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Abstract
Complex networks are usually characterized by the presence of small and recurrent
patterns of interactions between nodes, called network motifs. These small modules
can help to elucidate the structure and the functioning of complex systems. Assessing
the statistical significance of a pattern as a motif in a network G is a time consuming
task which entails the computation of the expected number of occurrences of the
pattern in an ensemble of random graphs preserving some features of G, such as the
degree distribution. Recently, few models have been devised to analytically compute
expectations of the number of non-induced occurrences of a motif. Less attention has
been payed to the harder analysis of induced motifs. Here, we illustrate an analytical
model to derive the mean number of occurrences of an induced motif in an unlabeled
network with respect to a random graph model. A comprehensive experimental
analysis shows the effectiveness of our approach for the computation of the expected
number of induced motifs up to 10 nodes. Finally, the proposed method is helpful
when running subgraph counting algorithms to get the number of occurrences of a
topology become unfeasible.
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Introduction
Given a network G, a motif M (also referred as subgraph or pattern) of G is defined as
a small subgraph of G, whose frequency, that is the number of times M occurs in G, is
statistically significantly higher or lower (under-represented motifs within the network)
than expected with respect to a reference null model. The frequency of topologies can be
obtained with two different approaches non-induced or induced according to the struc-
ture constraints the users want to keep. When no restriction on the presence or absence
of edges in a subset of nodes, we refer to non-induced subgraphs. These motifs are more
informative than induced ones since a node could not have significant functions involving
all its neighborhood. When we look for motifs in which the missing edges between nodes
matter we deal with those named induced. The analysis of induced subgraphs of a net-
work could explain better its structure, since in some classes of networks (e.g. biological)
the presence or absence of each edge is important. Moreover, induced subgraphs can be
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considered as the skeleton of a network for their uniqueness of occurrence. Motif search
problem consists in finding all motifs of a given size (i.e. with a given number of nodes) in
a network. This problem has several applications ranging from biology to economics and
social science (Milo et al. 2002; Chen and Yuan 2006; Squartini and Garlaschelli 2011).
The null model used to establish the statistical significance of a motif is commonly rep-

resented as an ensemble of random networks that keep some input network properties,
such as the distribution of node degrees. A subgraph is claimed significant as a motif if
the expected frequency in the null model is significantly higher or lower than the one
observed in the input network.
Themost popular strategy to compute the statistical significance of a motifM in a graph

G is based on a permutation test which is defined as follows:

1. Compute the frequency of M in G;
2. Build a large set of random networks preserving some features of G, based on a

reference null model;
3. Compute the frequency of M in each generated random network;
4. Calculate a p-value by comparing the frequency of M in G with the average

frequency of M in the random networks.

When the average frequency of M in the random networks is substantially lower than
the frequency ofM inG, thanM is over-represented inG, while if it is considerably higher,
then M is under-represented in G. Examples of null network models include the Erdös-
Renyi (ER) model (Erdös and Renyi 1959), the Fixed degree distribution (FDD) model
(Newman et al. 2001), the Expected degree distribution (EDD) model (Chung and Lu
2002; Park and Newman 2003) and the Erdös-Renyi mixture for graphs (ERMG) model
(Nowicki and Snijders 2001; Daudin et al. 2008).
The simulation-based method evaluates the statistical significance based on a p-value

using a resampling approach (Milo et al. 2002, 2004; Prill et al. 2005; Shen-Orr et al. 2002).
Though this method produces reasonable results, it is computationally expensive because
it requires generating a large number of random graphs and counting the occurrences of
a motif both in the input network and in the ensemble of random graphs. Counting the
occurrences of a subgraph involves the subgraph isomorphism which is known to be a
NP-complete problem (Cook 1971).
Recently, much research has been spent to avoid such a simulation-based approach.

Several models have been developed to assess the significance of a motif without the
generation of an ensemble of networks. In (Wernicke 2006), Wernicke proposes an
approximated method to estimate the asymptotic normality of the distribution of motif
counts. In (Picard et al. 2008), Picard et al. introduced a model for the exact computation
of mean and variance of the number of non-induced occurrences of a pattern according
to any exchangeable randommodel. The exchangeability allows to assume that the occur-
rence probability of a motif does not depend on its location in the network. Thanks to this
property every subset of k nodes in the graph could potentially be part of the motif. The
authors define equations to compute motif occurrence probability with respect to four
exchangeable random models (FDD, ER, EDD and ERMG). Finally, through the Pólya-
Aeppli distribution (Johnson et al. 1992) the p-value of motif significance is established.
More recently, (Micale et al. 2018; Micale et al. 2019) have extended the work of (Picard
et al. 2008) by defining equations for the computation of mean and variance of motifs in
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node-labeled networks (Micale et al. 2018) and multi-relational networks (Micale et al.
2019) according to the EDD model.
In (Picard et al. 2008) authors provided equations only for computing expectations

of non-induced motifs. They also suggest a method to extend the analytical model to
induced motifs, by applying the Kocay Lemma (Kocay 1981). The Lemma allows to
express the number of induced occurrences of a subgraph as a linear combination of the
number of non-induced occurrences of all subgraphs of the same size and vice versa.
This result can thus be used to compute the mean and the variance of the count of
inducedmotif. However, computing the coefficients of such a linear combination is a time
consuming task, even for motifs of small size (6 or more nodes).
The paper is organized as follows. In “Definitions” section and “Previous work” section

we provide definitions and previous works on analytical models for non-induced motifs
respectively. In “A novel analytical model for the expectation of induced motifs” section
we present a novel analytical model to calculate the mean and the variance of the count
of an induced motif according to the EDD random model, without computing the coeffi-
cients defined by the Kocay Lemma. This work extends the preliminary work illustrated
in (Martorana et al. 2020) by providing an engineering of our Rapid Matrix Elaboration
(RaME) algorithm. “Complexity analysis” section presents a detailed theoretical com-
plexity analysis. Our comprehensive experimental analysis clearly shows that our model
can compute the mean of count of induced motifs up to 10 nodes in a reasonable run-
ning time. On the other hand, the analytical model based on Kocay Lemma becomes
impractical starting from motifs of 7 nodes. Although RaME is very efficient for induced
mean calculation, it results unfeasible to compute the variance even for small size sub-
graphs. However, recently, an approach to compute approximated p-values based on
the estimation of the variance has been proposed (Micale et al. 2019), and therefore
could be taken into account with our approach. Finally, in “Experimental results” section,
we describe a case study to show some scenarios where our approach can be used
to get the expected counts of induced motifs when establish the actual counts results
computationally expensive and therefore unfeasible in resonable time.

