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Renal failure is a fatal disease raising global concerns. Previous risk models for renal failure mostly rely 
on the diagnosis of chronic kidney disease, which lacks obvious clinical symptoms and thus is mostly 
undiagnosed, causing significant omission of high-risk patients. In this paper, we proposed a framework 
to predict the risk of renal failure directly from a big data repository of chronic disease population 
without prerequisite diagnosis of chronic kidney disease. The electronic health records of 42,256 patients 
with hypertension or diabetes in Shenzhen Health Information Big Data Platform were collected, with 
398 suffered from renal failure during a 3-year follow-up. Five state-of-the-art machine learning methods 
are utilized to build risk prediction models of renal failure for chronic disease population. Extensive 
experimental results show that the proposed framework achieves quite well performance. Particularly, 
the XGBoost obtains the best performance with an area under receiving-operating-characteristics curve 
(AUC) of 0.9139. By analyzing the effect of risk factors, we identified that serum creatine, age, urine acid, 
systolic blood pressure, and blood urea nitrogen are the top five factors associated with renal failure risk. 
Compared with existing models, our model can be deployed into routine chronic disease management 
procedures and enable more preemptive, widely-covered screening of renal risks, which would in turn 
reduce the damage caused by the disease through timely intervention.

© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Renal failure, also known as end-stage kidney disease (ESKD), is 
a pathological state of partial or total loss of renal function caused 
by the development of chronic kidney diseases (CKD) to the later 
stage. Patients with renal failure would soon suffer from uremia or 
even deadly consequence, and the treatment can only be dialysis 
or renal transplantation. The prevalence and total mortality of re-
nal failure continue to increase [1]. In 2016, there were 720,000 
patients with renal failure in the United States, and the hospi-
tal mortality rate of all dialysis patients was 0.5% [2]. In China, 
the number of renal failure patients was about 2.9 million and 
the mortality rate among dialysis patients was 28.42 per thou-
sand years[3]. The difficulty of reversing renal damage increases 
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steadily with the disease progression, thus early detection of high-
risk groups for renal failure is particularly important to enable 
early interventions.

Currently, risk assertion and prevention of renal failure are 
mainly focused on CKD patients. However, the awareness rate of 
early CKD is low, which is less than 10% in developing and devel-
oped countries, and only 12.5% in China [1,3]. Most patients with 
CKD have no obvious symptoms in the early stage of onset, re-
sulting in a very high rate of missing diagnosis among general 
population. A low awareness rate for doctors also exists, and nearly 
half of the country’s attending and deputy doctors have a lower av-
erage understanding of CKD guidelines [1]. The high undiagnosed 
rate of CKD poses a severe challenge to renal failure prevention, as 
a large portion of high-risk patients were not monitored for dis-
ease risk in the early stages.

Several prospective cohort studies and cross-sectional studies 
have been conducted to develop CKD risk prediction models [4], 
such as SCORED score [5], ARIC/CHS score [6], Framingham score 
[7], QKidney score [8], Taiwan score [9], Japan/HIV score [10], and 
ADVANCE model [11]. The investigated risk factors mostly include 
 under the CC BY-NC-ND license 
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age, gender, body mass index, blood pressure, diabetes status, 
serum creatinine, proteinuria, serum albumin, and total protein. In 
addition, some studies added novel biomarkers such as smoking, 
kidney stones, and family history of kidney disease, or genetic fac-
tors [12] to improve model performance. Subsequently, risk models 
for predicting progression to ESKD have been developed by meta-
analysis, the most famous of which is the 4-variable Kidney Failure 
Risk Equation (KFRE), using gender, age, estimated glomerular fil-
tration rate (eGFR), and urine albumin-to-creatine ratio (ACR) [13]. 
There are also two ESKD prediction equations based on 6 variables 
(adding diabetes mellitus and hypertension), or 8 variables (adding 
serum albumin, bicarbonate, calcium, and phosphate) [14]. Then 
many researches underwent on external validation of the KFRE in 
other groups or diverse patients [15–21]. However, these existing 
studies are mostly restricted to patients already diagnosed with 
chronic kidney disease. For general population, some studies focus 
on factor analysis, such as age [22], eGFR [23], obesity [24], gender 
[25], smoking and drink [26], but few attempts have been made on 
creating a risk prediction model. The major obstacle lies in the dif-
ficulty to acquire laboratory test results from non-CKD population. 
Without sufficient number of patient samples with complete labo-
ratory test data covering all studied fields, it is infeasible to build 
a risk model using traditional cohort study approaches.

