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A signifi cant body of literature has shown 
that pupil size varies with cognitive and 
perceptual states [1,2]. Furthermore, the 
pupil diameter oscillates spontaneously 
at low frequencies, sometimes 
referred to as pupillary hippus [3,4]. 
Oscillation amplitude varies with many 
neural factors, including arousal and 
cortical excitability. Here we show that 
pupillary oscillations are modulated 
by mindfulness meditation, increasing 
by 53% compared to pre- and post-
meditation baselines. The effect occurs 
only in trained meditators and is specifi c 
for low frequencies (below 1 Hz), with 
delta frequencies (1–5 Hz) unchanged. 
The study suggests that pupil size may 
be a useful marker of the altered cortical 
state during meditation.

We measured pupillary oscillations 
in a group of trained mindfulness-
meditators before, during, and after a 
short period of meditation, with eyes 
open (see Supplemental Information for 
details of methods and example traces). 
Figure 1A shows the Fourier power of the 
dynamics of pupil size, averaged over all 
meditators, during baseline (average of 
before and after meditation: dark-grey 
trace) and meditation (red trace). The red 
trace clearly falls above the grey at low 
frequencies (<1 Hz, the hippus range), 
then becomes intertwined with baseline 
at higher frequencies (delta range). 

Figure 1B shows average power 
in the low-frequency (Hippus) range 
before, during and after meditation. The 
meditation-induced effect was large and 
highly signifi cant (Repeated measures 
Bayesian ANOVA: F(2,19) = 7.8, p = 
0.001, log-BF = 1.38: strong evidence in 
favour). Hippus power measured during 
meditation was signifi cantly higher 
than both baselines, before and after 
meditation (t(23) = −3.57, p = 0.002, log-
BF = 1.36; t(19) = 3.63, p = 0.002, log-BF 
= 1.34, respectively), whereas there was 

Correspondence no signifi cant difference between the two 
baselines (t(19) = −0.68, p = 0.50, log-BF 
= −0.54). Conversely, average power 
in the adjacent Delta range (Figure 1D) 
was unaffected by meditation (ANOVA: 
F(2,19) = 2.0, p = 0.15, log-BF = −0.22).

To control that the effects were 
specifi c for meditation, we repeated 
the experiment with 20 participants 
who had never meditated, asking 
them simply to relax and listen to the 
meditation track. We found no signifi cant 
change in Hippus in these participants 
(Figure 1C: Bayesian ANOVA: F(2,19) = 
0.01, p = 0.99, log-BF = –0.87). Direct 
between-group comparison shows that 
the Hippus power change in meditators 
was signifi cantly higher than in non-
meditators (two-sample t(42) = 2.71, p < 
0.01, log-BF = 0.61).

Figures 1E and F show individual 
results for meditators and non-
meditators, plotting meditation-induced 
Hippus power change against pupil 
diameter change (both expressed as 
percentages of baseline values). For 
20 of the 24 meditators the change 
in Hippus was positive. The increase 
(53%) is highly signifi cant (t(23) = 4.14, 
p < 0.001, log-BF = 1.9, clear from the 
shaded 95% confi dence limits shown as 
shaded blue regions. On the other hand, 
half of the 20 non-meditators showed a 
negative effect, and the average change 
was not signifi cantly different from zero 
(t(19) = 1.05, p = 0.30, log-BF = −0.42). 

The abscissae of Figures 1E and 
F show the change of average pupil 
diameter compared with baseline. For 
both groups, the pupil constricted during 
‘meditation’ by a similar amount (−7% in 
meditators: t(23) = –4.23, p = 0.001, log-
BF = 1.98; −4% in controls: t(19) = −3.42, 
p = 0.003, log-BF = 1.16; between group 
comparison: two-sample t(42) = 1.29, 
p = 0.203, log-BF = –0.45). Importantly, 
the pupil constriction did not correlate 
with the increase in Hippus power, for 
either group (meditators: r = −0.17, p = 
0.4, log-BF = −0.7; controls: r = −0.20, 
p = 0.4, log-BF = −0.62). Furthermore, 
the constriction effect in meditators 
was driven only by the difference in the 
pre-meditation baseline (t(23) = 5.06, p 
< 0.001, log-BF = 2.79), probably due 
to dark-adaptation, with no signifi cant 
difference between measurements 
during and after meditation (t(19) = −1.78, 
p = 0.091, log-BF = −0.06: Figure S1 
in the Supplemental Information). 
All the evidence suggests that the 
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meditation-induced changes in Hippus 
are independent of, and therefore not 
driven by, changes in average pupil 
diameter. 

