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We use the methods of coadjoint orbits and the corresponding representations of the Virasoro group to formulate an index 
theorem for the BRST operator. A few concrete examples are set forth, one of them implies the vanishing theorem of Frenkel, 
Garland and Zukerman. 

The phi losophy underlying the recent upsurge of  
interest  in loop space formula t ion  [ 1 - 3 ]  of  string 
theories is that  one can gain more intr icate  structures 
of  string field theory. The beautiful  result o f  Bowick 
and Rajeev [ 1 ] suggests that  non-per turba t ive  string 
equat ions of  mot ion  do indeed emerge through man-  
ifestations of  geometr ic  quant iza t ion  of  an infinite- 
d imensional  system. However,  as Wit ten  had sug- 
gested several years ago [4] ,  some ref ined global 
quanti t ies  on loop space can be used to probe field 
theory informat ion  o f  a per turbat ive  nature,  such as 
supersymmetry  breaking patterns.  Bearing this in 
mind,  some intriguing a t tempts  are made  in refs. 
[5,6] to set up an index theorem of  the 
D i r a c - R a m o n d  opera tor  in loop space. These studies 
borrowed the fixed point  formulas  o f  At iyah and co- 
workers [ 7 ], so as to reduce the formula  into a finite- 
d imensional  mani fo ld  ins tead of  loop space itself. On 
the other hand, as the D i r a c - R a m o n d  opera tor  can 
be ident i f ied with supercharge of  a certain supersym- 
metr ic  ( 1 + 1 ) -d imensional  non- l inear  sigma model,  
it is not  clear what  is the string nature  o f  the index 
theorems achieved so far. To explore this quest ion a 
step further, one may  generalize these studies to get 
another  version o f  the index theorem which is able to 
incorporate  string field theory more  closely. An im- 
media te  response seems to be an index theorem for 
the BRST operator .  BRST formal isms have been de- 
veloped mainly to study the constrained systems, they 
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prove especially useful in quantizing string theory 
which contains infinite degrees of  f reedom and its 
constraint  algebra is also infini te dimensional .  A se- 
ries of  recent mathematical  l i terature [ 8 ] pointed out 
a deep relat ion between BRST cohomology and some 
basic results in string theory, e.g. the no-ghost theo- 
rem. This h inted that  one may arrive at unexpected 
results along the way towards a bet ter  unders tanding 
of  the BRST formalism. In this paper,  we try to set 
up a more  stringy version o f  fixed poin t  formulas  
which can be interpreted as an index theorem for the 
BRST operator .  In doing so, we discover  the close re- 
lat ion between Virasoro representat ions,  character  
formulas  and the coadjoint  orbits  of  the Virasoro 
group. 

The major  difference between the index of  a 
D i r a c - R a m o n d  operator  in loop space and that o f  the 
BRST opera tor  defined as a certain exterior  deriva-  
t ive on an elliptic complex arises from the following 
two facts: ( 1 ) the BRST operator,  in view of  the string 
field theory proposed  by Wit ten,  is dynamica l  so that  
unlike the D i r a c - R a m o n d  operator ,  which can be 
ident i f ied with the supercharge, there is no consistent  
def ini t ion of  its index in terms o f  a classical complex 
such as the de Rham complex over  a spacet ime mani-  
fold; (2)  classically, a BRST opera tor  is ni lpotent ,  
Q2 = 0, this means  that  when we calculate its trace on 
the space of  Q eigenvalues we get exactly zero due to 
the t r ivial i ty  of  cohomology.  Thus the only non-triv- 
ial way to establish an index theorem for the BRST 
opera tor  is to consider  its quant ized version, i.e. take 
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the trace over the entire eigenspace consisting of first 
quantized string states in contrast to the 
Dirac-Ramond case where loop space is viewed as a 
configuration space of a closed string. These two facts 
suggest that a new version of an index theorem should 
emerge only after manifestations of the algebraic 
structures of string field theory within the framework 
of the BRST formalism. We will find in what follows 
coadjoint orbits associated to the symplectic reduc- 
tion of the infinite constrained system especially use- 
ful in this vein of ideas. 