With the wide application of electronic medical record system, 
especially the establishment of regional health information plat-
form for data exchange and sharing, large-scale clinical medical 
data have been accumulated, which provides a strong data support 
for medical health research [27,28]. Compared with traditional co-
hort study protocols, big data systems enable easier accumulation 
of large population dataset with much lower costs, which specif-
ically boost the efficiency of observational studies. On the other 
hand, machine learning techniques are being used more and more 
widely for clinical analysis due to its strong potential to use com-
plex mathematics operations to compute large amounts of data. 
Extracting and analyzing retrospective population data from elec-
tronical health record (EHR) big data platforms would largely ex-
tend the feasibility of many clinical studies in the scope of data 
availability, and we will demonstrate this in our renal failure study 
as well.

In this paper, we strove to extend the feasibility of renal risk 
prediction from CKD patients to general chronic disease popula-
tions. A total of 42,256 registered patients with hypertension or 
diabetes were selected from Shenzhen Health Information Big Data 
Platform. After rigorous population screening, only 5,974 patients 
were retained, of whom 398 had renal failure during a three-year 
follow-up. Five machine learning algorithms were used to estab-
lish the three-year risk models of renal failure, among which the 
integrated algorithm XGBoost achieved the optimal performance 
on the test set. Furthermore, we analyzed the univariate effect of 
renal failure and showed nine continuous variables that were non-
linearly correlated with renal failure risk.

The contribution of our work can be summarized into three 
scopes. Firstly, for the first time we extended risk modelling for 
renal failure to non-CKD patients by conducting a large-scale ret-
rospective study, which was achieved by more efficient curation of 
target data through the aid of big data technologies. Secondly, with 
sophisticated machine learning methods, we were able to study a 
relatively large number of features simultaneously. As a result, we 
discovered some novel biomarkers of renal failure, including uric 
acid (UA), aspartate aminotransferase (AST), alanine transaminase 
(ALT), and total bilirubin (TBIL), which were not included in pre-
vious models, and identified their nonlinear role in renal function 
disorder. Thirdly, the proposed model was based on daily monitor-
ing and physical examination data that are easy to acquire for both 
CKD and non-CKD chronic disease patients. Therefore, it can be de-
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ployed into chronic disease management systems to aid physicians 
to early identify high-risk population for timely intervention.

2. Materials and methods

2.1. Data resource

The data used in this paper are from Shenzhen Health Informa-
tion Big Data Platform, which has access to more than 4,000 health 
institutions including 85 hospitals and more than 650 commu-
nity health service centers. The platform covered medical service 
records including outpatient, inpatient, biochemical test, imaging 
examination, physical examination, and regular follow-up records 
of registered patients with hypertension, diabetes, cancer, and 
other diseases. At present, the platform has more than 5 billion 
medical service records and 598 million electronic medical records, 
covering a time span from 2010 to 2020. Medical records among 
different institutions of the same patient can be associated with 
a unique personal identification number. Due to the case that all 
medical records were collected in routine clinical activities and the 
anonymous nature of the obtained data, following the Guidelines 
of the WMA Declaration of Helsinki term 32, a waive-of-consent 
protocol was adopted and was approved by the SIAT IRB with No. 
SIAT-IRB-151115-H0084.

The causes of renal failure are complex, diabetic nephropathy 
(43.2%) and hypertension (23%) form the main causes of renal 
failure worldwide [2]. Moreover, a large portion of patients with 
diabetes and hypertension tend to receive periodic physical exam-
inations, thus a large number of laboratory test result data needed 
for renal risk prediction have been accumulated, as in the case of 
the Shenzhen Health Information Big Data Platform. Therefore, this 
study mainly focused on predicting renal failure risk for these two 
types of chronic disease patients with high incidence and stan-
dardized management.

