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This work is concerned with the theoretical aspects of flow stability in a two dimensional vaneless diffuser.
Specifically, the appearance of self-excited oscillations, also referred to as rotating stall, is investigated considering
a two-dimensional inviscid flow in an annulus. We consider a linear perturbation method, taking as basic flow the
steady potential velocity field whose radial and tangential components are inversely proportional to the radial

coordinate. We show that such flow may become unstable to small two-dimensional perturbations provided
that the ratio between the inlet tangential velocity and the radial one is sufficiently large and a certain amount
of vorticity is injected in the flow field. Such an instability is purely kinematical, i.e. it does not involve any
boundary layer effects, contrary to the classical hypothesis which ascribes the instability to a peculiar boundary

layers interaction.

1. Introduction

Compressors are used in aircraft engines, industrial gas turbines
and turbo-charged combustion engines as well as in chemical indus-
tries (Lakshminarayana, 1996; Ludtke, 2004; Pfleiderer, 1952; Shepard,
1956). In this work we focus on centrifugal compressors. In these de-
vices the flow is compressed by exploiting the centrifugal force due to
the tangential velocity impressed on the gas by the rotating impeller.
The static pressure of the gas is further increased downstream the im-
peller by means of a flow passage with increasing area.

The main components of centrifugal compressors are inducer, im-
peller, diffuser and volute as shown in Fig. 1.

The gas enters the compressor in axial direction through the inducer.
Then it is accelerated in the impeller (which rotates at constant angular
velocity) and decelerates in the diffuser until it arrives in the volute.
The entire behaviour of the machine is driven by the amount of flow at
fixed rotating speed.

In the past years a lot of attention has been drawn on the study of air-
flow dynamic in turbomachinery, because a reduction of the inflow rate
at constant rotational speed may cause instability phenomena, usually
termed rotating stall (Japikse and Baines, 1997; 1998; Ludtke, 2004),
that consist of flow oscillations in one or more different parts of the
compressor.

Numerical models, developed since nineties, reveal that in vaneless
radial diffusers a rotating instability occurs when a critical inlet flow
angle is reached, i.e. when the inflow falls below a specific threshold
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depending on the device geometry. The presence of rotating stall affects
the compressor performances inducing severe vibrations to the rotors.
To this aim, it is fundamental to set up a reliable model which allows
to predict the instability onset, i.e. the critical inflow angle. Indeed, the
rotating stall is a key problem for achieving a good working range of a
centrifugal compressor and a detailed understanding of the phenomenon
is very important to anticipate and avoid it.

In the literature analytical, numerical and experimental approaches
have been used to investigate rotating stall in vaneless radial dif-
fusers. For example, Abdelhamid and Betrand (1980) and Abdelhamid
(1983) studied the effects of the vaneless diffuser geometry on rotat-
ing stall. Frigne and Van den Braebussche (1984) made a distinction
between different types of impeller and diffuser rotating stall in a cen-
trifugal compressor with vaneless diffuser. In Jansen (1964) the appear-
ance of self-excited oscillations of large amplitude is investigated both
theoretically and experimentally. Kinoshita and Senoo (1985), Senoo
et al. (1977), Dou (1991), Shin et al. (1998), Ferrara et al. (2004),
Biliotti (2013), Heng et al. (2018) and Engeda (2001a), Engeda (2001b),
Engeda (2002) have observed rotating stall by studying the flow phe-
nomena within vaneless radial diffusers. We also refer the readers to
Chen (2003) for a wide review on this subject. All studies have been
translated in the so-called stall maps or stall lines. The stall curve usually
splits the plane into two regions: one corresponding to stable regimes
and the other corresponding to the critical one, i.e. to the one in which
the rotating stall occurs. In Kinoshita and Senoo (1985) numerous stall
diagrams are shown.
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Fig. 1. A schematic of single stage a centrifugal compressor. Usually, centrifugal compressors are multi-stage, that is there are several impellers of different sizes

that successively increase the gas pressure, bringing it to the intended level.