Definitions
In this section we provide some preliminary definitions about networks and motifs.
A network (also referred to as graph) is a pair G = (V ,E), where V is the set

of nodes and E = {(a, b) : a, b ∈ V } is a set of node pairs. The size of G is
the number of its nodes n = |V |. When ∀(a, b) ∈ E, (b, a) ∈ E, i.e. all relations
between nodes are bidirectional, the graph is called undirected otherwise the it is
directed.
A common representation of a graph is the adjacency matrix A, which is a n×nmatrix,

where A[ i, j]= 1 iff there is an edge between nodes i and j, otherwise A[ i, j]= 0.
Two graphsG = (V ,E) andG′ = (V ′,E′) are isomorphic iff there exists a bijective func-

tionM : V → V ′, called isomorphism, such that ∀a, b ∈ V : (a, b) ∈ E ⇔ (M(a),M(b)) ∈
E′. A subgraph S=(V’,E’) of a G is a graph in which V ′ ⊆ V and E′ ⊆ E. We refer to S
as induced when ∀a, b ∈ V ′ : (a, b) ∈ E ⇐⇒ (a, b) ∈ E′. Otherwise S is called non-
induced. This means that the definition of induced subgraph is more limiting than the one
of non-induced subgraph.
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A graphG′ = (V ′,E′) is subgraph isomorphic to a graphG = (V ,E) whenG′ is isomor-
phic to a subgraph of G (Cook 1971). The number of occurrences of G′ in G (also called
the frequency of G′ in G) corresponds to the number of subgraph isomorphisms of G′

in G.
A motif M of a graph G is defined as a subgraph of G whose frequency is signifi-

cantly higher than expected with respect to a null randommodel. Commonly, the network
instance G is thought to be drawn from a universe of random graphs which share some
characteristics, such as the degree distribution.

EDDmodel

The EDDmodel generates networks where node degrees follow the degree distribution of
a given input network. Let G be a graph with n nodes and let Deg(G) be its node degree
distribution. We define an indicator random variable Xij which is equal to 1 iff there is
an edge linking nodes i and j. In the EDD, the likelihood of getting an edge between two
nodes i and j, provided the degrees Di and Dj sampled from the Deg distribution, is:

P(Xij = 1|Di,Dj) = min(1, γDiDj) (1)

with γ = 1
(n−1)E[Deg] .

Previous work
Analytical model for the expectation of non-inducedmotifs

In (Picard et al. 2008) Picard et al. presented an analytical model to compute the statis-
tical significance of non-induced subgraphs as motifs in both directed and undirected
graphs under three different exchangeable random models, i.e. Erdös-Renyi (ER) (Erdös
and Renyi 1959), Expected Degree Distribution (EDD) (Chung and Lu 2002; Park and
Newman 2003) and Erdös-Renyi Mixture for Graphs (ERMG) (Nowicki and Snijders
2001; Daudin et al. 2008). An exchangeable model is any model in which the occurrence
probability of a motif in a network does not depend on the occurrence position. Here we
describe equations to establish the significance of non-induced motifs according to the
EDD model.

Occurrence probability under the EDD randommodel

The occurrence probability of a motif m with k nodes in G, given an assignment of
expected degrees Di to the nodes of the motif, is the product of edge probabilities. The
overall probability of occurrence of m can be then obtained by summing across all prob-
abilities obtained assigning all the possible degrees Di present in the input network. In
(Picard et al. 2008) authors show that, under the EDDmodel, the latter probability can be
finally expressed as products of some moments of the Deg distribution of G:

μ(m) = γm++
k∏

u=1
E[Deg]mu+ (2)

wherem++ is the number of edges inm,mu+ is the degree of node u inm and E[Deg]mu+

is the moment of ordermu+ of Deg distribution.

Mean and variance of the count

Starting from μ(m) one can derive equations for computing the mean and the variance
of the count of non-induced occurrences ofm. While the expression of μ(m) depends on
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the specific random model used, equations for the mean and the variance hold for any
exchangeable random model.
The exchangeability property guarantees that μ(m) is independent from the position of

m inG. In other words, all possible k-tuples of nodes inGmay embed an occurrence of the
motif. If G has n nodes, the number of such k-tuples is

(n
k
)
. In addition, if α is a k-tuple of

nodes of network G,m can be observed in different configurations, which are given by all
k! possible permutations of positions of α’s nodes. However, some of these permutations
actually yield redundant occurrences, i.e. occurrences of m having the same adjacency
matrix. All permutations with distinct adjacency matrices are called Non-Redundant Per-
mutations (NRPs). If we denote the set of NRPs with R(m) and with �(m) = |R(m)| the
number of NRPs, the mean number of non-induced occurrences can be expressed by the
following equation:

E[N(m)]=
(
n
k

)
�(m)μ(m) (3)

The variance of the count of occurrences of motifm can be computed starting from the
expectation of the squared count of non-induced occurrences of m, i.e. E[N2(m)]. The
calculation of E[N2(m)] can be performed by considering all possible overlaps of nodes
and edges of two NRPs of m. Given two NRPs m′ and m′′ of m. Picard et al. introduced
the overlapping operation with s nodes,m′�sm′′, whose result is a super-motif with 2k−s
nodes. The adjacencymatrix of this super-motif can be obtained by splitting the adjacency
matrices ofm′ andm′′ into four blocks of different sizes as follows:

m′ =

⎛

⎜⎜⎜⎝

m′
11 m′

12
[ k − s, k − s] [ k − s, s]

m′
21 m′

22
[ s, k − s] [ s, s]

⎞

⎟⎟⎟⎠m′′ =

⎛

⎜⎜⎜⎝

m′′
11 m′′

12
[ s, s] [ s, k − s]
m′′

21 m′′
22

[ k − s, s] [ k − s, k − s]

⎞

⎟⎟⎟⎠

The adjacency matrix of the super-motif is then given by:

m′ ∩s m′′ =
⎛

⎜⎝
m′

11 m′
12 0

m′
21 max(m′

22,m′′
11) m′′

12
0 m′′

21 m′′
22

⎞

⎟⎠

where the max function in the central term indicates that for the s common nodes of m′

and m′′, all edges of m′
22 and m′′

11 have to be present. The max function is equivalent to
the logical OR. Figure 1 shows all super-motifs generated from the NRPs of the 3-nodes
path with s = 2.
For the computation of E[N2(m)] we need to consider that m′ and m′′ can be disjoint

