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Abstract
Inerter-based vibration absorbers are new generations of tuned mass dampers. The property of the inerter is that the 
relative acceleration between its two terminals is proportional to produced force. This paper proposes the use of inerter-
based vibration absorbers for suppressing the beam vibration under successive moving loads. The vibrational system 
possesses continuous beam model accompanying by inerter-based vibration absorbers. The effectiveness of this new 
type of vibration absorber compared with the ordinary linear vibration absorber. The partial differential governing equa-
tion converts to a system of ordinary differential equations using the Bubnov–Galerkin method. The optimal parameters 
of the inerter-based vibration absorbers are presented. The results show that this novel vibration absorber can reduce 
vibration 37% more than the optimized classical linear vibration absorbers. Some results give quasi-beating response 
for the beam possesses inerter-based vibration absorbers.

Keywords Inerter-based vibration absorbers · Tuned mass dampers · Successive moving loads

1 Introduction

For long bridges and other structures under high speed, 
moving loads, the vibration is an important issue. Many 
researchers worked on beams vibration under moving 
loads, Refs. [1–3]. Applying dynamic vibration absorbers 
(DVAs) is a method to reduce unwanted vibrations, Refs. 
[4–7]. The effectiveness of nonlinear DVAs applied to 
beams excited by successive moving loads was analyzed 
in [8, 9]. These papers showed that nonlinear dynamic 
dampers are more effective to reduce the maximum ampli-
tude of vibrations; while linear DVAs are more effective 
in eliminating vibration sooner for the cases of transient 
excitation.

A new type of passive DVAs is the inerter-based vibra-
tion absorber (IBVA), which introduced first by Smith [10] 
in 2002. The inerter in IBVA has the property that the force 

generated by IBVA is proportional to the relative accel-
eration between two joints. The proportionality of inerter 
constant is called inertance which measures in kilograms. 
In 2005 the inerter was profitably used as a part of suspen-
sion in Formula One racing cars [11]. Chen et al. [12] inves-
tigated the effect of using an inerter as a part of vibration 
absorber on the natural frequencies of one, two and more 
degree of freedom systems. They showed that the natural 
frequencies of system can be decreased by increasing the 
inertance of inerter.

The advantages of using an inerter to reduce vibration 
of multi-storey buildings under earthquake vibrations 
excitation in comparison to TMD vibration absorbers 
have been studied by Lazar et al. [13]. In their subsequent 
study [14] they compared the application of inerter-based 
vibration absorbers with viscose vibration absorber to 
reduce vibrations of cables and they showed that the 
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vibration absorber performance increases by adding an 
inerter. Hu and Chen [15] showed that attaching an inerter 
to a damper without spring provides no performance 
improvement; while, by attaching the inerter to a vibra-
tion absorber consisting damper and also spring increase 
the performance, significantly. Jin et al. [16] suggested two 
inerter-based vibration control configurations to suppress 
the vibration of beam-type structures. They proved that 
under harmonic loads, the IBVAs are more efficient than 
the traditional DVAs, especially if the mass ratio is small. 
Zhou et al. [17] replaced the damper in a traditional DVA 
by a grounded inerter-based mechanical network. They 
optimized this IBVA installed on an undamped single 
degree of freedom system, under harmonic and transient 
excitations. Their numerical results proved that optimum 
design of TMDs with inerter is more efficient than classical 
TMDs. However, all inerter-based devices have to be tuned 
precisely. Moreover, susceptibility to detuning is also a 
weakness of the inerter-based devices. To eliminate the 
mentioned weakness, Brzeski et al. [18] proposed taking 
advantage of a device possesses the inerter that enables 
accurate changes of inertance. They showed that such a 
property can be achieved by using a continuously vari-
able transmission (CVT) with a gear-ratio control system. 
In their subsequent paper [19] they described the experi-
mental model of this novel type of vibration absorber. 
They performed several experiments to characterize the 
device. Also, they performed numerical simulation and 
proved that the presented prototype of the IBVA with the 
CVT presents significant damping properties in a wide 
range of vibration frequencies.