Historically, the stall instability has been explained by the occur-
rence of a reverse flow in a certain portion of the diffuser (Kobayashi
et al., 1990). The presence of boundary layers on the top and bottom
walls of the diffuser may cause the formation of a recirculation region,
usually named recirculation bubble. According to Nishida et al. (1988),
Kobayashi et al. (1990) when the bubble reaches a critical extension the
instability is triggered. In other words, the rotating stall occurs when
the radial velocity does not have sufficient “strength” to maintain the
forward movement so to overcome the local adverse pressure gradient
generated by the interaction between the boundary layers occurring on
the diffuser upper and lower walls.

Recently, the problem of rotating stall has been analyzed with the
support of CFD simulations. Thanks to such a new approach, it is be-
lieved that two or maybe more flow mechanisms might be responsi-
ble for the occurrence of rotating stall in vaneless diffusers. Indeed,
measurements of Abdelhamid and Betrand (1980) have shown that
wide vaneless diffusers behave differently from the narrow diffusers.
Also Shin et al. (1998), Dou (1991) and Ljevar et al. (2005), Ljevar
et al. (2006) clearly suggest that the vaneless diffuser performances also
strongly depend on its width. These observations imply that a distinc-
tion should be made between narrow and wide vaneless diffusers. So
two different flow mechanisms lead to the rotating stall instability. In
general, one mechanism is associated with the flow instability occurring
in wide vaneless diffusers; another mechanism causes the wall instabil-
ity occurring in the narrow diffusers.

In wide diffusers the flow is essentially two-dimensional since the
wall-boundary layers are well separated from each other. On the con-
trary, in narrow diffusers the wall-boundary layers merge before the
flow comes out. In particular, in wide diffusers the instability has a
kinematic origin, as we show in Section 3. Conversely, in narrow dif-
fusers the instability originates from the interaction of the recirculation
bubbles, which form on the upper and bottom diffuser walls.

The flow in a wide diffuser has some similarities with the one
between two rotating concentric cylinders, and the circumferentially
spaced stall cells in the diffuser are similar to the axially spaced con-
vective cells occurring between rotating cylinders. Such a flow has been
studied for many years from both theoretical and experimental points of
view. We just recall the celebrated papers by Rayleigh (1880), Rayleigh
(1917), Taylor (1923), the book by Chandrasekhar (1961) and the re-
view by Howard (1962). However, the stability criteria concerning ro-

tating flow between cylinders refer only to tangential flows. In centrifu-
gal compressors the flow has radial and tangential components. In this
sense, a flow pattern similar to the one occurring in a diffuser is associ-
ated with the velocity field between two porous rotating cylinders Ilin
and Morgulis (2013), Bellamy-Knights and Saci (1987). In a diffuser,
however, there are no permeable boundaries. Indeed, while a boundary
of the domain is clearly identifiable (that is the inlet), the other is miss-
ing. This is reflected in the selection of the peculiar boundary conditions
that must be imposed.

The aim of this paper is to show theoretically that the inviscid ro-
tationally invariant flow occurring in an annulus may become instable.
More in detail, we consider, as basic steady flow, a velocity filed whose
both components are inversely proportional to the radial coordinate.
Next we perturb this basic flow with non-axisymmetric disturbances,
i.e. with m azimuthal traveling vortices whose amplitude can grow or
decrease in time. We show, analyzing the peculiar dispersion relation,
that the basic inviscid flow is unstable to small two-dimensional per-
turbations provided that the ratio between azimuthal component of the
velocity and the radial one is sufficiently large.

The paper develops as follows: In Section 2 we formulate the model.
In Section 3 we describe the basic steady inviscid flow and formulate
the linear stability problem. Section 4 is devoted to the analysis of the
physical mechanisms that can trigger the instability. A comparison with
the CFD data presented in Ljevar et al. (2005) is discussed in the last
Section.