The main goal of this work is to establish a high-precision 
three-year short-term risk prediction model for the two major 
chronic disease population of hypertension and diabetes, based on 
the real-world population electronic medical record data and ma-
chine learning techniques, and thus to explore the risk factors of 
renal failure and support clinical decision making. The pipeline of 
the study is depicted in Fig. 1.

2.2. Study population

A total of 228,903 registered patients with hypertension or di-
abetes were selected from the platform, including 188,155 hyper-
tension and 67,737 diabetes patients. The diagnostic of renal failure 
was extracted from the main diagnosis fields of the outpatient or 
inpatient records according to the International Statistical Classi-
fication of Diseases and Related Health Problems 10th Revision 
(ICD-10) [29] diagnostic codes, which includes N17(acute renal 
failure), N18(chronic renal failure), N19(unspecified renal failure), 
I12.0(hypertensive renal disease with renal failure), I13.1(hyperten-
sive heart and renal disease with renal failure), and I13.2(hyper-
tensive heart and renal disease with both (congestive) heart failure 
and renal failure). As a result, there were 5,649 cases of renal fail-
ure onset.

Based on the findings of previous researches and the needs for 
renal function evaluation, we limited our study to patients with 
biochemical tests after their registration date, and 186,284 samples 
were excluded. For positive cases (patients with renal failure), we 
required patients not to suffer from renal failure in the initial state 
and excluded 363 samples. To rule out the possible impreciseness 
of diagnostic time or delayed diagnosis, we required renal failure 
patients to have serum creatine (CREA) laboratory results at least 
six months ahead of the renal failure onset, which excluded 1,738 
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Fig. 1. The pipeline of the study. ROC: receiver operating characteristic.

Fig. 2. The process of screening study population.
samples. In addition, only patients aged between 30 and 85 years 
were included in the study. Finally, only 5,974 samples met the 
above restriction, of which 398 samples had renal failure within 
3 years of follow-up, and 2,478 samples without renal failure had 
more than 3 years of follow-up. The screening process of the study 
population is shown in Fig. 2.

2.3. Data preprocessing

The medical records of 42,256 samples were extracted from the 
platform, including 9.15 million biomedical test records, 3.37 mil-
lion outpatient or inpatient records, and 620,000 follow-up records. 
As the medical records were collected from hundreds of health in-
stitutions with slightly different medical service systems, resulting 
in diverse data formats, poor data quality and even a large num-
ber of missing fields, the following steps were taken to clean the 
data:
3

Firstly, text parsing was performed. The diagnostic results in 
outpatient or inpatient records are a mixture of Chinese natural 
language text and multiple versions of ICD codes, which requires 
text processing. The unique characteristic of clinical text makes the 
traditional nature processing method difficult to be applied well. 
Previous studies have made many attempts and achieved some re-
sults [30,31]. In this study, we used the latest ICD-10 codes for text 
parsing. For ICD encoded text with other versions, conversion was 
carried out according to the corresponding relationship between 
versions of ICD codes. For the non-encoded diagnosis results, we 
used an internally designed lexical parsing code table to convert 
them into the corresponding ICD-10 codes, and the parsing process 
was iterated until the unparsed text was considered uninforma-
tive. The lexical parsing code table was built by adding a manually 
constructed matching list to the officially standard ICD-10 code 
classification table, in which the manually constructed matching 
list was generated by the following steps: a) extracting all diag-
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Table 1
Text parsing examples of Chinese text diagnostic results.