Herein this study, the inerter-base vibration absorber 
is attached to a beam subjected to equidistant successive 
moving loads to reduce the beam vibration. The equation 
of motion of the beam and IBVA is written and solved apply-
ing numerical explicit Runge–Kutta method. The goal is to 
determine the optimal vibration absorber parameters, i.e., 
speed ratio, stiffness and damping of the absorber. The effec-
tiveness of the proposed IBVA is compared with the ordinary 

linear TMD. Section 2 describes the model and presents the 
basic equations. These equations solved numerically consid-
ering the numeric data in Sect. 3. Section 4 explains and dis-
cusses the effectiveness and performance of the new IBVA 
comparing to traditional DVA. The conclusion of this paper 
restates in the last section of this manuscript.

2  Model description and the basic 
equations

Figure 1 presents the schematic of the vibrational system 
consists of a uniform simply supported beam subjected to 
infinite equidistant successive moving loads. The beam is 
connected to a one DOF IBVA in the middle of the beam. The 
IBVA consists of: inertial component ( m0 ), elastic connection 
(k), dashpot (c), inerter mechanism (I), and the element that 
demonstrates dry friction (D). The inerter mechanism pos-
sesses the CVT, which allows unceasingly adjustments of the 
IBVA inertance variation.

The beam under successive moving loads formulated by 
the linear thin beam theory; the equations of motion of the 
system with Euler–Bernoulli beam are given by:

(1a)

EIby,xxxx(x, t) + 𝜌Ay,xx(x, t) +
[

f (u) + D(u) + Cu,t + Iu,tt
]

𝛿(x − d) = F(x, t), x𝜖(0, L), t > 0

(1b)
y(0, t) = 0, y(L, t) = 0, y,xx(0, t) = 0, y,xx(L, t) = 0

(1c)y(x, 0) = 0, y,t(x, 0) = 0

(2a)

F(x, t) =

∞
∑

i=−∞

F0(t)𝛿[x − (Vt − iΔ)]S(i, t), x𝜖(0, L), t > 0
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[

H
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Fig. 1  The beam model with 
IBVA attachment
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y(x, t) is the displacement field of the beam, E is the 
modulus of elasticity, Ib is the moment of inertia of the 
beam section, m = �A is the beam mass per unit length,� 
is the material density and A is the beam cross section 
area. Equation (1a) presents the dynamic of a uniform 
Euler–Bernoulli beam with simply supported boundary 
conditions (1b) and initial conditions (1c). F(x, t) is the 
external force due to an equidistant infinite series of 
traveling loads by speed V which is presented in Eq. (2a). 
Δ is the loads distance; �[x − (Vt − iΔ)] defines the loca-
tion of the ith load; S(i, t) defines whether the ith load at 
time t lies on the beam or it is out of the beam bounda-
ries, Eq. (2b). �(t) and H(t) are the Dirac and Heaviside 
functions, respectively:

Figure 2 presents the schematic of an inerter base 
vibration absorber (IBVA) which is equipped with a CVT. 
The body of the inerter is built of two parallel plates 
(P1) and (P2) positioned vertically and integrated with 
two horizontal parallel plates (P3) and (P4). The IBVA 
is attached to the beam by using the upper horizontal 
plate (P3) in a way that the axis of the IBVA is parallel to 
the beam vibration direction. Lower horizontal plate (P4) 
is attached to helical spring (1) by a connection and the 
other end of the spring (1) is fixed to plate (2). Massive 
plate (2) is connected to gear rack (3) and can move in 

(3)𝛿ij =

{

1 i = j

0 i ≠ j
, H(t) =

{

1 t > 0

0 t < 0

direction of the axis of the IBVA. Plate (2) together with 
gear rack (3) function as a moving element of TMD. Gear 
rack (3) cooperates with pinion (4) that is affixed on the 
drive shaft (5) of continuously variable transmission (6).