(i.e. they have no nodes in common) or can overlap in one or more nodes. Moreover, if
m′ and m′′ overlap in s nodes, with 1 ≤ s ≤ k, we have to take into account all possible
ways in which the two NRPs of m can overlap. Therefore, the expected squared count
E[N2(m)] is given by:

E[N2(m)]=
(

n
n − 2k, k, k

) ⎡

⎣
∑

m′∈R(m)

μ(m′)

⎤

⎦
2

+

+
k∑

s=1

⎡

⎣
(

n
k − s, s, k − s, n − 2k + s

)
×

∑

m′,m′′∈R(m)

μ(m′ ∩s m′′)

⎤

⎦ (4)
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Fig. 1 Super-motifs resulting from the overlapping between all NRPs of the non-induced 3-nodes path with
s = 2 nodes. Results are shown in a matrix fashion, where the entry at row i and column j is the super-motif
originating from the NRP at the i-th row and the NRP at the j-th columnn. Nodes of each super-motif contain
node ids of the starting NRPs. Nodes in the overlapping region are colored in red

Finally, the variance is V[N(m)]= E[N2(m)]−E[N(m)]2.

Analytical model for the expectation of inducedmotifs

In (Picard et al. 2008) Picard et al. also sketch a possible solution for computing expecta-
tions of counts of induced motifs. Authors showed that the induced count of a motif of
size k can be always expressed as a linear combination of the non-induced counts of all
non-isomorphic subgraphs of size k. For instance, the number of induced 3-nodes paths
in a graph G is equal to the number of non-induced 3-nodes paths minus the number of
non-induced 3-nodes cliques multiplied by 3 (Fig. 3a). The coefficients of such a linear
combination are obtained through the Kocay Lemma (Kocay 1981) and correspond to the
entries of the inverse of a matrix Kk of size p × p, called Kocay matrix, where p is the
number of connected and non- isomorphic topologies of size k. The entry Kk[ i, j] stores
the number of non-induced occurrences of motif i within motif j. Figure 2 shows Kocay
matrices K3 and K4 and their inverse K−1

3 and K−1
4 . For example, K3[ 1, 2]= 3 because

there are 3 occurrences of a 3-nodes path in a 3-nodes clique. Two examples of application
of Kocay Lemma are shown in Fig. 3 for the 3-nodes path and the 4-nodes star.
An equivalent relation holds for the induced mean of the count of a k-nodes motif m,

E[NI(m)], which can be expressed as a linear combination of the means of non-induced
counts of all non-isomorphic subgraphs of size k, where the coefficients are again given
by the matrix K−1

k . Formally:

E[NI(m)]=
∑

t∈Tk

K−1
k [m, t]N(t) (5)

where Tk is the set of all non-isomorphic k-nodes subgraphs.
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Fig. 2 Kocay matrices and their inverse: (a) The Kocay matrix K3 for 3-nodes subgraphs, (b) The Inverse of
Kocay matrix K3, (c) The Kocay matrix K4 for 4-nodes subgraphs, (d) The Inverse of Kocay matrix K4

The same coefficients can be used to estimate the variance of the induced count of
m, V[NI(m)]. However, the calculation of variance requires not only the variances of all
k-nodes subgraphs but also all covariances between them. More formally:

V[NI(m)]=
∑

t∈Tk

[
K−1
k [m, t]

]2
V[N(t)]+

∑

t′ ,t′′ ∈Tk
t′ �=t′′

K−1
k [m, t

′
]K−1

k [m, t
′′
]Cov

(
N(t

′
),N(t

′′
)
)

(6)

We have that Cov
(
N(t′),N(t′′)

)
= E[N(t′)N(t′′)]−E[N(t′)]E[N(t′′)]. The first term

of the covariance is obtained like for Eq. 4, considering the non-induced occurrence prob-

Fig. 3 Examples of application of Kocay Lemma. a Number of induced occurrences of the 3-nodes path as a
linear combination of the non-induced counts of the 3-nodes path and the 3-nodes clique: the coefficients
of the combination are the entries of the first row of matrix K−1

3 (corresponding to the 3-nodes path), i.e. 1
and − 3, respectively. b The number of induced occurrences of the 4-nodes star expressed as a linear
combination of the non-induced counts of all six 4-nodes subgraphs: the coefficients of the combination are
the entries of the first row of matrix K−1

4 (corresponding to the 4-nodes star)
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abilities of all NRPs of t′ and t′′ and the non-induced occurrence probabilities of the
super-motifs generated by the overlapping between a NRP of t′ and a NRP of t′′:

E[N(t
′
)N(t

′′
)]=

(
N

N − 2k, k, k

) ∑

m′∈R(t′ ),m′′∈R(t′′ )

μ(m′)μ(m′′)+

k∑

s=1

(
N

k − s, s, k − s,N − 2k + s

) ∑

m′∈R(t′ ),m′′∈R(t′′ )

μ(m′ ∩s m′′) (7)

Therefore, the computation of the variance of the induced count using Kocay Lemma is
computationally expensive even for motifs of small size.

A novel analytical model for the expectation of inducedmotifs
In this section we present a new analytical model to estimate the mean and the variance
of the count of induced motifs, that directly estimates the induced occurrence probabil-
ity and thus avoids the calculation of the Kocay matrix. The analytical model presented
here uses the Expected Degree Distribution (EDD) as random graph model and focuses
on undirected graphs. However, it can be extended to directed graphs. Furthermore, the
equations for induced mean and variance hold for any exchangeable random model.

Direct estimation of occurrence probability of inducedmotifs

Let G be a graph and let Deg be its degree distribution. We define as Di the degree of a
node i in G.
As described in “EDD model” section, the probability of existence of an edge between

two nodes i and j in G is given by Eq. 1. Therefore, the probability of observing no edge
between i and j is P(Xij = 0|Di,Dj) = 1 − γDiDj.
To directly compute the occurrence probability of an induced motif under the EDD

model we have to consider both the present and the absent edges in the motif. More pre-
cisely, the probability is a product of edge probabilities times the probability of absent
edges. For example, the occurrence probability of the induced 4-nodes square graph
(Fig. 4) can be expressed as:

P {∃(AB,BC,CD,DA),�(AC,BD)|DA,DB,DC ,DD} = γ 4D2
AD

2
BD

2
CD

2
D −

−γ 5D3
AD

2
BD

3
CD

2
D − γ 5D2

AD
3
BD

2
CD

3
D + γ 6D3

AD
3
BD

3
CD

3
D

Each term of the summation corresponds to the occurrence probability of a non-
induced motif of the same size and the sign of each term depends on the number of edges
of the corresponding motif. Furthermore, the sign in the summation switches when we
pass from a motif with e edges to a motif with e + 1 edges.