Original diagnostic results ICD-10 Codes after text parsing

DIAG_NAME DIAG_CODE DIAG_CODE_NEW

ICD06999 I25.103
(coronary heart disease)

12956 I25.103
(coronary heart disease)

3495 I25.103
(coronary heart disease)

1001974 I25.103
(coronary heart disease)

I25.103 I25.103
(coronary heart disease)

/ I25.103, E14.900
(coronary heart disease, type 2 diabetes)

192423 I48.x01, I25.103
(atrial fibrillation, coronary heart disease)

50683 I25.103, I10.X02
(coronary heart disease, hypertension)
nostic results with ICD-10 codes, b) removing characters such as 
spaces, tabs and newlines, c) removing duplicates with the same 
diagnostic results and codes, d) arranging diagnostic results in de-
scending order of character length, e) repeating substring matching 
for longer strings and replacing successful matches with ICD-10 
codes, until no more substring were contained. The final phrase 
and its ICD-10 codes were the constructed matching list. Table 1
shows a sample of text parsing.

Secondly, standardization was implemented to the biomedical 
test results. There are differences in the expression of biomedical 
test items in different institutions, including the item codes and 
units. We converted the corresponding test items into consistent 
code and unit. For example (Fig. 3a)), there are many kinds of item 
codes of serum creatine such as CRE, Crea, Cr, and CREA, and there 
are two units of μmol/L and mg/dL. We unified the code and unit 
into CREA and μmol/L, then carried out the numerical conversion 
of item results according to formula 1 mg/dL = 88.4umol/.

Thirdly, drug names were classified. The names of drugs in 
outpatient or inpatient prescriptions were diverse. For example, 
the commonly used antihypertensive drug irbesartan has a num-
ber of commodity names, such as Ambovey, Su shi, Yitaiqing and 
so on. Considering the characteristics of the study population, we 
only classified the drug-use into two categories of antihypertensive 
drugs and hypoglycemic drugs.

Finally, the unreasonable data was corrected. The records with 
obvious error items were deleted or assigned empty. For example 
(Fig. 3b)), systolic blood pressure below 40, diastolic blood pressure 
below 30, or body masa index below 10 were set to empty. In 
addition, records with more missing items were deleted.

2.4. Feature processing

Unlike most existing prospective studies, our study is a ret-
rospective study based on real-world data that contains medical 
service records at multiple time points for each patient, thus it re-
quires the definition of a baseline. In this study, the baseline was 
defined as the date of the first renal function test, and the cor-
responding test items and results were extracted as the baseline 
features. Here only the test items related to blood lipids, blood glu-
cose, electrolytes, liver function and renal function were extracted. 
For items not checked at the baseline, the test records within three 
months before and after the baseline were extracted to fill in. If 
4

there were multiple records for the same item, the record closest 
to the baseline was selected. Second, the physiological parameters 
in the most recent follow-up record from the baseline were ex-
tracted as features, containing blood pressure, heart rate, and body 
mass index. Then, diseases and symptoms in the outpatient and in-
patient records prior to the baseline were extracted, characterized 
by ICD-10 codes, and then binarized according to the existence. In 
addition, demographic characteristics, lifestyles (i.e., smoking and 
drink), and drug categories were extracted, where lifestyles and 
drug categories were binarized by presence.

Appropriate feature selection can reduce learning difficulty and 
improve model efficiency. First, feature with missing values above 
30% were removed. Then, some feature selection techniques such 
as Pearson’s correlation and univariate analysis were adopted to 
remove the redundant features. At the same time, some features 
based on existing research results and clinical experience were 
manually retained. The measurement scale of all retained features 
is shown in Table 2.

2.5. Predictive modeling

Five machine learning algorithms were implemented to estab-
lish the risk models between the extracted features and the occur-
rence of renal failure by using the Scikit-learn library in a Python 
programming environment.

XGBoost (Extreme Gradient Boosting):XGBoost is an efficient 
machine learning integration algorithm based on multiple deci-
sion trees under the gradient boosting framework [32]. Different 
from traditional gradient boosting decision tree methods, XGBoost 
supports column sampling, which can reduce overfitting and calcu-
lation. XGBoost also considers sparse values and supports missing 
value by default, which are naturally transformed to a sparse ma-
trix containing only no missing value.