2. Mathematical model

We consider a flow in an annulus whose internal radius is’ R; and
the external one is RZ (Fig. 2).
The velocity field is

vi=u"e, + 0" e,
where
wt=u(r,0,1*), and o* =0*(r",0,1%), (€Y

r* € [RE, RZ] being the radial coordinate and 6 € [0,2r) being the an-
gular one. The fluid is injected into the annulus at the inner surface

! During the whole work we will mark with “ * ” the dimensional variables.
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Fig. 2. Annulus where the flow takes place. The typical are R} = 200 mm, R} =
300 mm.
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Fig. 3. Schematic visualization of radial and tangential velocity, U* and V*, and
the in between angle a.

r* = R}, where the radial and tangential velocity are prescribed®

gy =07 () 20, @

u

U*l,*=R; =V*(*) 2 0. 3)

We also introduce the angle a, as (see Fig. 4)

U*
= arct — ). 4
a = arc an(V*> )

The vorticity is in the z direction (orthogonal to the plane of the
flow), i.e.

0" =V AV =" (r*,0,1)e, 5)

with

L2 oy = 20

o (r*,0,t") = — .
r* | or* a0

(6)
Typically the flow is in the range such that the mechanical incom-

pressible assumption is fulfilled. Therefore we have

Ve v*=0. (@)

Next, we assume that the fluid is inviscid, so that the motion equations
reduce to Euler equations

p (a:* v -VV*) = —V*p*, ®)

2 Here we adopt the convention that e, is oriented so that v*|._p. - €, =
U'lpopy 2 0. i
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with p* pressure. Rewriting (7) and (8) in cylindrical geometry and as-
suming azimuthal symmetry, i.e. u* = u*(r*,1*), v* = v*(r*,1*) and p* =
pr(r*, t*), we have

0 Ea

(r*u™) -0

oar*
ot u* [0*rY)

+ — =0,

o T [ or ©
ou* Lt ou* v _ 1 9p* )
or* or* r* p*or*

We now introduce the following dimensionless variables:

R R*
Ry=-2=1, R=—2 r=L e[LR, ’:;*'
RZ R2 2 U—i

0
For both radial and tangential velocity we use as a reference velocity®
Uy, i.e. the order of magnitude of the inlet radial velocity. So we obtain

u* v

= — V= —
¥ )
UO UO

s
u

and the boundary conditions (2), (3) become

ul_y =U@®, with U(t)=UZ](i*),

Ve (10)
Ol = V@, with V(= LL)

U

Concerning the pressure, we set

s

p
5
Uy

p=

Now using dimensionless variables and the boundary condition
(10)4, Eq. (9); can be easily solved getting

0]
]

u(r,t) = (11)

while the tangential velocity is obtained solving a linear PDE of hyper-
bolic type. Next, recalling (6), Eq. (9); entails

Jdv

5 +uw =0, (12)

where

=190V (13)
r or

is the dimensionless vorticity.
2.1. Stationary flow

We consider this inlet flow

Un=1, V)=V, =const,

so that (11) rewrites as

u(r) = l 1 <r<Ry, (14)
r

while the azimuthal velocity is
Vo

v(ir)y=— 1<r<Ry, (15)

,
which, because of (12), yields zero vorticity, ideed
vV,
w=120_ (16)
r or

The pressure field is

1+V?2
p(r)=P(R4)+M<l 1) 1<r<Ry 17)

2 2
2 r R4

3 In diffusers the order of magnitude on the inlet radial and tangential veloc-
ities are similar.
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Fig. 4. The stationary flow for the radial velocity field is shown on the left side, the perturbed one is shown on the right side.

so that the inlet-outlet pressure difference AP is

2

AP=P P —(1+Va) 1 ! 1

= |r:1_ |r:R4_T _F . (18)
4

3. Stability

The fluid enters the vaneless radial diffuser at the inner radius, r = 1,
and flows outward at r = R,. Self-excited oscillations may appear when
the inlet angle « given by (4) goes under a threshold that, in turn, de-
pends on R,. We assume that the disturbances can be expressed in terms
of periodic waves of small amplitude. The equations are then linearized
and solutions are sought for the resulting characteristic value problem.
More in detail, we add to the basic flow (14), (15) a small 2D perturba-
tion and study the flow stability for every single mode.

