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A B S T R A C T

Extracellular Vesicles (EVs) represent a heterogeneous population of particles naturally released from all cells,
delimited by a lipid bilayer and able to horizontally transfer their cargos to recipient cells. These features imply
the growing interest on EVs in cancer biology as biomarkers and therapeutic targets. In this review, we will
highlight the specific process related to biogenesis and release of large EVs (L-EVs) derived from the plasma
membrane (PM) compared to the small and well described exosomes, generated through the classical endosome-
multivesicular body (MVB) pathway. The control of PM rigidity by cells depends on lipid/protein composition,
cytoskeleton dynamics, cytoplasmic viscosity, ions balance, metabolic reprogramming and specific intracellular
signaling pathways, all critical determinants of L-EVs biogenesis. We will focus in details on a specific class of L-
EVs, named Large Oncosomes (LO), exclusively shed by cancer cells and with a size ranging from 1 μm up to
10 μm. We will examine LO specific cargos, either proteins or nucleic acids (i.e. mRNA, microRNAs, single/
double-stranded DNA), as well as their functional role in cancer development and progression, also discussing
the mechanisms of L-EVs internalization by recipient cells. Overall we will highlight the potential of LO as
specific diagnostic/prognostic cancer biomarkers discussing the associated challenges.

1. Introduction

“Extracellular Vesicles” (EVs) is the generic term indicating “parti-
cles naturally released from the cell that are delimited by a lipid bilayer
and cannot replicate” [1], basically shed from all cell types.

When we look at EVs and especially in cancer, a plethora of studies
described the relevance of highly heterogeneous EVs population, based
on their origin, size and peculiar markers, in the horizontal transfer of
aggressive properties to cancer/non cancer recipient cells. However,
consulting the literature on EVs may generate confusion, because the
EVs-specific population nomenclature results not always informative
and effective [2]. To avoid this confusion that can also generate non-
reproducible data, it is critical to refer to the International Society for
Extracellular Vesicles (ISEV) guidelines on minimal information for

studies of extracellular vesicles (MISEV) [1,2].
The exosomes are the smallest among EVs categories (30–100 nm),

generated through the classical endosome-multivesicular body (MVB)
pathway followed by fusion to the plasma membrane (PM). The process
has been discovered around 60 years ago and previously reviewed in
details [3]. However, also exosomes themselves are emerging as a quite
heterogeneous population of EVs. Zhang H et al. described a distinct
non-membranous exosomes population named exomeres (∼35 nm) [4].
Similarly, a recent report suggests the occurrence of a small EVs po-
pulation distinguished from “exosomes” in protein contents and bio-
genesis pathway [5].

EVs larger than exosomes and mostly derived from the PM range
from hundred nanometers to few microns. Among these, apoptotic
bodies [6] and ectosome/microvesicles (MV) [7] are the most studied.
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Large Oncosomes (LO) have been described 10 years ago for the first
time as exclusively shed from cancer cells and extremely variegated at
least in the size range, starting from 1 μm up to 10 μm [8]. In oncology,
the number of publications on EVs other than exosomes is negligible
compared to those on exosomes. One reason might be that large EVs (L-
EVs), referring to MV that are basically larger than exosomes and LO,
collected from cancer cells, were described as less abundant than exo-
somes ([9,10] and unpublished observations), thus resulting in less ma-
terial to work with. However, since purification strategies have not
been always accurate, those vesicles defined as exosomes could re-
present mixed populations, including MVs. In addition, LO have been
identified only recently compared to exosomes, thus have not been
investigaterd in all tumor models yet.

Indeed, most of the extraction kits available are thought to isolate
exosomes, making the focus on smallest population of EVs faster com-
pared to other populations. Moreover, even the nomenclature issues
mentioned above (and highlighted by C.Thery and K.W. Witwer in [2])
contribute to the “exosomes supremacy”. The process of biogenesis and
release of PM derived Large EVs (L-EVs), referring again to MV and LO,
has been correlated to several signaling involving either biochemical or
mechanical processes. Taken together, these two perspectives resulted
in a complex series of events that are very sensitive to microenviron-
ment conditions; thus explaining, at least in part, the huge variability in
data generated on both biogenesis and function of L-EVs. The only
exception is apoptotic bodies whose genesis is exclusively linked to the
condition of "programmed cell death".