Logistic regression (LR): logistic regression is a classical classifi-
cation model which is almost the most commonly used analytical 
method in epidemiology and medicine, often used in risk factors 
discovery, disease risk prediction and automatic disease diagno-
sis. It is a generalized linear regression analysis model [33], which 
introduces a sigmoid function to normalize dependent variables. 
Logistic regression is commonly used as a dichotomous model, and 
requires dependent variables to follow binomial distribution.

Decision tree (DT): decision tree is a typical classification and 
regression model for predicting a target in the form of tree struc-
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Fig. 3. a) Examples of standardized biochemical tests: creatine; b) examples of exception value.
ture, which consists of nodes and edges [34]. Decision tree learning 
algorithm is usually a recursive selection of optimal features such 
that each subset has the best classification, including feature selec-
tion, decision tree generation and decision tree pruning process.

Random forest (RF): random forest is a popular ensemble al-
gorithm, which determines the final prediction by combining the 
outcome of multiple weak classifiers [35]. In random forests, the 
base classifiers are trained independently, so the learning process 
is very fast. Moreover, random forests have the advantages of eval-
uating the importance of variables and resisting overfitting.

Support vector machine (SVM): support vector machine is a 
generalized linear classifier, which is characterized by the ability to 
minimize empirical errors and maximize geometric edge regions at 
the same time [36]. In addition, the stability and sparsity of sup-
port vector machine make it have good generalization ability, and 
the computation is small when using kernel functions.

We divided the data set into training set and test set in a ratio 
of 6:4. 10-fold cross validation was implemented on the training 
set and the performance of the models was evaluated on the test 
set. For missing values, no value imputation operation was per-
formed for XGBoost as the missing value can be directly marked 
and only the samples without missing values were used for cre-
ating trees. For the other four methods, the missing values were 
filled with mean of each feature, and the data were standardized 
by the mean and variance of each feature. A series of evaluation 
criteria were employed to validate the models, including the area 
under the receiver operating characteristic curve (AUC), accuracy, 
F1-score, specificity, sensitivity, negative predictive value (NPV), 
and positive predictive value (PPV).

All experiments were performed under the environment man-
ager Anaconda of Linux server in the isolated intranet, and a 
python3.6.5 kernel was used for data processing and modeling.

3. Results

3.1. Study cohort and characteristics description

A total of 5,974 patients were screened in the study cohort. Af-
ter 3 years of follow-up, 398 patients (positive cases) had renal 
failure and 2,478 patients without renal failure (negative cases) 
were still being followed up. The distribution of the follow-up 
length is depicted in Fig. 4. After feature extraction and selection, 
there were 52 features pre-selected and the baseline characteristics 
are shown in Table 2. Among the 398 patients with renal failure, 
only 316 patients (79.39%) had chronic kidney disease at the base-
line.

3.2. Model prediction performance

Considering the number of samples and follow-up length, we 
aimed to develop a 3-year risk prediction model of renal failure 
5

Fig. 4. Distribution of follow-up length of the study cohort. The histogram shows 
the number of samples still available as the follow-up length increasing. The line 
diagram shows the total number of samples with renal failure at the end of the 
follow-up period.

Fig. 5. The receiver operating characteristic curve of models.

based on the 2,876 samples, including 398 patients with renal fail-
ure and 2,478 controlled patients with more than three years of 
follow-up. 1,725 samples (60%) were used for model training, and 
the remaining 1,151 samples (40%) were used to validate the mod-
els. Table 3 shows the population profile of the dataset and we can 
see that there were slight differences in gender, age, and chronic 
disease types between the positive and negative cases.

The performance of each model is shown in Table 4. The 
method XGBoost achieved the best performance on the test set 
with AUC of 0.9139 and accuracy of 0.8643, followed by the three 
widely used traditional algorithms with comparable performance, 
which are SVM, RF, and LR. However, the performance of DT was 
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Table 2
Baseline characteristics of the study cohort.