Fig. 4 Occurrence probability of the induced 4-nodes square motif. The probability is given by a linear
combination of occurrence probabilities of non-induced motifs having the same number of nodes. Dashed
red edges are those that are not present in the 4-nodes square motif, while blue lines identify edges that are
present in the induced motif
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Fig. 5 The AS of the 4-nodes path. The root is the 4-nodes path. Inner vertices of the AS store all subgraphs
that can be obtained from the 4-nodes path by inserting 1,2 or 3 edges. Dashed green edges are the newly
added one, while dashed blue edges are those that have been previously added

Additive Set: an effective data structure for induced probability computation

We introduce a new data structure called Additive Set (AS) that can be used to identify the
linear combination of motifs that yields the occurrence probability of an induced motif.
The AS is a Directed Acyclic Graph (DAG) where each vertex1 (except the roots, i.e. ver-
tices with in-degree = 0) corresponds to a subgraph with k nodes that can be obtained
from a subgraph of the same size by adding an edge.
An Additive Set is characterized by the following properties:

– Each vertex contains a subgraph with k nodes;
– Vertices at a given level of the AS represent subgraphs with the same number of edges;
– An internal vertex of the AS at level L contains a subgraph obtained from a subgraph

at level L − 1 by adding exactly one edge;
– Levels range from 0 to r, where r is the largest number of edges which can be added

starting from subgraphs at the root vertices.

An example of Additive Set is shown in Fig. 5. The AS has one root vertex representing
the 4-nodes path. Notice that the AS may contain isomorphic subgraphs or the same
subgraph multiple times.
A compressed representation of the Additive Set can be built by collapsing all vertices

containing automorphic subgraphs into a unique vertex. In the compressed AS, edges
are weighted by the number of non-isomorphic occurrences of a subgraph that can be
obtained from another subgraph by adding exactly one edge in all possible ways. Figure 6
shows an example of compressed AS containing all 6 non-isomorphic subgraphs with 4
nodes.
1To avoid confusion, we use the term “vertex” to indicate the nodes of the AS and the term “node” to denote the nodes
of a generic graph or network.
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Fig. 6 Compressed AS containing all the possible 4-nodes non-isomorphic subgraphs. Edges are weighted
by the number of occurrences of a subgraph that can be obtained from another subgraph by adding one
edge in all possible ways

Starting from a compressed Additive Set T we introduce the Topology Induced Addi-
tive Set (TIAS) of a subgraph m. The TIAS of m is a sub-DAG of T containing m and
all subgraphs that can be built from m by adding one or more edges. Figure 7 shows the
TIAS of the 4-nodes path extracted from the compressed AS of Fig. 6.
The TIAS provides a simple way to compute the number ND of non-redundant occur-

rences of a subgraphm′ that can be generated from another subgraphm by adding edges
in all possible ways. Consider the TIAS T ′ of m and let P a path from m to m′ in T ′. We
first define the weight of P, w(P), as the product of the weights of all edges in P. By sum-
ming the weights of all paths fromm tom′ in T ′, we obtain the number N of all (possibly
redundant) occurrences of m′ generated from m. Finally, the number of non-redundant
occurrences of m′ is given by ND = N/l!, where l is the level of m′ in T ′. Figure 7 shows
an example of computation of ND.

Fig. 7 TIAS T ′ of the 4-nodes pathm with an example of computation of the number of non-redundant
occurrences of the 4-nodes square with diagonalm′ (the subgraph surrounded by a green circle) generated
fromm. There are two paths P1 and P2 betweenm andm′ . P1 has weight 2, equal to the product of the
weights of its edges (1 and 2). Likewise, P2 has weight 4, given by the product of the weights of its edges (2
and 2). The total number of occurrences ofm′ generated fromm is the sum of the weights of P1 and P2, i.e. 6.
The final number of non-redundant occurrences ofm′ generated fromm is 6/2!=3, where 2 is the level ofm′
in T ′
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The numbers of non-redundant occurrences of each subgraph in T ′ represent the coef-
ficients of the linear combination of non-induced occurrence probabilities yielding the
induced occurrence probability of m (see “Direct estimation of occurrence probability of
induced motifs” section). The sign of each term in the combination depends on the level
of the corresponding subgraph in T ′: if the level is even the sign is positive otherwise the
sign is negative.
Algorithm 1 summarizes all the steps required to compute the occurrence probability

of an induced motif m with k nodes, starting from the AS containing all subgraphs of
size k.

Algorithm 1: Induced Probability

1 InducedProbability(m);
Input: A motifm with size k;
Output: Induced occurrence probability ofm;

2 Build the complete AS T containing all subgraphs with k nodes;
3 Extract the TIAS ofm, T ′, from T ;
4 Starting from rootm in T ′ perform a Breadth First Search and for each visited
subgraphm′ compute the number of non-redundant occurrences ofm′ that can be
obtained fromm and multiply it by the non-induced probability ofm′;

5 Sum the terms computed in the previous step. The sign of the term relative to a
subgraphm′ in the summation depends on the level ofm′ in T ′: if the level is even the
sign is positive otherwise the sign is negative;

Then, the induced occurrence probability ofm is given by:

μI(m) =
Lmax∑

i=0

(−1)i

i!

⎡

⎣
∑

m∈M(i)
β(m, i)μ(m)

⎤

⎦

where Lmax is themaximum level get in the TIAS ofm, T ′ andM(i) is the set of subgraphs
stored of T ′ at level i. β(m, i) is the following recursive function:

β(m, i) =
{

1 if i = 0∑
v∈M(i−1) w(v,m)β(v, i − 1) otherwise

with w(v,m) defined as the weight of the edge (v,m) in T ′.