In this review we will discuss the process related to biogenesis and
release of EVs larger than exosomes and particularly focusing on LO
distinct cargos and functions highlighting their potential to be used as
specific cancer biomarkers.

2. L-EVs biogenesis: fusing the biochemical and mechanical
knowledge

L-EVs have been described in several tumors: prostate cancer [11],
breast cancer [12], glioblastoma [13], glioma [14], pancreatic cancer
[15], colon cancer [16], melanoma [17], leukemia.1 Overall, all cancer
cells shed L-EVs, whose composition is peculiar compared to those shed
from the normal counterparts and/or tumor microenvironment [18].
However only few populations of L-EVs, such as LO, have been de-
scribed as released exclusively by cancer cells [8].

Both biochemical composition and biophysical mechanisms con-
tribute to signaling processes, triggering L-EVs biogenesis and shedding.
One of the main aspect to take in account in the studies on L-EVs PM-
derived biogenesis, is the control of PM rigidity by cells, which depends
on different coexisting lipid/protein combinations., The result is a dy-
namic signaling platform, differently composed in healthy compared to
cancer cells and highly sensitive to stimuli from either inside (i.e. gene
mutations) and outside (i.e. oxygen or metabolites deprivation, in-
flammation) [11,19,20]. The first evidences of EVs shedding from
cancer cells [21] as well as of PM organization in micro domains [22]
were not investigated as related events. Indeed, the hypothesis that PM
lipid domains may work as platforms for EVs biogenesis and shedding is
very recent [23].

H. Pollet and colleagues reviewed mechanisms involved in L-EVs
biogenesis from Red Blood Cells, individuating 4 main determinants: 1)
cytoskeleton dynamics 2) cytoplasmic viscosity 3) ions balance 4) me-
tabolic processes. All these determinants belong also to nucleated-
cancer cells lifespan and progression, and some of them have been as-
sociated to L-EVs shedding in recent publications. However, not all
studies detailed the molecular mechanisms determining the enhanced
L-EVs shedding by cancer cells.

It was reported that changes in cytoskeleton dynamics related to the
acquisition of aggressive features of PCa cells resistant to mevalonate
pathway inhibitors [20] and increased cholesterol in the PM (un-
published observations) afterwards resulted concomitant to the in-
creased shedding of Large Oncosomes (LO) [11]. Also the amoeboid
phenotype has been demonstrated at the bases of non-apoptotic bleb-
bing and LO release, through the activation of RhoA/ROCK [24]. No-
tably, LO shedding has been shown as promoted by silencing of the
gene encoding the cytoskeletal regulator Diaphanous related formin-3
(DIAPH3), which in turn promotes the amoeboid phenotype [25]. In-
deed, DIAPH3 loss induces a transition from a mesenchymal phenotype,
characterized by pericellular proteolysis, to a rapid amoeboid mi-
gratory phenotype, a transition named mesenchymal to amoeboid
transition (MAT). However, transitions between these phenotypes are
mediated by the Rac1/RhoA circuit that responds to external signals
such as HGF/SF via c-MET pathway [26]; both phenotypes have been
associated to stem features [20,27,28] thus contributing to the plasti-
city of cancer cells [28]. Recently, a report from Brassart B. and col-
leagues demonstrated that extracellular matrix degradation products
are able to influence intracellular calcium influx and cytoskeleton re-
organization, favoring a tumor amoeboid phenotype [29]. Initially cell
viscosity has been investigated in tumor cells compared to normal cells
[30,31]; and only recently it was associated to chemo-resistance de-
velopment coupled to augmented EVs shedding [32]. About ions bal-
ance, it is very well established that intracellular Ca2+ levels de-
termined L-EVs shedding upon the activation of flippases and other
proteins involved in the lipid bilayer asymmetry [17,33]. The Ca2+

dependent activation of calpains determines the formation of mem-
brane protrusions and the PS exposition to the external leaflet [23]. To
date, even if tetraspanins are often proposed as exosome markers,
specialized tetraspanins can also induce PM curvature [34], and their
presence in shedding vesicles has been reported [35]. Additional pro-
teins could also actively help sorting other proteins into L-EVs such as
matrix metalloproteases delivered to nascent L-EVs through the asso-
ciation of vesicle-associated membrane protein 3 (VAMP3) with tetra-
spanin CD9 [36].