But let us first start with little ambition. The 
Nambu-Goto  action which is an expression of the 
worldsheet area 

S =  - f da  d r x / - d e t  O,~xUOnxu , ( 1 ) 

is invariant under reparametrizations generated by 
2rr 2 

Ln'= f da(fiSso~l, ndaldx") exp(-ina)" (2) 
0 

The quantized version of Ln is 

1 
L. = -~ -~o~ :OZ'n--mOgm: 

:a_nan: (3) Lo = : ao+ '  2 
n = l  

What the BRST procedure amounts to is that one re- 
writes the N - G  action in such a way that the two- 
dimensional metric has a gauge degree of freedom and 
introduces the ghosts to compensate the BRST trans- 
formations, in order to render the action BRST in- 
variant. This indicates that the total action is 

t ~  = ~ i n v  -~- ~gauge_f ix ing  "t- ~OF_ P . (4) 

Now the BRST charge takes the form 

Q= ½irt i do'jBRST (0") 

~ "tL(~)'lL(_C~-a~m)Cm : "~ - - m - - 2  
--oo 

= L_mCm-½~ (m-n):c_mc_~b,,,+~:-aco, 

(5) 

which is the first order differential operator of  the 

Virasoro algebra acting on the first quantized string 
states. Its nilpotency (Q2 = 0) is equivalent to the po- 
sitiveness of the Hilbert space norm and thus the no- 
ghost theorem. 

A more formal view of this procedure is in terms 
of the semi-infinite complex with its exterior deriva- 
tive precisely the BRST charge. This was shown in 
ref. [ 8 ] to be equivalent to the symplectic reduction 
of an infinite-dimensional hamiltonian system with 
infinite-dimensional constraint algebra. Because its 
geometric feature is more fascinating, one expects this 
to give rise to much deep information about string 
field theory. 

Given a classical system of infinite degrees of free- 
dom, the symplectic reduction is a method to sim- 
plify the equations of motion by going to a certain 
subquotient. Thus let N--  ~ M  be the loop space con- 
sisting of all closed loops in M, it has the natural 
interpretation of being the phase space of open bo- 
sonic strings. The cotangent manifold T*N is a man- 
ifold on which the classical action ( 1 ) is defined. This 
action is highly singular since it contains first class 
constraints; the typical form of its hamiltonian is 

H =  (n.(b'~-LPo+2nLn), Jz. = 0~b~ , (6) 

where 2 n are Lagrange multipliers, and L.  serve as 
constraints of the form 

( L o - 1 ) l  } = 0 ,  Lnl } = 0 ,  n > 0 ,  (7) 

which constitutes an infinite-dimensional algebra. 
It is useful to denote the inverse image of Ln under 

a certain Hamilton map by C which is a closed sub- 
space in T*N. The basic ingredient of symplectic re- 
duction of a triple (M, C, ¢ )  together with a Poisson 
algebra, f#. Where M is a canonical phase space in 
general. For example in the finite-dimensional case, 
M is spanned by 2k canonical coordinates qi, Pi ( i=  1, 
..., k), the Poisson algebra f¢is generated by functions 
on M which obey f .  (q, p) =0,  as 

{f~,fi}= ~ c~,~f~. (8) 

The LHS is defined barring the symplectic structure 
on M, o9= ~ d p i ^  dq( And C is simply the solution 
space off .  = 0 which is coisotropic in M in many cases. 
In (8) the "structure constant" may render ~ to be 
semi-simple, hence there exists a hamiltonian action 
of G, the corresponding group of f¢, such that [ 9 ] G 
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acts as a symmetry of the symplectic structure ~o. The 
set of all smooth functions on M are naturally en- 
dowed with the structure of the Poisson algebra, it is 
not difficult to show that the Poisson algebra of func- 
tions on N (where N is the underlying configuration 
space) reduces to a subalgebra generated by those 
functions whose restrictions on C vanish. 