Characteristics Positive cases Negative cases p-value*

Demographics
Gender, male 244(61.30%) 1255(50.65%) <0.001
Age, mean (SD), year 62.39(13.98) 54.9(13.28) <0.001
Life style (current or previous)
History of smoking 19(4.77%) 191(7.71%) 0.037
History of drink 20(5.03%) 246(9.93%) 0.002
Physical examination, mean (SD)
Systolic blood pressure, mmHg 132.68(13.42) 130.79(10.11) <0.001
Diastolic blood pressure, mmHg 81.21(10.95) 79.69(8.18) 0.063
Pulse pressure, mmHg 51.93(8.91) 50.72(8.83) 0.118
Hear rate, times/minute 76.45(6.98) 74.07(5.88) <0.001
Body mass index, kg/mˆ2 23.45(2.87) 23.11(2.54) 0.143

Medical history
Hypertension 391(98.24%) 2430(98.06%) 0.809
Diabetes 240(60.30%) 1384(55.85%) 0.096
Chronic kidney disease 316(79.39%) 1196(48.26%) <0.001
Diabetic nephropathy 113(28.39%) 162(6.53%) <0.001
Hypertensive nephropathy 42(10.55%) 29(1.17%) <0.001
Glomerular nephritis 10(2.51%) 20(0.81%) 0.002
Chronic tubulointerstitial nephritis 3(0.75%) 5(0.20%) 0.052
Obstructive nephropathy 148(37.19%) 980(39.55%) 0.371
Coronary heart disease 177(44.47%) 1416(57.14%) <0.001
Stroke 143(35.93%) 960(38.74%) 0.284
Heart failure 157(39.45%) 691(27.89%) <0.001
Atrial fibrillation 40(10.05%) 152(6.134%) 0.004
Cardiovascular disease 248(62.31%) 1751(70.66%) <0.01
Albuminuria 7(1.76%) 8(0.32%) <0.001
Asthma 11(2.76%) 53(2.14%) 0.438
Dyssomnia 26(6.53%) 66(2.66%) <0.001
Palpitation 7(1.76%) 14(0.56%) 0.009
Chough 14(3.52%) 41(1.65%) 0.012
Chest pain 10(2.51%) 38(1.53%) 0.157
Malaise and fatigue 8(2.01%) 22(0.89%) 0.041
Nausea and vomiting 4(1.01%) 9(0.36%) 0.076
Abnormal respiration 13(3.26%) 78(3.14%) 0.901
Edema 4(1.01%) 16(0.65%) 0.423

Laboratory variables, mean (SD)
Total cholesterol, mmol/L 5.01(1.43) 5.05(1.32) 0.774
Triglyceride, mmol/L 2.86(8.37) 1.84(2.16) <0.001
LDL-C, mmol/L 2.91(1.14) 2.94(1.04) 0.708
HDL-C, mmol/L 1.19(0.36) 1.23(1.32) 0.269
Serum Na, mg/dL 138.87(5.07) 140.11(5.54) 0.002
Serum K, mg/dL 4.32(1.08) 3.97(0.47) <0.001
Serum Ca, mg/dL 2.21(0.18) 2.34(2.73) 0.542
Blood glucose, mg/dL 6.09(1.74) 5.95(1.48) 0.345
Uric acid, mg/dL 453.43(140.24) 357.81(99.89) <0.001
Serum creatine, mg/dL 272.55(676.35) 123.34(842.48) <0.001
Blood urea nitrogen, mg/dL 10.21(11.95) 5.14(1.87) <0.001
Total bilirubin 12.11(11.45) 13.84(7.57) 0.005
Direct bilirubin 3.36(6.86) 3.31(3.09) 0.854
Indirect bilirubin 8.46(4.36) 10.23(5.29) <0.001
Total protein 68.56(7.15) 71.21(6.61) <0.001
Serum albumin 39.42(5.17) 42.7(4.62) <0.001
Alanine transaminase 24.36(31.16) 28.5(58.61) 0.334
Aspartate aminotransferase 27.39(32.47) 26.45(34.47) 0.702

Medications
Antihypertensive drug 75(18.84%) 923(37.24) <0.001
Hypoglycemic drug 43(10.8%) 619(24.76%) <0.001

Outcome
Renal failure events 398 -

HDL-C = high-density lipoprotein cholesterol; LDL-C = low-density lipoprotein cholesterol.