In the presented mechanism, the usage of belt-driven 
CVT is assumed, but other types are also permissible. 
Therefore, through rack–pinion and CVT, reciprocating 
motion of moving elements is transferred into rotational 
motion of the flywheel (7) that is mounted on driven shaft 
(8) of CVT. If CVT ratio remains constant, the device works 
like a classical TMD equipped with the inerter. However, 
by manipulating CVT ratio (r) it is possible to change the 
ratio between linear velocity of moving mass (m0) and 
rotational speed of the flywheel. The undamped natural 
frequency of the IBVA can be described by the following 
formula:

In fact, by applying the CVT mechanism, it is possible 
to adjust the natural frequency of IBVA as the particular 
parameter, I(r), can be modified as a function of transmis-
sion ratio (r). As, it is presented in Ref. [19], I(r) is the iner-
tance parameter of the inerter that can be estimated by 
the following formula:

where I1 and I2 are the inertia of drive and driven shafts 
of CVT and dp is the pitch diameter of the pinion (4) that 
cooperates with the moving rack. The equations of motion 
of the IBVA are formulated as follow:

u(t) is the elongation of the spring, y(d, t) is the trans-
verse displacement of the beam midspan and v(t) is the 
displacement of the IBVA mass (m0). f (u) represents the 
spring force,D(u) is the dry friction force, generated by the 
sliding surfaces, and df is the amplitude of dry friction, see 
Ref. [19]. C(r) represents the damping coefficient of IBVA 
and estimates by following formula:

(4)�IBVA(I) =

√

k

m0 + I(r)

(5)I(r) =
1

d2
p

I1 +
r2

d2
p

I2

(6a)

m0v,tt −
(

f (u) + D
(

u,t

)

+ C(r)u,t + I(r)u,tt
)

= 0

v(0) = v0, v,t(0) = v1, t > 0

(6b)u(t) = y(d, t) − v(t)

(6c)f (u) = ku(t)

(6d)D
(

u,t
)

= df
2

�
arctan

(
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Fig. 2  Schematic of the novel TMD possesses inerter mechanism 
and CVT
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Cm is the damping coefficient of dashpot that connects 
mass  (m0) with the beam, C1 and C2 are the damping coef-
ficients of drive and driven shafts of CVT. By considering 
small values for C1 and C2 , C(r) ≅ Cm.

By applying Bubnov–Galerkin method to solve the 
PDEs, the transverse displacement field of the beam 
obtains as follows:

ar(t) is the modal coordinate which defines by solving 
the ordinary equations and �q(x) are the eigenfunctions, 
define as follow:

�q is the natural circular frequency of the rth, �ij is the 
Kronecker delta. By replacing Eq. (8) into Eqs. (1a) and (6a), 
propelling on the pth eigenfunction obtain as follow:

The Fourier transform decomposes the periodic force 
excitation into its constituent frequencies as follow:

(7)C(r) = Cm +
1

d2
p

C1 +
r2

d2
p

C2

(8)y(x, t) =

∞
∑

q=1

aq(t)�q(x)

(9a)

�q(x) =

√

2

mL
sin

(q�x

L

)

, �q = (q�)2
√

EI

mL4
, q = 1, 2,… .

(9b)
L

∫
0

m�i(x)�j(x)dx = �ij ,

L

∫
0

�i(x)

d
2

(

EI
d
2�j (x)

dx2

)

dx2
dx = �2

j
�ij , i, j = 1, 2,… .

(10a)d
2ap(t)

dt2
+ 2�p�p

dap(t)

dt
+ �2

p
ap(t) +

{

K (t) + C(t) + I(t) + D(t)
}

�P(d) = F(t), p = 1, 2,…

(10b)m0

d
2v

dt2
−
{

K (t) + C(t) + I(t) + D(t)} = 0 v(0) = v0, v,t(0) = v1, t > 0

(10c)K (t) = k

[

∞
∑

q=1

aq(t)�q(d) − v(t)

]
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∞
∑
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)

�q(d) −

(
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]

(10e)I = I

[
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(

d
2aq
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)
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(

d
2v
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]

(10f )

F(t) = �0

p
+

∞
∑

j=1

�j
p
cos

(

2j�t

T

)

+ � j
p
sin

(

2j�t

T

)