We consider system (7) and (8), which we rewrite in a dimensionless
form

d(ru) ov
P _0, 1<r<R,
or o0 Tt
v ufown)| wvav 10p
v u s L% R, 1
ot r[ar r00  roo r=t {19
2
Qu U v o 0Py R
ot or r radf ar

and take as basic flow (14), (15) and (17) where we have set P(R,) =0,
ie.

N =

pr) = (1+V()2)<L_lz)’ I<r<Ry, @0
r

2
R,

whose vorticity w vanishes, as shown by (16). Next, we proceed as in
Jansen (1964), considering*

u= l + ﬁ(r)e"R’ei(O'IH'me)’
r

U= & + ﬁ(r)egRtei(G,H—mQ), (21)
r

p = p(r) + pr)erlelC1md),

where og,0; € R, m € N, and where the amplitude of the perturbations
is estimated from 4, §, p, which are small. The perturbations represent
azimuthal traveling waves, whose phase speed (or better angular phase

speed) is los| (see also Fig. 4). These rotating patterns are indeed the
m

unsteady flows occurring in the vaneless diffuser, and the number of
complete revolutions of these patterns per unit time is equal to ¢;/27.
Setting

o =optioy,

and inserting (21) into system (19) and linearizing, we obtain the fol-
lowing system

imV, 19 1 2V, dp
+ +—-— )a—-—0- =——, 1<r<Ry
<U r rdr)u 2T TR or T
imV, D i
oy Mo 10 0-<2=-"5 1<r<Rm, 22
r2 ror r2 r
N imp=0, 1<r<R,.

4 Here and in the sequel we use the exponential notation for the trigonometric
functions, as implying that we are taking the real part
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Fig. 5. Research of eigenvalue with o, =0, form=1and R, = 1.5.

Still following Jansen (1964), we introduce the stream function y(r),
since the flow is two-dimensional. Hence

. im
= —y(r),
r

b= —w0
v= or ’

so that the continuity Eq. (22)5 is automatically fulfilled and, after some
algebra, (22); 5 reduce to

imV,
<0' + ) 19

2 =

where V2(-) is the radial part of the Laplacian in cylindrical coordinates,

namely
¢ 10 m?
2 )= — 2 P A
VIO =SS LS = T, @4)

We split (23) into the following system of two differential equations:

Vi) = f(r),
< imV, 19 ) (25)
o+ +— ) f(r)=0.
r ror

2

m=1

INSTABLE

STABLE

0 50 100 150 200 250

Vo
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The solution to (25), is
[(r) = c3e787, (26)

where

)

(o2
glr) = >

with c3 constant. Next, exploiting the variation of parameters method
Boyce and DiPrima (2001), we solve (25); getting this general solution

+imV,Inr,

.
C C
y(r) = _,L + o™ + 2_3 / (FmmHl g8 g g @7
¥ m
1

where ¢y, ¢,, (and c3) are constants to be determined exploiting suitable
boundary conditions. In particular, we impose u,_; = 1,=> a(r) =0, i.e.

Wt =0, 28

and v|,_; =V, = 0(r) =0, ie.

6_u/ =0. (29)
or r=1

From the above conditions we easily obtain ¢, = ¢, = 0, but we still
need a third boundary condition for the constant c5. To this purpose,
we have to bear in mind that R, is not a material boundary where the
velocity can be prescribed. So on R, we can assign the pressure or, alter-
natively, we can prescribe the inlet-outlet pressure difference. We thus
consider two possibilities:

* Prescribed outlet pressure,

PRY=0 = p(Ry)=0. (30)
@b

3

* Prescribed inlet-outlet pressure difference, namely

p(Ry) — p(1) = AP (2=1>) P(Ry) — p(1) = 0. (31)
3

The procedure that we illustrate in the sequel refer to (30), but very

minor changes allow to treat also (31). So, focussing on (30), we recast

it in a condition for y, namely

W%+l]@:

G 1
R, Ry | or

or?