Table 3
The population profile of the training set and test set.

Features All Training set Test set

Positive Negative Positive Negative Positive Negative

Number 398(13.83%) 2478(86.16%) 239(13.85%) 1486(86.14%) 159(13.81%) 992(86.18%)
Gender 244(61.30%) 1255(50.64%) 151(63.17%) 744(50.06%) 93(58.49%) 511(51.51%)
Hypertension 391(98.24%) 2430(98.06%) 236(98.74%) 1456(97.98%) 155(97.48%) 974(98.18%)
Diabetes 240(61.38%) 1384(55.85%) 141(59.74%) 829(55.78%) 99(63.87%) 555(55.94%)
Age 61.59(14.32) 60.17(12.48) 61.53(14.41) 60.49(12.46) 61.68(14.23) 59.69(12.49)
6
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Table 4
Performance of the five models on the test set.

Method AUC Accuracy F1-score Sensitivity Specificity PPV NPV

LR 0.8769 0.8393 0.6715 0.5788 0.9426 0.8010 0.8494
DT 0.7584 0.8000 0.6291 0.5975 0.8803 0.6643 0.8465
RF 0.8807 0.8161 0.6199 0.5283 0.9302 0.7500 0.8326
SVM 0.8909 0.8393 0.6739 0.5849 0.9401 0.7949 0.8510
XGBoost 0.9139 0.8643 0.7467 0.7044 0.9277 0.7943 0.8878

LR = logistic regression; DT=decision tree; RF = random forest; SVM = support vector machine; AUC = Area under the receiver operating curve; PPV = positive predictive 
value; NPV = negative predictive value.

Fig. 6. The top 20 features selected by the XGBoost algorithm.
much inferior to the other four methods, as can be seen from the 
receiver operating characteristic (ROC) curve in Fig. 5.

3.3. Contributions of features to model prediction

The feature importance of the XGBoost method measures the 
relative contribution of the features in the process of building in-
tegration tree. The top-ranked 20 features selected by the XGBoost 
method are shown in Fig. 6, and the five features of CREA, UA, age, 
systolic blood pressure (SBP), and blood urea nitrogen (BUN) play 
important roles in risk prediction of renal failure. Our study also 
demonstrates that pulse pressure, heart rate, serum albumin (ALB), 
lower-density lipoprotein cholesterol (LDL-C), and AST are signifi-
cantly associated with renal failure in chronic disease patients of 
hypertension and diabetes. Specifically, the roles of UA, AST, ALT 
or TBIL in renal failure were rarely studied and thus were not in-
cluded in previous models.

3.4. Non-linear effect of risk factors

To further analyze the effect of risk factors, univariate trend 
analysis was implemented to describe the association between 
7

continuous variables and the morbidity of renal failure based on 
the 3-year risk prediction dataset. In this study, curve fitting was 
used to present the correlation and the morbidity was presented 
by the number of renal failure cases in a thousand samples. Gaus-
sian function, polynomial function and exponential function were 
tested separately and the fitting effect was evaluated by discrim-
inant coefficient R2 [37]. The coefficient normally ranges from 0 
to 1, and the closer it is to 1, the better the fitting effect. Fig. 7
shows the marginal effect of nine consecutive variables, in which 
CREA, UA, and age are the top 3 features in the feature importance 
list (Fig. 6) and their discriminant coefficient are 0.80, 0.68, and 
0.86 respectively. We see that the marginal effects of some fac-
tors (e.g., age, CREA, BUN, and serum K) form a hinge-like sharp, 
where the marginal risk remains low when the factor falls within 
a range and increases steadily after it goes beyond a threshold. On 
the other hand, some factors (e.g., UA, AST, ALT) exhibit a U-shaped 
trend, where the marginal risk is minimized when the factor falls 
within a given range while increases both when it goes lower or 
higher. Unsurprisingly, the turn-points for most risk factors such as 
CREA and BUN are highly consistent with the recommended nor-
mal range for general population in routine check-ups. A lower 
level of serum Na is observed to correlated with elevated renal 
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Fig. 7. Impact of given continuous variables on the morbidity of renal failure. Morbidity is expressed as the number of cases in a thousand samples.
failure risk, which is mainly due to its negative correlation with 
serum K, consistent with existing clinical findings. Interestingly, 
the marginal effect graphs show that lower levels of UA, AST, ALT 
or TBIL also contribute to higher risk of renal failure, which are 
rarely discussed in current literatures. Existing clinical studies have 
identified that lower UA or ALT are early signs of renal dysfunc-
tion [38], but few connect them with renal failure risk. However, 
the clinical implications for lower levels of the other two factors 
remain currently unclear. This would be worthy of further valida-
tions through a larger cohort study in the future.