, p = 1, 2,…

(10g)�0

p
=

2

T

0
∑

i=−nL

T

∫
0

F0S(i, t)�p(Vt − iΔ)dt, p = 1, 2,…

(10h)

�j
p
=

2

T

0
∑

i=−nL

T

∫
0

F0S(i, t)�p(Vt − iΔ) cos

(

2j�t

T
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dt,

p = 1, 2,… , j = 1, 2,…

(10i)

� j
p
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2

T

0
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T

∫
0

F0S(i, t)�p(Vt − iΔ) sin

(

2j�t

T

)

dt,

p = 1, 2,… , j = 1, 2,…

These equations solved numerically using explicit 
Runge–Kutta method with Wolfram Mathematica com-
puting system.

The optimal parameters for the linear DVA obtain from 
Eq. (11), [8]. The linear DVA obtained by this relation sup-
presses the first resonance of the beam. This relation 
depends on the location of the DVA on the beam; which 
in this paper is in the middle of the beam. In this equation 
k is the stiffness coefficient of spring of linear DVA and c 
is its damping.

(11a)k = m0

(

�1

1 + �

)2
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�1 is the first natural frequency of the beam, see the 
Eq. 9(a). � = m0∕me is the mass ratio; me is the beam equiv-
alent mass:

3  Numerical results

In this section, the performance of the proposed vibra-
tion absorber (IBVA) is examined using a numerical case 
study. The ability of the IBVA in vibration reduction of the 
beam under successive moving loads compared with the 
performance of the traditional linear DVA. The numeri-
cal parameters of the presented case study are listed in 
Table 1, Ref. [8]. Truncation for the Bubnov–Galerkin terms, 
Eq. 8, and the constituent frequencies Fourier transform, 
Eq. 10, both are selected equal to 3. The error percentage 
with these truncations approximately calculated equal to 
1%. Ref. [8] possess the validation of the present results; in 
this manuscript, details are omitted for the sake of brevity.

There are several design variables for optimal param-
eters set; C1 , C2 , Cm , k , m0 , I1 , I2 and r . While the equations 
solved numerically, there is no analytical formulation for 
defining the optimal parameters of the IBVA. The IBVA 
mass, m0 , considered as 0.05 of the beam mass; this is 
equivalent to the mass of the traditional linear DVA. The 
combination of C1 , C2 and Cm makes C(r) . By considering 
small values for C1 and C2 , C(r) remain unchanged and one 
needs to optimize only C(r) which is almost equal to Cm . 
Consequently, in order to seek the optimized parameters, 

(11b)c = 2m0�1

√

3�

8(1 + �)3

(12)
me =

mL

2 sin
2
(

�d

L

)

the optimal values for Cm , k , I1 , I2 and r have to be calcu-
lated. The mass inertia I1 and I2 estimated by mass scaling 
respect to the results of the Ref. [19] damping and stiffness 
parameters, Cm and k , optimized by means of brute-force 
method. Finally, transmission ratio,r , optimized for the 
overall velocity.

For the parameters listed in Table  1, the maximum 
steady-state beam deflection without DVA obtained as 
ymax = 25.3 mm at the velocity equal to V = 25.5 m/s. The 
application of linear DVA with c = 14 N.s/m and k = 870 N/m 
presents the maximum deflection of ymax = 2.56 mm, Ref. 
[8]. Figure 2 presents the maximum steady-state beam 
deflection vs. velocity. The optimal stiffness for IBVA speci-
fied as k = 1400 N/m. The range of variation of the r, IBVA 
frequency ratio, considered as 0 to 3 inspired by Ref. [18]. 
The results of Fig. 3 show that neither r = 0 nor r = 3 gives 
any improvement for vibration absorber performance; i.e., 
IBVA with constant internal frequency ratio is not benefi-
cial comparing with the classical linear DVA, which pre-
sented in Ref. [8]. To achieve the desired results, the IBVA 
with a tunable frequency ratio considered. The tuned r 
is determined utilizing brute force optimization. Results 
in Fig. 3 show that, particularly, for the velocity range of 
(17–29 m/s), the IBVA with tunable r, presents much lower 
maximum deflection. Note that, in this graph C(r) = 0 N s/m 
is invariant. For the IBVA with tunable frequency ratio, the 
optimized r within the range of (0–3) presented in Fig. 4.