(32)

= —[6R4 +

r=Ry r=Ry

If, in place of (30) we take (31), then Eq. (32) has to be replaced by

m=1

INSTABLE

16
-
o
151 STABLE
14
13
12 F
11 s s s ‘
0 1 2 3 4 5 6 7 8 9

Fig. 6. Example of stall curve for m = 1. On the left the plane (V,, R,), on the right the plane (a, R,), « being given by (4).
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Fig. 7. Stall curves for m = 1,..., 15.
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Fig. 8. Stall curve obtained by composing the stall curves of the first 15 modes.

_%v

or?

0ty

imV, 1] oy
or?

+ —
R, Ry | or

r=Ry

+ [0' Ry +
r=Ry r=1
oy

—| =0 (33)

r=1

—[G+imV0+l]

Recalling (27), Eq. (32), i.e. boundary condition (30), gives rise to
such an equation
Ry
e 8(Ry) — _% / efg(z){ [mR:‘n72zlfm _ mRZm—Zzler]_'_
1

+ [Rp=2z1mm — Rym=21m| (0 RE + imV,) 2, (34)

which, splitted into its real and imaginary parts, rewrites as

Ry
2eEcos(F) + / (AC—-BD)dz=0,
! (35)
Ry
2eLsin(F) — / (BC + AD) dz =0,
1

where:

c A= e’TR(zz’l)cos(%(z2 -+ mVa]n(z)).
- B= —e_TR(Zz_l)sin((%I(zz —D)+mV, ln(z)>.

e C= Rz"_zzl‘m(m + GRRi) + R;m_zzl*"”(—m + URRi).
* D =(mV, + 0, RO(RI-2z1-m — Rym=2z1tm),

cE=_"Rp2
E=-=X(R}-1).

T
* F= SRy = D)+ mV, In(Ry).

So, (35) is a non-linear algebraic system in the variables oy and oy,
usually named dispersion relation. The set of all (o, 6;) solution to
system (35) gives the spectrum of the linearized problem.

To solve numerically (35) we impose a restriction on the range of oy,
assuming % = O(1). As stated earlier, the perturbation is an azimuthal
travelling wave whose physical origin is essentially due to the impeller
rotation. Hence, the perturbation angular phase speed, % has to be of
the same order of the impeller angular velocity, which is 1 in dimen-
sionless variables. In other words, the restriction % = (1), is due to
the physical consistency of the model. We shall resume this issue on
Section 4.
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Fig. 9. Contour plot of the vorticity, form=6,V,=1,6p =2and 6, =6 fort € 0,21, t=0, ZL =, %l.
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In solving numerically system (35) we are interested in those eigen-
values whose real part is positive. So, for given m and R, we look for
the value of a for which o becomes positive (see Chorin and Marsden
(2000) Section 2.4). We repeat this procedure for m = 1,2.,..., 15, and Ry
ranging in the interval (1.3, 2).

Numerical simulations indeed show that the purely radial flow (i.e.
a=r/2, or V,=0) is stable, i.e. o <0 for all m € [1,15]. When « is
decreasing form z/2 (i.e. V, is increasing from 0) the eigenvalues ¢
move to the right until o crosses the imaginary axis, so o becomes
positive (see Fig. 5). The corresponding angle a has therefore reached a
critical value at which the instability arises. So for each m we can draw
in the (a, R4) plane (or in the (V,, R,4) plane) the neutral curve, i.e. the
curve corresponding to o, = 0. Such a curve is therefore the stall curve
relative to the m mode. In Fig. 6 we have plotted the stall curve for the
mode m = 1.

Every stall curve splits the plane into two different regions: one cor-
responding to stable flow and the other corresponding to unstable flow.
So, drawing the same plot for m = 1,2...., 15, we have a characterization
of the plane (a, Ry), or (V,, R,), in terms of the flow stability, as shown
in Fig. 7.

Next, cutting out the instability region for each mode we obtain a
single curve characterizing the flow stability/instability up to mode m =
15 (see Fig. 8).