Given a hamiltonian action of G, there is associ- 
ated a moment map defined by 

• :M-~ f¢* , (9) 

where ~¢* is the space dual to ~¢, and M=T*N.  The 
image tb(m) (valued at ¢~ ¢¢) consists of the coad- 
joint orbits O of the G action in c5". It turns out that 
[9] the coadjoint orbits constitute a symplectic G 
space. On the other hand, the inverse image 

-1(O) = C  is the submanifold of M which can be 
identified as the coisotropic submanifold described 
above, modulo a certain technical hypothesis. 

The symplectic reduction is in general a process of 
going from functions on M, F(M ) to that on C, F( C ) 
in a G equivariant sense, i.e. there exists the follow- 
ing sequence: 

d* 8 
0 ~ G ~ F ( C )  , F ( M ) - - * I ~ 0 ,  (10) 

where Ker d*= tb -~.g, gE ~¢; 8 is the derivative of the 
hamiltonian action, and I consists of functions van- 
ishing on C. The corresponding cohomology descrip- 
tion via Kos2ul resolution of the ~¢-module is the 
statement that 

H ° (  A c5"®^ f fQF(M))  = F ( C )  6 , (11) 

where D is the derivative of a double complex 
^ if*® ^ fC®F(M), which is similar to the classical 
BRST complex with D identified as the BRST charge. 
We see the close relation between the cohomology of 
the BRST complex and symplectic reduction. 

Although the method of symplectic reduction seems 
trivially when applied to a finite-dimensional sys- 
tem, it is non-trivial when applied to an infinite-di- 
mensional system such as string theory where both 
the phase space and the constraint group (Virasoro 
group) are infinite-dimensional. The non-triviality 
lies on the second cohomology group of the Virasoro 
algebra. 

Let the triple be (T 'N,  C, ~) ,  where N = ~ M  is 
the loop space, note that in fact C =  ~ -  L (0), • being 
the moment map for a hamiltonian action of the 

Virasoro group D i f f S ~ w e  momentarily ignore the 
central extension DiffS 1). We wish to study func- 
tions on C which are invariant with respect to 
G=Dif fSL To find an example of this function, we 
note that the moment map 

~:  T*N~ f¢* (12) 

is a function tb(m) [3] which is the same as the func- 
tion ~(~) (m), where for ~ ~¢, ~(~) is a linear func- 
tion valued in M. Thus one can take ¢b(C) to be the 
specific function which, by definition, vanishes when 
it is restricted to a coadjoint orbit consisting of a sin- 
gle point, the origin. The vanishing function is of 
course invariant under Diff S~; to find non-vanishing 
functions which are invariant under Diff S ~, one sim- 
ply lets tb (as a function) run over all coadjoint or- 
bits, and the requirement that they are DiffS 1 
invariant means that F(C)  has a quotient structure 
isomorphic to DiffSJ/Go, where Go is the isotropic 
subgroup associated to the null foliation of C. This is 
because for a hamiltonian G-space M and a moment 
map tb:M--, ~¢*, there exists [9] a locally constant 
map 

qOoSM - A d * ( s )  o qb: M--, ~*,  (13) 

where s~G, and Ad* denotes the coadjoint represen- 
tation of G in if*. Among other things, this simply 
means that one can find a G-equivariant group iso- 
morphism between F(C)  and the coadjoint orbits 
DiffS 1/Go for every element s of G that is left invar- 
iant by Go. Thus there is a correspondence between 
the coadjoint orbits and the DiffS j invariant F(C)  
(Virasoro if-module). A theorem of Borel, Well and 
Kostant asserts that there is a one-one correspond- 
ence between the coadjoint orbits and the irreducible 
representations of the Virasoro group. One is led to 
interpret F(C)  as space of irreducible representa- 
tions of the Virasoro group. This is natural in view of 
a recent work of Witten [ 10 ] on the classification of 
possible coadjoint orbits of the Virasoro group where 
he argued that the possible orbits compatible with 
geometric quantization are DillS ~/N, where N = {I}, 
S~, SL¢~) (2, R). 