Although the mechanisms underlying L-EVs biogenesis involve
multiple partners, depending on cell type and stimulation as mentioned
above, it is essential to mention that Ras superfamily GTPases are
postulated to be major mediators of L-EVs formation. Indeed, activated
RhoA promotes actin-myosin contraction that is required for L-EVs
formation through the downstream signaling of ROCK (Rho-associated
coiled-coil containing kinases) and ERK (extracellular signal-regulated
kinases) [37] and similar mechanisms have been shown specifically for
LO biogenesis [24].

It is also worth to mention that the endosomal sorting complexes
required for transport (ESCRT) may be involved in L-EVs biogenesis.
This pathway was initially thought to play critical role only into exo-
some biogenesis from the endosomal membrane. However, it was de-
scribed that some proteins from the ESCRT (named TSG101 and VPS4
ATPase) can be relocated from the endosomal membrane to the PM
where they mediate the release of L-EVs [38].

Finally, LO shedding has also been associated to activation of the
epidermal growth factor receptor (EGFR) and overexpression of a
membrane-targeted, constitutively active form of Akt1 [8,39].

Overall, due to the PM origin related to both LO and MVs, some
pathways might also contribute to the biogenesis of both populations
[40] and have been summarized in Fig. 1. However, some of them has
been reported as peculiar for LO release (see above).

3. L-EVs content may be useful for cancer biomarkers discovery

Due to the potential use of EVs as source of both diagnostic and
prognostic biomarkers in cancer, many efforts are nowadays focusing
on the characterization of EVs specific cargos, in order to select new
molecular markers. Indeed, proteins, lipids and nucleic acids vehicled

1 Minciacchi V.R. et al. abstract #OT05.02 (https://doi.org/10.1080/
20013078.2018.1461450).
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by EVs are all of growing interest in biomarker discovery. However,
several remarks need to be taken in account on the definition of EVs-
related biomarkers: a) most of EVs populations are shed from all cell
types in the organism; b) molecular determinants contained in EVs are
dependent on cells/tissues of origin; c) however the specific EVs cargo
(i.e. proteins, miRNAs) is not always coupled to the overexpression in
the cells of origin ; d) molecular cargos in EVs can be affected by mi-
croenvironment conditions (inflammation, oxygen deprivation, meta-
bolic balance); e) EVs size may affect their content.

Among L-EVs, LO have been well characterized in the last decade
because their size and their origin (exclusively by PM of cancer cells),
make them an ideal source of information applicable to liquid biopsy.
Notably, LO are ∼1000 folds the size of exosomes, therefore they can
virtually include a larger number of tumor-derived molecules, with a
distinct impact on the tumor microenvironment [41]. Below, we will
review the literature on LO content (Table 1), suggesting that they
could represent specific cancer biomarkers.

3.1. Proteins

Studies focusing on proteins EVs-associated are both investigating

their differential expression among EVs population and exploring the
possibility to detect their amount in body fluids with the aim to define
novel cancer biomarkers as well as therapeutic targets.

A significant overlap of proteins expressed by different population
of EVs does exist, and a unique signature for L-EVs is hard to define, due
to the huge amount of proteins identified and their PM-origin.

LO have been reported to contain the GTPase ADP-ribosylation
factor 6 (ARF6) [8] that, once activated, promotes the recruitment of
ERK to the PM, allowing the contraction of actomyosin at the necks of
L-EVs and thus their release [42].

