 160 148.9459 141.6413 152.4354 Y N N 

16 V T T 1-A 136 114.6075 132.7193 134.7750 Y Y Y 

17 T T V 1-B 136 127.6890 138.6977 135.5127 N Y Y 

18 T T C 1-C 138 138.9739 153.8977 149.3827 N Y Y 

19 C T T 1-D 164 143.8715 159.8452 153.1976 Y Y Y 

20 C T V 1-E 172 147.1057 161.0562 157.0563 Y N N 
 

308 

*) 
Split 1, 2, and 3; T=training set; C=calibration set; and V=validation set; Y=quasi-SMILES 309 

falls into Domain of applicability (otherwise “N”). 310 

  311 



Table 4 312 

Correlation weights for symbols which represent conditions of impact of fullerene C60 313 

nanoparticles  (Eq. 4,5, and 6 for TA100) 314 

Symbols of quasi-SMILES, Sk       CW(Sk) 

run 1     

CW(Sk) 

run 2     

CW(Sk) 

run 3     

+ 1.06698 0.47336 0.19086 

- 0.99597 1.77789 0.56606 

0 1.37861 0.96051 1.93566 

1 0.74747 0.82121 0.87109 

A 0.0 0.0 -0.05990 

B 0.50476 0.40170 0.0 

C 0.94020 1.42303 1.12619 

D 1.12918 1.82266 1.43594 

E 1.25398 1.90403 1.74925 

 315 

 316 

  317 



 318 

Table 5 319 

An example of calculation of optimal descriptor with correlation weights for fullerene C60 320 

nanoparticle represented by code “0+B” ; DCW(2,2) =     2.9504;  321 

TA100 =  69.4243 +  25.9161*2.95036 = 145.8861                                                                           322 

 323 

 324 

Sk       CW(Sk) 

0       1.3786 

+       1.0670 

B       0.5048 

  325 



 326 

Table 6 327 

Experimental and calculated with Eq. 7,8, and 9 values of the WP2uvrA/pKM101 for fullerene 328 

nanoparticles impact under different  conditions 329 

 330 

ID 1
*
 2 3 Quasi-SMILES Expriment Eq.7 Eq.8 Eq.9 1

*
 2 3 

1 T C T 0+A 113 118.9590 95.2449 133.2322 Y Y Y 

2 T V C 0+B 106 118.9590 127.8341 126.7746 Y N Y 

3 V T V 0+C 112 118.9590 127.9124 126.7746 Y Y Y 

4 T T C 0+D 115 118.9590 95.2449 126.7746 Y Y Y 

5 T C T 0+E 145 152.9472 169.4336 144.8871 Y Y Y 

6 C T T 0-A 160 159.2997 136.8401 162.2816 Y Y Y 

7 V T C 0-B 162 159.2997 169.4294 155.8240 Y N Y 

8 C V C 0-C 174 159.2997 169.5076 155.8240 Y Y Y 

9 V V T 0-D 179 159.2997 136.8401 155.8240 Y Y Y 

10 T T V 0-E 220 193.2879 211.0289 173.9365 Y Y Y 

11 V C T 1+A 114 84.2194 53.6913 104.3638 Y Y Y 

12 C V V 1+B 105 84.2194 86.2806 97.9062 Y N Y 

13 V C V 1+C 113 84.2194 86.3588 97.9062 Y Y Y 

14 T V C 1+D 110 84.2194 53.6913 97.9062 Y Y Y 

15 C T T 1+E 123 118.2076 127.8801 116.0187 Y Y Y 

16 T V T 1-A 127 124.5601 95.2866 133.4132 Y Y Y 

17 C T T 1-B 133 124.5601 127.8759 126.9556 Y N Y 

18 T T V 1-C 121 124.5601 127.9541 126.9556 Y Y Y 

19 C C T 1-D 117 124.5601 95.2866 126.9556 Y Y Y 

20 T C T 1-E 138 158.5483 169.4754 145.0681 Y Y Y 

 331 

*) 
Split 1, 2, and 3; T=training set; C=calibration set; and V=validation set; Y=quasi-SMILES 332 

falls into Domain of applicability (otherwise “N”). 333 

  334 



 335 

Table 7 336 

Correlation weights for symbols which represent conditions of impact of fullerene C60 337 

nanoparticles  (Eq. 5, for WP2uvrA/pKM101)  338 

Symbols of quasi-SMILES, Sk           CW(Sk) 

run 1 

CW(Sk) 

run2 

CW(Sk) 

run 3 

+      0.50000      0.69675      0.39982 

-      0.94039      1.60115      2.20288 

0      1.12778      1.60305      2.19630 

1      0.74854      0.69727      0.40447 

A          0.0          0.0      0.40082 

B          0.0      0.99558          0.0 

C          0.0      0.70300          0.0 

D          0.0          0.0          0.0 

E      0.37104      1.59979      1.12422 
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