Similar to Fig. 3, Fig. 5 presents the maximum steady-
state deflection vs. velocity for C(r) = 10  N  s/m. Even 
though r is varying, C(r) remains constant. The variation 
of the adjusted internal frequency ratio is similar to the 
case of C(r) = 0. This adjustable IBVA presents the maxi-
mum deflection equal to 2.02 mm, which means a 21% 
reduction respect to the optimized linear DVA. Although 

Table 1  Numerical parameters of the considered case study

Parameter Description Value Unit

E Modulus of elasticity 206,800 MPa
ρ Density 7820 kg/m3

A Cross section 0.03 × 0.03 m2

L Beam length 4 m
F0 Load 9.8 N
ξ Damping ratio 0.01 –
m Beam mass per unit length 7.038 kg/m
d IBVA location 2 m
m0 IBVA mass 1.41 kg
v Loads velocities 20 m/s
Δ Loads distances 5.84 m Fig. 3  Comparison of maximum deflection vs. velocity for linear 

DVA (Ref. [8]) and IBVA, C(r) = 0 N s/m
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the situation of the IBVA without damping, i.e., C(r) = 0, 
gives better consequence, the situation with damping, 
i.e., C(r) = 10, represent less fluctuation. In other words, 
with increasing the IBVA damping, the sensitivity of the 
maximum deflection to the velocity variation decreases.

Figure 6 presents the transient response for some sig-
nificant velocities with different types of linear DVA and 
IBVAs. The mentioned ymax is the maximum steady-state 
beam deflection for the considered velocity with the 
vibration absorber characterized in the first column. The 
steady-state response of the beam with optimized lin-
ear DVA achieved much sooner respect to the cases with 
IBVA. Time response of the beam with linear DVA becomes 
steady after 2 s, while for the cases with IBVAs it takes 30 
or 60 s for arriving at the steady-state response. The time 
response results provided for three velocities: 20, 25 and 
30 m/s.

4  Discussion

In this section, a review on the numerical outcomes of 
the previous section is provided. The noticeable results of 
this paper illustrated in Figs. 3 and 5. These figures show 
the ability of the new proposed vibration absorber (IBVA) 
to reduce maximum steady-state deflection of the beam 
under successive moving loads. From these two figures, 
it is recognizable that the new vibration absorber (IBVA) 
with adjustable internal frequency ratio can be much more 
beneficial respect to the linear classical vibration absorber. 
Besides, it is shown that the IBVA with constant internal 
frequency ratio is not suitable; for the moving loads veloc-
ity range of (17–29 m/s), the beam deflection unfavorably 
increases tangibly. Thus, the IBVA should use with a tun-
able internal frequency ratio.

The new tuning parameter for the proposed IBVA is the 
internal frequency ratio (r). The optimized values for the 
internal frequency ratio presented in Fig. 4. This graph is 
for C(r) = 0; for the case of C(r) = 10 a similar figure achieved, 
which does not mention in this article. This variation shows 
that for the velocity range of (17–29 m/s), the adjustment 
of IBVA internal frequency ratio becomes more important. 
The equivalent excitation frequency of this velocity range 
is (2.91 – 4.97 Hz), which is calculated by the following for-
mula: f = V∕Δ . This frequency range is around the funda-
mental natural frequency of the beam, i.e., 4.37 Hz.

The IBVA with adjustable r and C(r) = 0, presents the 
maximum deflection equal to 1.60 mm, which is 37% less 
than the maximum beam deflection with an optimized lin-
ear DVA. Similarly, this IBVA with C(r) = 10 presents maxi-
mum deflection equal to 2.02 mm, which means a 21% 
decrease respect to linear DVA. Note that in all cases, the 
maximum deflection of the vibration reduction is more 
than 90% respect to the bare beam (beam without DVA); 
in this article, the advantage of the new proposed DVA 
(IBVA) is compared with classical linear DVA.