LO also carry caveolin-1 [39] and metalloproteinases 2–9 (MMP2,
9) [11,39], accordingly to older reports on PM-derived L-EVs [43,44].
In addition, keratin 18 (CK18, a cytokeratin type I) appears to be highly
abundant in L-EVs, and has been used to show LO-like structure in situ
in human PCa tissues and body fluids [11,25,39,45]. Intriguingly, LO
from PCa cell lines have been recently shown as enriched in a set of
peculiar enzymes involved in cancer cell metabolism, compared to the
exosomes counterpart from the same source, such as Glyceraldehyde 3-
phosphate dehydrogenase (GAPDH), glucose phosphate isomerase
(GPI), lactate dehydrogenase B (LDHB), heat shock 70 kDa protein 5
(HSPA5), malate dehydrogenase (MDH) and aspartate transaminase

Fig. 1. Biogenesis and shedding of PM-derived and LO: molecular determinants involved in MV/LO biogenesis are summarized.

Table 1
Main molecules vehicled by LO.

Enriched in LO Molecules and functions References

Proteins ARF6 (recruitment of ERK to the PM allowing the contraction of actomyosin at the necks of L-EVs and their release). [8,42]
Caveolin-1, CK18. MMP 2-9
scaffolding protein/ cytoskeleton components and gelatinase activity

[11,39,45];

GAPDH, GPI, LDHB, HSPA5, MDH, GOT, GLS (metabolic enzymes); V-ATPase subunit V1G1 (pump for delivering of oncogenic signals) [57]
αV-integrin (transfer of both adhesion and invasion properties from the PCa aggressive cell line to the less aggressive counterpart). [11]
Urokinase-type plasminogen activator receptor, eukaryotic elongation factor 1 gamma (eEF1γ) and AKT1: promotion of cancer progression when
released by the aggressive counterpart.

[9,11]

Nucleic Acids Circulating DNA and copy number variations of genes frequently altered in metastatic PCa (i.e. MYC, AKT1, PTK2, KLF10 and PTEN): favor cancer
cell progression; miR-1227 overexpressed, by RWPE-2 PCa cells, modulator of CAFs migration

[10,56]
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(GOT) [25]. Interestingly glutaminase (GLS), a cytoplasmic enzyme
that converts glutamine to glutamate, was identified among the protein
uniquely expressed in L-EVs [25].

The metabolic enrichment described above may be due to the re-
programming of glucose, glutamine and amino acid metabolism, all
metabolic processes altered in the dynamics of cancer progression [46]
and should be further explored because could be associated to both the
biogenesis and function of L-EVs.

To date, the amount of membrane proteins was found to represent
30% of the proteins identified in both large and small populations of
EVs [25,47,48]. Among them, although tetraspanins and cell adhesion
proteins resulted enriched in nano-sized EVs, we have recently reported
that LO from an aggressive model of PCa, resistant to mevalonate
pathway inhibitors, carried a functionally bioactive alpha V (αV)-in-
tegrin on their surface [11]. This LO-associated αV integrin is involved
in the transfer of both adhesion and invasion properties from the PCa
aggressive cell line to the less aggressive counterpart [11]. Moreover we
also showed that LO are enriched in urokinase-type plasminogen acti-
vator receptor (uPAR) and eukaryotic elongation factor 1 gamma
(eEF1γ), two proteins related to cancer progression when released by
the aggressive counterpart [11].

Although the dynamics of protein cargo in different population of
EVs is far to be elucidated, we can speculate that aggressive PCa cells
may preferentially load some proteins in LO more than in small EVs, in
order to improve cell-to-cell messages aimed to cancer progression.
However, further investigations are necessary to explore this sugges-
tion. Moreover, in the context of PCa, LO have been also shown to
harbor sustained AKT1 kinase activity, corroborating this population as
an active signaling platform [9]. Notably, active AKT1 was detected in
circulating EV from the plasma of metastatic prostate cancer patients
and was LO specific [9].

3.2. Nucleic acids

Numerous studies focusing on EVs content in terms of nucleic acids
demonstrated a variegated RNAs cargo such as mRNAs, microRNAs,
and ncRNAs. In particular, a recent report comparing the mRNA con-
tent between L-EVs (MV) and exosomes from different PCa cell lines,
demonstrated that L-EVs were enriched in caveolin-2 (CAV2), glu-
tathione S-transferase pi 1 gene (GSTP1) transcripts compared to the
exosomes counterpart, corroborating the idea that mRNA cargo could
differ not only based on the EV cellular origin but also on the sub-
population analyzed, each of them conveying a different proportion of
the cell transcriptome [49]. Indeed, distinct microRNAs-enrichment
signatures have been identified analyzing different EVs subtypes re-
leased from a human colon cancer cell line [50,51]. However, the study
suggest that microRNA biogenesis may be interlinked specifically with
endosomal/exosome processing [51].