Mean and variance of inducedmotifs

Starting from the induced occurrence probability of a motifm, the mean and the variance
of the induced count of m can be computed using equations similar to those presented
in “Analytical model for the expectation of non-induced motifs” section. The mean
E[NI(m)] can be calculated using Eq. 3, by substituting μ(m) with μI(m):

E[NI(m)]=
(
n
k

)
�(m)μI(m) (8)

Likewise, variance can be computed starting from Eq. 4 and replacing μ with μI . The
only important difference is the set of super-motifs resulting from the overlapping of two
or more NRPs. To this aim, we first introduce a new overlapping operator, ∩I

s , which takes
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as input an integer s and two NRPs ofm,m′ andm′′, and optionally returns a super motif
with 2k − s nodes, whose adjacency matrix can be written in a block-wise fashion as:

m
′ ∩I

s m
′′ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜⎝
m′

11 m′
12 0

m′
21 m′

22 ∨ m′′
11 m′′

12
0 m′′

21 m′′
22

⎞

⎟⎠ if
∑

i,j m
′
22i,j = ∑

i,j m
′′
11i,j

∅ otherwise

(9)

where all blocks are defined as in the case of non-induced motifs.
Equation 9 implies that the overlapping operation for induced motifs actually results

in a super-motif only iff all the edges in the overlapping region come from both m′ and
m′′. Figure 8 shows all super-motifs resulting from the overlap of two NRPs of an induced
3-nodes path with s = 2 nodes.
In order to correctly compute the variance, for each super-motif S resulting from the

application of the overlapping operation (Eq. 9), we also need to take into account the
set of all motifs that can be built starting from S by adding one or more edges between
nodes that are outside the overlapping region in all possible ways. The latter set is called
expansion set of S and is denoted as E(S). Figure 9 shows an example of expansion set of
a super-motif.
The expected square count E[N2

I (m)] is then computed considering: (i) the induced
occurrence probability of all possible pairs of non-overlapping NRPs, (ii) the induced
occurrence probability of all super-motifs generated using the overlapping function ∩I

s

Fig. 8 Super-motifs resulting from the overlap between all NRPs of the induced 3-nodes path with s = 2
nodes. Results are shown in a matrix fashion, where the entry at row i and column j is the super-motif
originating from the NRP at the i-th row and the NRP at the j-th columnn. Nodes of each super-motif contain
node ids of the starting NRPs. Nodes in the overlapping region are colored in red. Red dashed lines represent
edges between overlapping nodes coming from only one of the two NRPs. All super-motifs containing red
dashed edges are barred, meaning that they are not returned by the overlapping operator ∩I

s
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Fig. 9 Expansion set of the 5-nodes path super-motif resulting from the overlap of two NRPs of the 3-nodes
path. Starting from the top, the figure shows at each level L all super-motifs that can be built starting from all
super-motifs at level L − 1, by adding exactly one edge between non-overlapping nodes in all possible ways

and resulting from the overlap of two NRPs with 1 or more nodes and (iii) the induced
occurrence probability of all extensions of each super-motif generated from overlapping:

E[N2
I (m)]=

(
n

n − 2k, k, k

) ⎡

⎣
∑

m′∈R(m)

μ(m′)

⎤

⎦
2

+

+
k∑

s=1

⎡

⎢⎢⎢⎣

(
n

k − s, s, k − s, n − 2k + s

)
×

∑

m′,m′′∈R(m),
S=μ(m′∩sm′′) �=∅

∑

SE∈E(S)
μ(SE)

⎤

⎥⎥⎥⎦ (10)

Finally, the variance V[NI(m)] is given by E[N2
I (m)]−E[NI(m)]2.

RaME: rapid matrix elaboration

In this section we describe a matrix-based implementation of the proposed analytical
model, called RaME (Rapid Matrix Elaboration). RaME uses efficient matrix operations
to compute occurrence probabilities of induced motifs. The key idea behind RaME is that
the computation of induced probabilities does not require the explicit generation of the
Additive Set, but only some moments of the degree distribution of these motifs.
Letm be a motif with k nodes, T its TIAS and EA(m) the set of absent edges inm. Let C

be the set of all 2|EA| − 1 possible edges combination in EA(m). LetMCA be a matrix with
2|EA| − 1 rows and k columns, where each entryMCA[ c, x] stores the number of edges of
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combination c to which node x is incident. By adding to each cell (i, j) ofMCA the degree
of node j in m, we get a new matrix MD where MD[m′,u] stores the degree of node u
of a motif m′ in T . Figure 10 shows an example of computation of MCA and MD for the
4-node path.
Starting from node degrees of each motif in T , we can compute a matrix of moments

ME in whichME[m′,u] has the moment of orderMD[m′,u] of the degree distribution of
motifm′.
Finally, we can define two vectors, the gamma vector Vγ and the sign vector VS . For

eachmotifm′ in T ,Vγ [m′]= γm′++ , wherem′++ is the number of edges ofm′, andVS [m′]
is the sign of m′, with VS [m′]= 1 if the level of m′ in T is odd and VS [m′]= −1 if the
level is even.
GivenME, Vγ and VS , the non-induced probability ofm′ can be computed as:

μ(m′) = VS [m′]Vγ [m′]
k∏

u=1
ME[m′,u] (11)

So, the non-induced probability computation can be reduced to a product of matrices
and vectors. In Fig. 11 we show an example of non-induced probability computation for
all motifs in the TIAS of the 4-node path of Fig. 10a.
Finally, the induced occurrence probability ofm is:

μI(m) =
∑

m′∈T
μ(m′) (12)

Complexity analysis
In this section we analyze the time complexity of RaME and the Kocay Lemma-based
method. Let G be a network with N nodes and let m be a motif with k nodes. For both
algorithms we assume as computed the moments of the degree distribution of G.

Fig. 10 a A 4-nodes path where present and absent edges are denoted with black and red lines,
respectively. b From left to right: the matrixMCA of combinations of absent edges of the 4-nodes path,
whereMCA[ c, x] is the number of edges in combination c to which node x is incident; node degrees of the
4-node path; the matrixMD of node degrees of motifs in the TIAS of the 4-nodes path, resulted by adding
node degrees of the 4-nodes path (2, 2, 1, 1) to each row ofMCA
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Fig. 11 The product between the matrix of momentsME , where the order of moments are given by the
corresponding entries inMD (Fig. 10b), the gamma vector Vγ of the powers of γ , where the exponents are
the number of edges of each motif in the TIAS T of the 4-nodes path Fig. 10a, and the sign vector VS ,
containing the signs of all motifs in T gives as result the vector Vμ of non-induced occurrence probabilities
of all motifs in T

Complexity of RaME

To evaluate the complexity of RaME for computing the mean and the variance of the
induced count of a motif we consider the worst case, i.e. a motif with the minimum
number of edges.
We start by analyzing the running time for calculating the induced occurrence probabil-

ity of the motif. RaME requiresO(k2) to compute the set of absent edges EA(m), because
we need to scan all the elements of the adjacency matrix of m. The number of absent
edges in m is given by α = k∗(k−1)