For the case of the beam possessing IBVA with tunable 
internal frequency ratio (thick black line in Fig. 3), C(r) = 0, 
fluctuations appear due to the discrete variation of the 
IBVA frequency ratio. While in Fig. 5, for the IBVA with 
higher damping, C(r) = 10, the fluctuations are not observ-
able. Damping cause smoothness of all alterations. As a 
result, by increasing the damping of the IBVA, the sensi-
tivity of the IBVA performance to the internal frequency 
ratio decreases.

Time responses for selected velocities with different 
types of vibration absorbers illustrates in Fig. 6. In the 
graphs in Fig. 5, for the cases possessing classical linear 
DVA, the transient segment is very shorter respect to the 
cases possessing IBVAs (first row). Moreover, for the IBVA 
without damping (C(r) = 0), the transient response is longer 

Fig. 4  Variation of r versus velocity for the IBVA with adjustable r, 
C(r) = 0 N s/m

Fig. 5  Comparison of maximum deflection vs. velocity for linear 
DVA (Ref. [8]) and IBVA, C(r) = 10 N s/m
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respect to the cases with more damping, i.e., C(r) = 10. 
Although for the steady-state excitation, the transient 
segment of the response cannot be determinant, the 
maximum steady-state deflection response is the critical 
goal. More deflection causes more significant strain and 

consequently, greater stress on the beam. More stress on 
the beam structure reduces structure lifetime.

Time responses provided in Fig.  6 have conformity 
with the data presented in Figs. 3 and 5. For each case, the 
maximum steady-state response of Fig. 6, is demonstrated 
in Figs. 3 or 5 for the intended velocities. As mentioned 

Fig. 6  Time responses of the beam middle point with different types of the DVA and IBVA
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before, the steady-state response for the beams with lin-
ear DVA is achievable swift; accordingly, just a few sec-
onds of the time response provided. It is evident that all 
responses for the ceases of the beam with linear classi-
cal DVA (first line in Fig. 6) are periodic. In this case, no 
superharmonic, subharmonic, jump, and other similar 
phenomena observed; since no nonlinearity introduce to 
the system. For the cases of the beams with IBVAs, much 
more fluctuations arise. In particular conditions such as 
V = 20 m/s and IBVA with C = 0 N s/m with adjustable r (the 
last row and left column), the response is quasi-beating; 
the energy interchange between the beam and the IBVA. 
The energy pumps to the IBVA and gets back to the beam 
continually and repeatedly.

5  Conclusions and future works

This paper investigates the performance of the novel type 
of vibration absorbers, which is called inerter-based vibra-
tion absorber (IBVA) for the beams under successive mov-
ing loads. The considered IBVA consists of the mass, spring, 
dashpot, inerter mechanism and dry friction. Internal fre-
quency ratio of the inerter mechanism is tunable; i.e., it 
can adjust the frequency ratio for each velocity. The IBVA 
performance is distinguished with a numerical case study. 
The efficiency of the proposed IBVA is compared with effi-
ciency of the traditional linear dynamic vibration absorber.

Results show that the IBVA with tunable frequency ratio 
(r) is more performant respect to the ordinary linear DVA. 
The tunable IBVA reduces the maximum deflection sensi-
bly for the load velocity, which is close to the resonance. It 
can reduce the maximum deflection of the beam by 37% 
more than the optimized ordinary linear DVA. The main 
disadvantage of the proposed IBVA is that the beam with 
IBVA attachment takes more time to achieve steady-state 
response with respect to the linear DVA. Nonetheless, 
steady-state time response deflection of the beam with 
proposed IBVA is smaller than the beam with linear DVA. 
In some conditions with low damping IBVA, the quasi-
beating phenomenon observe for the beam possessing 
IBVA with particular parameters.

The results of this paper show that IBVA can be a suit-
able substitute for the classical linear DVAs. With proper 
tuning of the parameters, the IBVA is more performant 
for reducing beam deflection under periodic excitation. 
Nevertheless, specifying the optimal parameters for each 
problem is an open research. Innovating a new method 
for determination of IBVA suitable parameters is a future 
research in this field.
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