The detection of retrotransposon [52,53] and amplified oncogene
sequences, have been also reported in L-EVs beyond exosomes [52],
while single-stranded DNA (ssDNA) and mitochondrial DNA have been
investigated mostly in exosomes [54]. Among the studies reporting the
presence of double stranded genomic DNA (gDNA) in diverse types of
EVs, the suggestion that specific EV types might package different parts
of the genome was already formulated by one of the first report on DNA
in EVs, showing that different EV populations harbor either TP53 or
PTEN mutations [55].

LO in particular, have been shown to contain miRNA, mRNA and
DNA [39] suggesting that, similarly to other EVs, they may mediate
horizontal transfer of diverse nucleic acid species within and across
tissue compartments and to distant sites through the circulation [56]. In
2013, a report showed that the overexpression of miR-1227 in RWPE-2
PCa cells, determined its loading preferentially into LO vs. smaller EV,
and that its overexpression in LO was a novel modulator of the mi-
gration of cancer-associated fibroblast –CAFs- [56]. More recently, it
has been shown that circulating DNA is almost exclusively enclosed in

L-EVs derived from PCa patient plasma [10]. In addition the same
group showed that genetic aberrations belonging to the cell of origin,
including copy number variations of genes frequently altered in meta-
static PCa (i.e. MYC, AKT1, PTK2, KLF10 and PTEN), were reflected in
L-EVs, suggesting the use of LO as biomarkers within a liquid biopsy
approach.

4. LO functions and internalization mechanisms serving to L-EVs
fusion into recipient cells

The functional effects exerted by LO varies from a direct proteolytic
activity [11,39], to the activation of pro-tumorigenic programs into
different types of target cells including other tumor cells or cells of
tumor microenvironment [9,11,39,56–58]. In details, LO have been
shown to influence glutamine metabolism of PCa cells through the
stimulation of the enzyme GOT1 that catalyzes the formation of glu-
tamate from aspartate and α-ketoglutarate [25]. In addition, it has been
recently shown that LO shed from an aggressive PCa cell line are able to
induce both adhesion and invasion of PCa recipient cells by activating
AKT through the αV-integrin expressed on LO surface [11]. The in-
duction of cell migration has been also reported upon treatment with
LO from LNCaP/MyrAkt1 cells, carrying an over-activated form of AKT
[39]. Interestingly, in line with the above mentioned observations,
tumor cell migration was also enhanced by fibroblasts previously
treated with LO. The impact of LO on tumor microenvironment has
been described for: a) stromal cells, in which LO treatment can induce
the expression of metastasis-associated factors, such as brain-derived
neurotrophic factor (BDNF), C-X-C motif chemokine 12 (CXCL12) and
osteopontin [39]; b) endothelial cells, in which tube branching was
induced by LO and whose migration resulted enhanced by treatment
with LO purified from the circulation of mice with metastatic disease
[39]; c) normal fibroblast (NAF) where LO treatment caused enhanced
expression of interleukin 6 (IL6), MMP 9 and α-smooth muscle actin (α-
SMA), thus favoring a provascularization phenotype through Myc ac-
tivation [9]. Finally, it has been recently demonstrated that Glio-
blastoma neurospheres influence their non-neoplastic microenviron-
ment by delivering the V-ATPase subunit V1G1 and the homeobox
genes HOXA7, HOXA10, and POU3F2 to recipient cells via LO [57].