Only given a structure on F(C) ,  this is not enough 
because it corresponds to the light-cone formalism of 
a bosonic string. The full covariant version should in- 
clude ghosts amounting to considering the whole 
F(M),  i.e. an arbitrary ~-module not necessarily 
being irreducible. In view of ( 11 ), one wishes to study 
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the BRST cohomology in an infinite-dimensional 
setting. The analogue of eq. ( 11 ) is a beautiful result 
of Frenkel, Garland and Zukerman [ 8 ] about the 
vanishing theorem of semi-infinite cohomology: 

n ~ ( g ,  go, V ) = 0 ,  n > 0 ,  (14) 

dim H ° ( g, go, V) =d im F ( C )  ° , ( 15 ) 

where V is an arbitrary Fock module. In terms of Vi- 
rasoro representation theory, this result can be inter- 
preted as singling out only unitary, irreducible Verma 
modules consisting of highest weight representations 
of the Virasoro algebra. Unitarity means that the 
norm of any states of the form ~ La_ ". n= l I O) should 
be positive definite: 

I L _ , I 0 )  12=(01 [L, ,L_~ ]10) 

= 2 ( 0 l L o l 0 ) = 2 h .  (16) 

Thus any states with h < 0 cannot be unitary. 
The analogy of the elliptic complex of (11 ) is 

achieved by making the following identification of the 
BRST operator acting on the complex 
( ^ g*® ^ g ® F ( M ) ,  Q): 

Q ~ D = d +  ( -  1)P25, 

D: ^ Pg*® ^ q g ® F ( M )  

^ p+l ~*® ^ q g ® F ( M )  

-.]-Apc~®Aq-l~.F(m), d 2 = 0 ,  t~2 ~. 0 

~ D 2 _ - 0  . (17) 

The sole importance of quantization is that 

2 Do . . . . . .  =H=d*~5+ *Sd , (18) 

which serves as the Hodge theory laplacian, its alge- 
braic property is mainly embodied in the following 
projective representation: 

[p(x), [p(y), D Z ] ] = { a ( [ x , y ] ) -  [ a (x ) ,  a ( y ) ] } .  
(19) 

Kostant and Sternberg [11] have shown that this 
projective representation, corresponding to the 2-co- 
cycle in the second cohomology group, can be paired 
with another representation with opposite class so as 
to trivialize cohomology. 

From what we gained so far, we know that the 
BRST complex is no other than the elliptic complex 

modelled on the space of representations of the Vi- 
rasoro group, or, what is the same, a DiffS l-invar- 
iant g-module which is, ~t la Borel, Weil and Kostant, 
in one-to-one correspondence with the coadjoint or- 
bits DiffSl/N, with N normal subgroups of DiffS ~, 
e.g. S ~. Thus to try to get a better understanding of a 
deep result like ( 14)-(  15 ) is the same thing as to ob- 
tain an index theorem on DiffS ~/SL 

However, as we noted from the beginning, there will 
be difficulties in order to correctly set up, and then 
prove of course, an index theorem for the BRST op- 
erator. What we have in mind is a less ambitious aim, 
i.e. to use the theory of the representation of an infi- 
nite-dimensional Lie group together with the coad- 
joint orbit method we discussed earlier, to prove 
certain fixed point formula for the BRST operator 
within simplified circumstances. 

Even for this purpose, we need more structure on 
the BRST complex. Happily this is provided by the 
existence of a sort of Poincar6 duality on the cohom- 
ology level [ 12 ]: 

H ~ , ~ H 3 D  - q  , H °  ~ H 3 = C .  (20) 

One then has a pairing 

H ~ × H 2 - - - , H 3 = C ,  (21) 

under this daulity, the BRST operator is skew-adjoint: 

Q*-,-Q. 