2 − |E(m)|. The set C of all possible combination of
absent edges can be generated in O(2α) ≈ O(2k2) time, using a recursive algorithm. To
calculate MCA we need to check for each combination of edges C ∈ C which nodes are
incident to the edges of C, so the computation of MCA costs O(2k2 ∗ k). The number of
rows of MCA is 2k2 − 1, which corresponds to the number of motifs in the TIAS T of m
and the size of vectors Vγ and VS . The matrixMD of node degrees is obtained by adding
degrees ofm’s nodes to each row ofMCA, so this step requiresO(2k2 ∗ k). Computing the
matrix ME of moments of the degree distribution costs O(2k2 ∗ k) too. The power of γ

and the sign for each motif in T can be computed in constant time, therefore Vγ and VS
can be calculated in O(2k2) time. Non-induced occurrence probabilities of motifs in T
requiresO(2k2 ∗ k) (Eq. 11). Finally, computing the induced probability ofm costsO(2k2)
(Eq. 12). Indeed, the overall complexity for the induced occurrence probability of m
isO(2k2 ∗ k).
Once we have the induced occurrence probability ofm, the mean of the induced count

only requires the computation of all NRPs of m (Eq. 8). The latter task can be performed
in O(k!2 ) time, because we need to consider all k! permutations of node indexes in m
and check each new permutation with the previously generated ones for redundancy.
So, calculating the mean of the induced count requires O(2k2 ∗ k + k!2 )), which can be
rewritten asO(2k2 ∗ k)).
Concerning the variance of the induced counts, we separately analyze the two terms

in the summation of Eq. 10. Calculating all NRPs of m requires O(k!2 ) time and the
number of NRPs is at most k!. So, the first term in the summation of Eq. 10 requires
O(k!2 +k! ∗2k2 ∗ k), i.e. O(k! ∗2k2 ∗ k) . Regarding the second term in the summation,
we first can notice that a super-motif can have at most 2k − 1 nodes. Computing the
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induced occurrence probability of a single super-motif S requires O(2(2k)2 ∗ 2k), which
corresponds to O(2k2 ∗ k). Calculating the expansion set of S, E(S), requires O(22k2),
i.e. O(2k2), because it is equivalent to calculating the set of all combination of absent
edges in S. The number of motifs in E(S) is at most 2(2k)2 − 1, i.e. O(2k2). Building a
super-motif costsO((2k)2), i.e. O(k2). Therefore, computing the second term in the sum-
mation of Eq. 10 requires O(k ∗ k!2 ∗(k2 + 2k2 + 2k2 ∗ 2k2 ∗ k)), which can be simplified
as O(k2 ∗ k!2 ∗(2k2)2). The latter is also the time complexity of the induced variance
in RaME.

Complexity of kocay lemma-based method

Kocay Lemma-based method relies on the computation of the inverse of the Kocay
matrix. This requires first the calculation of the whole matrix. The coefficient for a pair of
subgraphs T ′ and T ′′ is given by the number of non induced occurrence of T ′ in T ′′. This
number can be computed by using any subgraph matching algorithm, whose complexity
is O(k! ∗k) in the worst case. Since the maximum number of connected subgraphs with
k nodes is 2k2 , computing the inverse of Kocay matrix requires O((2k2)2 ∗ k! ∗k). Calcu-
lating the non-induced occurrence probability of a motif requires O(k) because it is just
a product of k moments of the degree distribution (Eq. 2). To compute the non-induced
mean we also need to calculate all NRPs ofm. So, calculating the non-induced mean of a
single motif costs O(k!2 +k), i.e. O(k!2 ). The number of non-induced means needed for
the linear combination giving the induced mean of m is at most 2k2 . So, the complexity
for the induced mean isO((2k2)2 ∗ k! ∗k + 2k2 ∗ k!2 ), i.e.O((2k2)2 ∗ k! ∗k).
Regarding the induced variance, we first analyze the complexity of the non-induced

variance of a motif, which is determined by the computation of the expectation of the
squared count (Eq. 4).The first term of the summation of Eq. 4 requires O(k!2 +k! ∗k),
i.e.O(k!2 ), while the second term requiresO(k ∗ k!2 ∗(k2 + 2k)), i.e.O(k3 ∗ k!2 ). There-
fore, the time complexity for the non-induced variance isO(k3 ∗ k!2 ). For the complexity
of the induced variance (Eq. 6), we separately analyze the two terms in the summation.
Calculation of the first term costs O(2k2 ∗ k3 ∗ k!2 ). The second term of the summa-
tion implies the computation of covariance between all pairs of motifs in T (Eq. 7). For
the covariance between two motifs m′ and m′′ we first need to calculate all NRPs of
m′ and m′′. This step costs O(k!2 ). The first term of the summation in Eq. 7 can be
computed in O(k!2 ∗k). The second term requires O(k ∗ k!2 ∗(k2 + 2k)). So, the calcu-
lation of the covariance costs O(k3 ∗ k!2 ). Since the number of motifs in T is 2k2 − 1,
computing the second term of the summation in Eq. 6 requires O(2k2 ∗ k3 ∗ k!2 ). So,
the time complexity of the induced variance using the Kocay Lemma-based method is
O(2k2 ∗ k3 ∗ k!2 ).

Discussion

To sum up, the time complexities for the induced mean using RaME and Kocay Lemma-
based method are O(2k2 ∗ k)) and O((2k2)2 ∗ k! ∗k), respectively. The time complexities
for computing the induced variances using RaME and Kocay Lemma-based method are
O(k2 ∗ k!2 ∗(2k2)2) andO(2k2 ∗ k3 ∗ k!2 ), respectively. Indeed we can conclude that RaME
is faster than Kocay Lemma-based method for the calculation of the induced mean and
slower for the computation of the induced variance. However, calculating the induced
variance remains unfeasible for both algorithms.
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Table 1Main features of the real network dataset

Network Category Nodes Edges

Human Protein Metabolic 3,133 6,726

CAIDA Computer 26,475 53,381

DBLP Coauthorship 317,080 1,049,866

LiveJournal Social 5,204,176 49,174,464

Experimental results
To evaluate the performance of RaME, we collected a dataset of real undirected networks
of medium and large size and we compared RaME to the Kocay Lemma-based algorithm
described in “Analytical model for the expectation of induced motifs” section, consider-
ing subgraphs of different sizes (up to 10 nodes). Performance of the two models have
been also evaluated on a case study using a knowledge biological network. In our experi-
mental analysis we focus on the running time for the calculation of the number of induced
subgraph occurrences of a motif. Therefore we do not discuss on the importance of a spe-
cific motifs to understand the structure of the network. Since calculating variance of the
induced count using both methods is computational intensive and therefore unfeasible
in a single machine even for small motifs (from size 5 on), we just focused on the calcu-
lation of the mean of the induced counts. We implemented RaME in Java language and
compared it to a Java implementation of the Kocay Lemma-based model. All experiments
were executed on an Intel core i5-7400 processor with 8GB of RAM.