LO can exert all the functions described above by an autocrine
mechanism (intuitively confined to tumor cells) and/or a paracrine
effect (affecting both tumor and tumor microenvironment cells).
Although not directly proved yet, we can hypothesize that LO can also
exert a systemic/endocrine effect, as shown for other EVs such as
exosomes [59,60]. Moreover, it is important to define whether the EVs
docking event on the recipient cell is sufficient to initiate a signaling
pathway that causes functional changes and/or EVs docking is always
followed by the transferring of their cargo inside the recipient cells. In
this regard, it has been recently shown that AKT activity is critical for
MYC-dependent reprogramming of stroma recipient cells upon the up-
take of PCa-derived LO [9]. Interestingly, the authors have also found
an activated AKT in LO isolated from PCa cells and from PCa patients’
plasma. Similarly, in a recent report we demonstrated a functional role
of αV-integrin on LO surface to affect tumor recipient cells via AKT
activation, and we cannotexclude selective LO internalization [11].
Anyhow whether AKT activation in recipient cells was the consequence
of LO cargo release or associated with the endogenous activation of
AKT upon LO docking/uptake, remains an open question [9,11].

Mechanisms regulating L-EVs internalization have received less at-
tention compared to their biogenesis or content. In addition, the func-
tional assays mentioned above, exploring L-EVs effects on recipient
cells, often do not explore the type interaction mediating the L-EVs
biological activity. This is not a trivial topic, if we consider that L-EVs
time/mechanisms of uptake may also influence their availability in the
circulation for liquid biopsy.

In our opinion, all the effects exerted by LO are probably due to both
EVs docking and membrane-membrane contact, followed by L-EVs
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uptake.
Generally, internalization of large (> 1 μm) particles occurs

through a mechanism known as phagocytosis, although this is a type of
endocytosis typically restricted to specialized professional phagocytes.
In contrast, pinocytosis, is exhibited by all cells, and can involve dif-
ferent molecules (i.e. Arf-6, flotillin-1-, CDC42- and RhoA) [61]. Min-
ciacchi et al. suggested that LO internalization is similar to a phago-
cytosis-like mechanism, demonstrating the efficient block of the process
by Dynasore, non-competitive inhibitor of the GTPase activity of dy-
namin, which is a protein essential for endocytosis and phagocytosis,
but not by EIPA (5-(N-Ethyl-N-isopropyl) amiloride) a macropinocytosis
blocker [9].

However, if the mechanisms of L-EVs uptake are similar to the
classic endocytosis processes, either receptor-dependent or the fluid-
phase endocytosis (low efficient, non-specific process), is unclear.
Notably, changes in the cellular microenvironment (i.e. pH.) can in-
fluence EV uptake, as shown by studies on exosomes [62,63].

LO internalization by heterologous cells has been shown in normal
fibroblast primary cells generated from prostatectomy tissues not as-
sociated with prostate cancer (NAF), human endothelial cells (HUVEC),
CD8+ lymphocytes, and DU145 and LNCaP PCa cell lines. Each type of
cell line internalized with different efficiency LO, implying a selective
mechanism of uptake. In particular, the observation that LO uptake was
almost completely impaired in CD8+ lymphocytes [9] might suggest a
specific tumor- or tumor-microenvironment-associated effects. Inter-
estingly, a seminal paper by Chen G et al. showing elevated levels of
PD-L1 on both exosomes and larger EVs from metastatic melanoma
patients, functionally demonstrated a specific immunosuppressive ef-
fect mostly confined to exosomes through the direct interaction with
effector CD8 T cells [64]. The authors also suggested that exosome
expressing PD-L1 are better predictors of anti-PD-1 therapy efficacy
compared to PDL1-positive L-EVs.

5. Conclusions

In conclusion, due to their atypical size and their specific release
from cancer cells LO are promising source of both diagnostic and
prognostic markers. Although some pathways involved in their bio-
genesis may be shared with MV, others resulted peculiar for this class of
EVs. LO enrichment in specific proteins and nucleic acids could be
exploited to define strategies for their detection in the circulation.
Notably, although has been already demonstrated that LO detection can
discriminate between healthy and cancer cells/tissues, particularly in
PCa models [8,9,11,39], and that LO shedding is associated to ag-
gressive features in PCa and glioblastoma models [57], further in-
vestigations are needed to define their role in other tumor models.
Overall, all the approaches aimed to detect LO in both tumor tissues and
patients body fluids need to be standardized in order to be implemented
in clinical practice.
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