Applications in Engineering Science 4 (2020) 100025

So, on one side of the stall curve there is at least one mode me [1,
15], which is unstable, i.e. which has at least one eigenvalue with o5 > 0.
On the other side of the stall curve all modes with me[1, 15], have
negative op.

4. Instability onset: a possible explanation

Referring to the vorticity, form (21) we obtain

o= a(r) egt+im9 = l [i(rﬁ) _ imﬁ] . eo’t+im9. (36)
rlor
———
ﬁ(r)

Now recalling the stream function, we have @(r) = —fo//, so that

oy

(r ’2“>+' (0-V,In(r))
o -5 m(U— onr
w(r,0,t) = - — e 2

or?

’

whose real part is

0y

Re(a)) = - ﬁ

r2-1
eaR(I_ 2 ) cos [a, <z - ’ZT_1> +m(0 + Voln(r))].

r=1

In particular,

oy

Re(w)|,=; =— Fr

e’R! cos(o-,t + mG),
r=1
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showing that the perturbations generate a travelling circumferential
wave in the vorticity at the inflow boundary, that then is advected across
the annulus by the flow. We note that if we were to consider the flow
with zero inlet vorticity, then instead of the boundary conditions (30) or
(31), we should have considered the condition ‘3:7‘;’ =0, leading to
the conclusion that the corresponding eigenvalue plcc_)llnlem has no so-
lution (and the flow is stable). So the instability may occur providing
that r = 1 is not a zero-vorticity boundary. This fact gives an hint on the
physical origin of the instability. The latter is likely to be generated by
the wakes due to the rotating blades of the impeller. The vorticity that
comes close to the blades (due to the fluid viscosity) is injected into the
annulus essentially acting as a perturbation of the basic stationary flow
(14), (15). When particular flow conditions occur, the injected vorticity
is taken away by the mainstream, decreasing asymptotically. The result-
ing flow regime is thus stable. When such conditions are not fulfilled,
the vorticity grows in time leading to the self-excited oscillations which
persist inside the diffuser. Some plots of the vorticity for different values
of oy are reported in Figs. 9 and 10.

To ascertain the validity of the proposed approach, we have
reported in Fig. 11 the two stall curves, obtained by considering
boundary conditions (30) and (31), and the stall curve obtained in
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Ljevar et al. (2005) using a CFD approach based on a 2D inviscid model.
The agreement is satisfactory.

5. Conclusions

The phenomenon of flow instability in centrifugal compressors is a
long-standing problem of concern for turbomachinery research and ap-
plication. It is well known indeed that the operating range of compres-
sion systems is limited at low mass flow rates by the onset of an instabil-
ity. As the flow rate decreases, the pressure rise across the compressor
increases monotonously until flow becomes unstable.

We address the problem from a linear stability point of view. Indeed,
in the framework of the inviscid theory, we consider a simple irrota-
tional flow resulting from a combination of source and vortex in an an-
nulus to which we superimpose a small two-dimensional perturbations,
without accounting for any boundary layers or other effects attributable
to viscosity.

The analysis shows that basic flow (14), (15) becomes unstable when
the ratio between the inlet velocity tangential and radial components
exceeds a certain critical value (i.e. the inlet flow angle falls down a
threshold value) provided that a certain amount of vorticity is injected
in the flow field. Vorticity plays a fundamental role in the instability
occurrence. The value of the critical flow angle at which the instability
develops depends on the diffuser geometrical characteristic, in particu-
lar on the ratio between the external and internal radius.

This instability is purely kinematical. Indeed, the most unexpected
result of this study is that such an instability develops in a 2D inviscid
flow, while the classical results suggest that the instability origin lies in
the fluid viscosity and in the thickness of the diffuser.

Much remains to be done in this area. One of the most interesting
open questions is the stability of a three-dimensional flow, and, in par-
ticular, the relation with the two-dimensional case studied here. The
results presented here, though mainly theoretical, are relevant to the
above extent. They may also shed some light on the physical mecha-
nism of the instability generation in narrow vaneless diffusers.
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