One needs to clarify the eigenvalue space of Q. Re- 
call that Q acts on spaces of highest weight string states 
by creating ghost number one. Denote the eigenspace 
of Q with odd (even) ghost number states by 
F+ (F_).  It is natural to define the index of Q as 

I ( Q )  = dim(F+ ) -  dim(F_ ) ,  

but now we have to deal with infinite kernels. The 
more convenient definition is the G-character valued 
one: 

F Q ( q ) = T r r + g - T r r _ g ,  g ~ G ,  (22) 

This can be shown to be equal to the Lefshetz num- 
ber on the BRST complex: 

LQ(q)  = Tr r (  * ' g -  * -1 .g) = Trr a ,  (23) 

where F =  F+ ~ F _ ,  and a is an automorphism of the 
g-module F. The traces in (23) are distributional 
traces [ 13,14 ], so that one can average a smooth op- 
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erator over G with suitable group measure. This en- 
ables us to define 

0 

Trr  o~= limo~ j Trr(o~'Q) (24) 

(where Q should not be confused with the BRST 
charge). In the most simplified cases, the traces in 
(23), (24) can be calculated as fixed point formulas 
on F. (As a side remark, we point out that it is pos- 
sible to calculate the index as defined in (22) directly 
by mimicking the quantum field theory method, just 
as what one is doing on the Dirac-Ramond index [ 5 ]. 
For example, the following quantity seems calculable 
by field theory methods: 

Tr r (*"  exp ( iQ2) ) ,  (25) 

where Q is the quantum BRST charge of the Virasoro 
algebra. We have not yet developed a viable method 
to calculate (25) [ 15].) 

The simplest such fixed point formula seems to be 
the Lefshetz number of  a representation, which is 
given as follows [ 13 ]. Let G be a group and H its 
normal subgroup, the quotient has a bundle struc- 
ture. The left action of G on G / H  now lifts naturally 
to an action on the bundle endomorphism Tg: 

T~: G- .Au t  F(I,  F) ,  (26) 

which is called the induced representation. Denote 
the map in the base space b y f  and its bundle lifting 
by ~0, then 

52k ( -  1 )k Tr~°~ (27) 
L(Tg)= ~p I d e t ( 1 - d £ ) l  

gives the Lefshetz number of  the induced represen- 
tation. Recall that L ( T )  = Y k ( -  1 )k T r H k ( T ) ,  if the 
higher dimensional cohomology groups vanish, this 
L automatically reduces to the character formula of 
the chosen representation: 

ch~(q)=  ~ m ~ ( 2 - n ~ ) e x p  (innS) 
t/ 

= ~ d i m ( V - " ) q "  (28) 
n 

where dim V= m~ is defined [ 16 ] as the multiplicity 
of  an irreducible representation occurring in a partic- 
ular fq-module. 

It is quite natural to compare (27) with the G- 
character valued index defined in (22), (23). In- 

deed, by our results in the first half of this paper, the 
effective way to calculate (23) is just to calculate the 
Lefshetz number for the representation. This justifies 
our use of the representation theory of infinite-di- 
mensional Lie algebras in the following two examples 
to get concrete results out from the proposed Q-index 
theorem. Actually, one of them will give rise to the 
famous F - G - Z  results, eq. (15). 