Lastly, we looked for correlations 
between the increase in Hippus power 
during meditation and several self-
reported indices of meditative practice, 
including weekly hours of meditation, 
years of meditative practice and MAAS 
score: none of the correlations were 
signifi cant (hours/week: r = 0.30, p = 
0.16, log-BF = −0.38; years: r = −0.12, p 
= 0.56, log-BF = −0.73; MAAS: r = −0.26, 
p = 0.29, log-BF = −0.50). 

Meditation can change several 
physiological variables (see 
Supplemental Information), as well as 
cognitive [5] and perceptual dynamics 
[6]. The current research shows that 
spontaneous low-frequency oscillations 
of pupil size also increase. It is generally 
assumed that pupil oscillations are 
driven by the dynamic balance between 
sympathetic and parasympathetic 
activity [7]. Many studies suggest that a 
key link between the autonomic nervous 
system and pupil diameter is the Locus 
Coeruleus, the activity of which has been 
shown to correlate with pupil dilations 
[8], as well as with several indices of 
autonomic activity. It is possible that 
meditation induces a generalized change 

of autonomic activity, and pupillometry 
can serve as a reliable and accessible 
index for measuring the change. 

Recent studies are beginning to 
unravel a link between spontaneous 
pupil oscillations and cortical activity. 
In mice, where neural activity can be 
recorded directly, the changes in pupil 
diameter have been associated with 
changes in the excitability of sensory 
cortical areas [9], broadly consistent with 
the concept that slow pupil oscillations 
may be accompanied by increased 
receptivity towards sensory stimuli. 
In turn, this is consistent with studies 
showing that increases in slow pupillary 
oscillations in humans are associated 
with cortical plasticity [10], known to be 
tightly linked with cortical excitability. 
This could be linked to the positive 
effects of meditation on learning and 
attention management [5] — but such 
links remain speculative at this point. 

Given the simplicity, non-
invasiveness (light-weight glasses) 
and low-cost of the apparatus, 
pupillometry could become a useful 
tool to non-invasively monitor internal 
cortical states and validate subjective 
reports. It may also serve as a 
learning tool for meditation, providing 
novices with objective feedback. 
Conversely, meditation may serve as 

a useful experimental procedure to 
manipulate cortical states in order to 
study the neural mechanisms driving 
spontaneous pupillary oscillations, and 
investigate how these relate to EEG, 
heart-rate, breathing and other major 
physiological parameters. 

SUPPLEMENTAL INFORMATION

Supplemental Information includes experimental 
procedures, supplemental results, supplemental 
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Figure 1. Pupillary oscillations in the hippus and delta ranges. 
(A) Mean power spectrum of pupil oscillations, averaged over all 24 meditators. Red shows re-
cordings during meditation, dark grey during baseline (average of before and after). (B) Average 
Fourier power in the Hippus range (0–1 Hz) for meditation group, before (black), during (red) and af-
ter meditation (grey). Signifi cance values refer to paired t-tests (*p < 0.05; **p < 0.01, ns p > 0.5). (C) 
Average Fourier power in the Hippus range in a group of non-meditators following the same pro-
cedure. (D) Average Fourier power in the Delta range (1–5 Hz) for the meditation group. (E) Scatter 
plot of normalized change in hippus power against normalized change in pupil diameter for the 
meditators. The shaded areas show 95% confi dence limits. (F) Same as E for the non-meditators. 
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