Dataset

In our experimental analysis we used 4 real undirected networks extracted from
KONECT2:

– Human Protein (Vidal): a Protein-Protein Interaction (PPI) network describing the
physical interactions between proteins in human;

– CAIDA: Internet communication network between Autonomous Systems (AS);
– DBLP: a co-authorship graph, nodes are the authors and two authors are linked by

an edge iff they co-authored at least one published paper;
– LiveJournal: a social network of LiveJournal weblog service where nodes are users

and edges are their relationship status.

In Table 1 we report the number of nodes and edges of each network.

Experiments on the KONECT dataset

In Table 2 we report the running times (in seconds) of both algorithms for the computa-
tion of the mean count of all induced motifs of a given size in each real network of the
KONECT dataset. Table 3 shows the sum of the expected induced mean for topologies
with k-nodes for k = 3, ..., 7.
We also measured the execution time (Table 4), expected value (Table 5) and memory

consumption (Table 6) of RaME for the computation of themean induced count of a single
motif, i.e. the star topology. Indeed, the k-star subgraph is one of the sparsest topologies

2http://konect.cc
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Table 2 Running times (seconds) of RaME and Kocay Lemma-based method for the computation of
the induced mean of all motifs with 3-7 nodes

Motif DBLP CAIDA Human Protein LiveJournal

size RaME Kocay RaME Kocay RaME Kocay RaME Kocay

3 1.01 1.28 0.10 0.22 0.02 0.12 88.23 86.21

4 1.03 1.30 0.10 0.25 0.02 0.13 90.65 89.35

5 1.05 1.37 0.12 0.32 0.02 0.20 93.43 92.72

6 1.17 2.70 0.25 1.65 0.21 1.75 94.67 97.28

7 52.08 113.25 59.73 118.92 48.14 117.44 160.56 245.07

with k nodes and its TIAS contains the highest number of k-subgraphs. Therefore, it
represents one of the worst-case scenarios for our method because the execution time for
calculating the induced mean count of any motif with k nodes in RaME will be less than
or equal to the one of the k-star topology.
Concerning Kocay Lemma-based method we only report execution times for all k-node

motifs (Table 2) since even for a single motif the algorithm has to compute the entire
Kocay matrix, its inverse matrix and the non-induced occurrence probabilities of all k-
node motifs.
Results clearly show that RaME is faster than Kocay Lemma-based method for larger

motifs, because calculating the Kocay matrix becomes computationally harder as the
motif size increases. Moreover, the size of the network has a negligible impact on the
execution time of RaME. In fact, the only information needed by RaMe about the input
network is the node degree distribution. Indeed, the small overhead observed in the
running time only depends on the computation of the moments of the distribution.
The number of possible subgraphs of size k, for k = 8, 9, 10 cause a combinatorial explo-

sion in the computation, therefore we just report the mean of the induced count of the
star topology (Table 4). In these cases RaME was able to compute induced means in rea-
sonable running time (at most few hours for motifs of size 10) in all networks, while Kocay
Lemma-based method didn’t manage to complete the task or ran out of memory.

A case study: Hetionet knowledge graph

In this section we present a case study to demonstrate the applicability of RaME and its
ability to find interesting motifs of various size. To this aim we consider the Hetionet
knowledge network.
Hetionet3 is an integrative network of biomedical knowledge that brings together

biological data collected in the last 50 years from 29 different databases. It is an heteroge-
neous information network formed by different type of nodes (such as for example genes,
compounds, anatomy, diseases and ontologies) and different types of edges. Figure 12a
illustrates the metagraph diagram of Hetionet.
Hetionet contains 47,031 nodes of 11 different types and 2,250,197 edges of 24 dif-

ferent types. For our case study we extracted from Hetionet the maximum connected
component of a tripartite network, where nodes are compounds, genes and diseases. The
metagraph diagram of the extracted tripartite network is shown in Fig. 12b. The result-
ing network has 5,485 nodes and 32,210 edges. Since our algorithm works on undirected

3http://het.io
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Table 3 Expected number of occurrences for induced counts of all topologies with 3-7 nodes

Motif size DBLP CAIDA Human Protein LiveJournal

3 2.2603e7 3.5139e3 3.464e3 1.4311e9

4 9.7480e8 4.5469e4 4.0749e4 4.8060e11

5 5.4184e10 6.1725e5 5.1009e5 4.0914e14

6 3.5178e12 8.7608e6 6.6951e6 4.2887e17

7 2.5141e13 1.2601e8 8.8596e7 4.4733e20

networks, we treated the graph as undirected. However, this does not bring to an infor-
mation loss since all edges of the extracted tripartite network always go from one type of
node to another one.
In order to test RaME we built five undirected motif graphs of variable size, depicted in

Fig. 13. Motifs in Fig. 13a and b consist of a compound and a disease having one and two
genes in common, respectively. Motifs in Fig. 13c, d and e represent two sets of genes G1
andG2, each formed by one, two and three genes, respectively. The two sets are connected
to unrelated compounds c1 and c2 and unrelated diseases d1 and d2.
Table 7 shows the expected number of induced occurrences found using RaME

(E[NI(m)]) and the running time for each query (TE[NI (m)]). We also report the num-
ber of induced occurrences (Nobs) in the input network returned by the GTrie algorithm
(Ribeiro and Silva 2014) and its execution time TNobs .
As expected, the mean number of induced occurrences according to the EDD model

for the smallest motif (Fig. 13a) is high compared to the input network. Even though we
don’t have the variance and we cannot calculate an exact p-value, we can state that this
motif is weakly significant. Motif in Fig. 13b seems to be slightly more significant. For
the biggest motifs GTrie failed to return the exact occurrence count. This shows that for
some instances subgraph isomorphism results computationally expensive and therefore
establish motif significance using permutation test becomes unfeasible. In this regard,
analytical methods like RaME can be useful to provide an approximate estimation of the
frequency of a subgraph in a graph when the exact subgraph counting becomes computa-
tionally unfeasible. Nevertheless, the computation of the variance results still intractable
when motif size increases, also with the proposed analytical model. Interestingly, we

Table 4 Running time (seconds) of RaME for the computation of the mean of induced counts of star
topologies with 3-10 nodes