( 1 ) Let us focus on the fixed point version of (23). 
Here the fixed point set in F can be identified with 
the Weyl group consisting of reflections of Lie alge- 
bra bases. It has a well defined partition function [ 17 ] 
since the Weyl group is a subgroup of GL(F)  belong- 
ing to the type A~ l ): 

chL(A) (q) = ~ mL(A) (A-n~)q" 
n>~O 

= I ]  ( l - q " ) - ' .  (29) 
n>~l  

Now define the generating function 

cA = exp(-sA, a~) ~ mL(A)(A-n~) e x p ( - n ~ )  , 
n>~0 

(30) 

which is related to ChL(A) by 

e x p ( - s , 6 )  chL(A) (q) = ~ ~Ox , (31) 
Aep  

where O~ is the classical theta function. 
The function cA so defined is called a string func- 

tion, it is a modular form of weight - l/2 with respect 
to the modular group F(rm) c~F (r(m+g)) [ 17]. It 
is easily shown that under the modular transforma- 
tion z-,z+ 1, it picks up a phase corresponding to the 
conformal anomaly: 

c A (z+  1 ) = exp(2nisA, ~ )cA ( r ) .  (32) 

s,, ~ is defined by 

]Aq_ff]2 ]p[2 -]-1212 
sx, x - 2 ( m + g )  2g m ' (33) 

When the Lie algebra is chosen as one of the types 
All) ,  D~J) E} ~) and A (2) (just as the one chosen in , t ' x 2 /  

(29)) ,  the quantity W(SA, ~)=SAo AO=--1/24. NOW 
apply the anomaly cancelation arguments of Schel- 
lekens and Warner [ 18], than one concludes that 
SAo. no = integers n. Picking n = - 1, one determines 
the power in (29) to be l=24,  thus it follows that 
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mLcA)(A--nO)=P(24)(n)= d i m  F ( c )  ~ . ( 34 )  

where p(/) ( n )  is the coefficient  o f  qn in  the  expans ion  
of  1-In ~ 1 ( 1 - q") - / ,  this  is the  result  o f  ref. [ 8 ]. 

(2 )  Let V be the fg-module iden t i f i ed  wi th  the ho-  
mogeneous  G-space,  i.e. quo t i en t  by  its m a x i m a l  " to-  
rus".  The  Lie algebra decomposes  in to  direct  s u m o f  
2-planes Ek, k =  1, ..., m: 

fg /q=  ~ Ek. (35)  
k = l  

Pick an  a u t o m o r p h i s m  of  the Lie algebra (35 )  cor- 
r e spond ing  to ro ta t ions  through angles Ok in  Ek. The  
group is necessari ly abel ian.  No w eva lua t ing  the fol- 
lowing trace [ 17 ]: 

trL(A) exp(2•ipV/r), (36 )  

one gets 

,~l~a+ sin~ (A+p, a) /sinn 
, r < p , a >  

= f i  c o t ( 0 k / 2 ) ,  (37)  
k = l  

where we have def ined  Ok= (2z~/r) (p,  a >. In  wri t ing 
(37) ,  we a s sumed  that  the highest  weight  A e P +  is 
integral  d ivis ible  by  the root  vec tor  a e A  v . The  
eq. (37)  coincides  with a special f ixed po in t  fo rmula  
ob t a ined  in ref. [ 13 ]. 

We conc lude  by po in t ing  out  tha t  the p r o f o u n d  
structures of  the coadjo in t  orbits  o f  the Virasoro group 
m ay  prov ide  a clue to u n d e r s t a n d  what  is the t rue 
gauge i nva r i ance  of  s t r ing field theory [ 12 ]. It  seems 
that  there is a large variety of  a l ternat ives  to the gauge 
algebra of  the BRST system. The  two more  p romis -  
ing are the proposal  o f  W i t t e n  [ 12 ] o f  the ou te r  de- 
r ivat ive algebra and  the one advocated  by the authors  
of  ref. [ 19 ] as the algebra genera ted  by BRST an d  
an t i -BRST operators  together  wi th  the t r ans fo rma-  
t ion  s p ( 2 )  re la t ing them.  These  are be t te r  f rame-  
works in to  which our  fo rma l i sm fits. Work along this  
direct ion and  the details o f  the mater ia ls  inc luded  here 
are in  progress [ 15 ]. 
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