4. Discussion and conclusion

We have developed a high-precision risk prediction model of 
renal failure for chronic disease patients with hypertension or dia-
betes based on electronic heath records from the Shenzhen Health 
8

Information Big Data Platform. Unlike existing studies, our model 
does not require patients to be diagnosed with CKD, which avoid 
the severe defect of low coverage for previous models led by the 
high undiagnosed rate of CKD patients in clinical practice. Collect-
ing blood samples from large-scale non-CKD population and per-
forming long-term follow-up have been difficult and costly. How-
ever, in our work, we manage to curate the data with the aid of big 
data technologies through extracting useful information from rou-
tine clinical records in the large-scale regional medical information 
platform, making it feasible to perform massive observational co-
hort studies more efficient.

Our findings partially overlap with some other early studies on 
patients with CKD. For example, ARIC/CHS score and Framingham 
score include age, gender, hypertension, diabetes, BMI, and HDL-C. 
Taiwan score and ADVANCE model include ACR, UA, glucose, and 
proteinuria. Also, the prediction model of CKD progression KFER 
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includes CREA, ALB, and history of CKD, stroke, heart failure, and 
arrhythmia. More importantly, we further identified several new 
prediction biomarkers such as AST, ALT, and TBIL with the power of 
sophisticated machine learning methods, and discovered their non-
linear role in renal dysfunction. The effect of nonlinear correlation 
justifies the necessity of adopting sophisticated nonlinear machine 
learning models over traditional linear regressions. Furthermore, 
with non-linear ensemble algorithms such as XGBoost used in our 
work, there is no need to select variables in advance even when 
the number of potential variables is large, which is different from 
most traditional clinical studies and enables identification of novel 
biomarkers with both linear and non-linear effects during mod-
eling process through mining large-scale population data. This is 
another advantage brought by big data technologies.

Our analysis has a few limitations. It is a retrospective study 
with data collected years ago, but this study indicates potential 
application of predicting risk of renal failure for chronic disease 
patients. In addition, the study cohort was imbalanced in view of 
the numbers of positive cases and negative cases, we performed 
randomly stratified sampling according to gender ratio and age 
stratification, in which the age stratification was 30–45, 45–60, 
60–70, and 70–85. According to the proportion of positive cases 
in the four age ranges, the negative cases were randomly sam-
pled in each age range. However, the cases randomly selected may 
not represent the rest of the patients accurately. We are currently 
collecting more patients with diverse basic diseases and trying to 
further validate and improve the model with recent data. Exter-
nal validation in multiple diverse disease cohorts and evaluation 
in clinical trials are also needed.

In conclusion, we have developed and validated a highly accu-
rate risk model for predicting renal failure of chronic disease pa-
tients with hypertension or diabetes, without necessarily early di-
agnosis of kidney diseases, which advance the state-of-the-arts for 
renal failure prediction. The model uses routinely available physical 
and laboratory examination data and could predict the short-term 
risk of renal failure with high accuracy. Due to the ease of access 
to data, it could be easily implemented in laboratory information 
systems or EHR systems to help with a more pervasive, preemp-
tive screening of renal failure risk, enabling higher efficiency of 
early disease prevention and intervention. Our works also justify 
the advantages of adopting big data technologies in public health 
as well.
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