Star size DBLP CAIDA Human Protein LiveJournal

3 0.87 0.04 0.01 73.46

4 0.87 0.05 0.01 75.81

5 0.88 0.05 0.02 78.62

6 0.93 0.05 0.03 79.31

7 1.15 0.07 0.06 80.36

8 1.62 0.43 0.50 81.54

9 36.38 33.52 33.87 134.60

10 9’009.11 8’861,13 9’517.49 13’152.37
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Table 5 Expected number of occurrences with RaME for induced counts of star topologies with 3-10
nodes

Star size DBLP CAIDA Human Protein LiveJournal

3 2.2601e7 3.501e3 3.430e3 1.4311e9

4 4.5240e8 2.7675e4 1.8495e4 3.8289e11

5 1.2185e10 2.0662e5 1.0230e5 3.2520e14

6 3.7174e11 1.3393e6 5.1427e5 3.1559e17

7 1.1949e13 7.5664e6 2.2914e6 2.8696e20

8 3.8911e14 3.7725e7 9.0298e6 2.3638e23

9 1.2470e16 1.6790e8 3.1619e7 1.7567e26

10 3.8508e17 6.7337e8 9.9062e7 1.1821e29

found that the inducedmean of the biggest motifs considerably decreases as the motif size
increases. This seems to agree with the fact that, the more genes in common two diseases
have, the more likely they are similar to each other.

Conclusions
In this paper we introduced a novel algorithm to compute the expected count of induced
motifs in undirected large networks under any exchangeable random model. We also
described a matrix-based implementation of our algorithm, called RaME. Compared to
the method based on the application of Kocay Lemma and illustrated in (Picard et al.
2008), RaME becomes faster when the size of the motif increases. Our method can be
applied to find undirected motifs up to 10 nodes in reasonable time. Its running time
results almost independent from the size of input network and can be easily extended to
directed networks. RaME shows also a reasonable memory consumption, as reported in
Table 6. Most of the memory is used to store the input graph and the set of non redundant
permutation topologies drawn from a query graph. In addition, the case study presented
here shows that analytical models like RaME can be useful to roughly estimate the number
of occurrences of medium and large motifs, whenever subgraph counting algorithms are
unable to return the answer in a limited amount of time. We also investigated the second
moment calculation with our model. Howerver, currently it results unfeasibile for RaME
even for small size subgraphs. We plan to implement RaME on top of SPARK framework
to deal with networks having billions of nodes and investigate approximated variants to
calculate expectations and variance of larger motifs.

Table 6 Physical memory consumption (GB) of RaME for the computation of the mean of induced
counts of star topologies with 3-10 nodes

Star size DBLP CAIDA Human Protein LiveJournal

3 0.3 0.1 0.01 5.1

4 0.3 0.1 0.01 5.1

5 0.3 0.1 0.01 5.1

6 0.3 0.1 0.01 5.1

7 0.3 0.1 0.1 5.1

8 0.4 0.3 0.2 5.2

9 0.5 0.5 0.3 5.3

10 1.9 1.8 1.8 6.5
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Fig. 12 a A metagraph diagram representing all types of nodes and edges of Hetionet knowledge network.
b The metagraph diagram of the case study network extracted from Hetionet

Fig. 13 Motif graphs of the Hetionet network with 3 nodes (a), 4 nodes (b), 6 nodes (c), 8 nodes (d) and 10
nodes (e). Node names are C for Compounds, G for Genes and D for Diseases
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Table 7 Induced means E[NI(m)] according to the EDD model and running times TE[NI(m)] (in
seconds) for the five motif graphs of Fig. 13 using RaME

Topology Nobs TNobs E[NI(m)] TE[NI(m)]

5’045’184 0.48 171’102.35 0.21

6’862’764 3.6 24’376.51 0.20

- > 1 day 889’928’264’336.37 0.25

- > 1 day 76’665.85 1.16

- > 1 day 174.63 3’031.21

The table also reports the number of occurrences Nobs in the input network using GTrie algorithm and the relative execution time
TNobs (in seconds)

Abbreviations
ER: Erdös-Renyi model; FDD: Fixed Degree Distribution model; EDD: Expected Degree Distribution model; ERMG:
Erdös-Renyi Mixture for Graphs; NP: Nondeterministic Polynomial; RaME: Rapid Matrix Elaboration algorithm; NRP:
Non-Redundant Permutation; AS: Additive Set; DAG: Directed Acyclic Graph; TIAS: Topology Induced Additive Set

Acknowledgments
Not applicable.

Authors’ contributions
GM, AF and AP conceived the project. EM, GM and AP developed the analytical model for computing the mean and
variance of the count of induced motifs. EM implemented the analytical model and RaME algorithm. EM performed the
experiments and the case study. EM, GM and AP wrote the paper. All authors read and approve the final manuscript.

Funding
GM, AF and AP have been supported by Ministero dell’Istruzione, dell’Università e della Ricerca Grant Number:
SCN_00451 “CLARA - CLoud plAtform and smart underground imaging for natural Risk Assessment”.

Availability of data andmaterials
Networks of KONECT dataset are publicly available at http://konect.cc/. Hetionet network can be downloaded from
https://github.com/hetio/hetionet. Java implementations of RaME and Kocay Lemma-based algorithms are available at
https://martorana.email/RaME/.

Competing interests
The authors declare that they have no competing interests.

Author details
1University of Catania, Dept. of Physics and Astronomy, Catania, Italy. 2University of Catania, Dept. of Clinical and
Experimental Medicine, Catania, Italy.

Received: 23 March 2020 Accepted: 29 July 2020

References
Chen J, Yuan B (2006) Detecting functional modules in the yeast protein-protein interaction network. Bioinformatics

22(18):2283–2290
Chung F, Lu L (2002) The average distances in random graphs with given expected degrees. Proc Natl Acad Sci

99(25):15879–15882
Cook SA (1971) The complexity of theorem-proving procedures. In: Proc. 3rd ACM Symposium on Theory of Computing.

pp 151–158
Daudin JJ, Picard F, Robin S (2008) A mixture model for random graphs. Stat Comput 18(2):173–183
Erdös P, Renyi A (1959) On random graphs. Publ Math 6:290–297
Johnson NL, Kotz S, Kemp AW (1992) Univariate discrete distributions. Wiley
Kocay W (1981) An extension of Kelly’s lemma to spanning subgraphs. Congr Num 31:109–120
Martorana E, Micale G, Ferro A, Pulvirenti A (2020) Establish the Expected Number of Injective Motifs on Unlabeled

Graphs Through Analytical Models, Complex Networks and Their Applications VIII. Springer. pp 255–267
Micale G, Giugno R, Ferro A, Mongiovì M, Shasha D, Pulvirenti A (2018) Fast analytical methods for finding significant

labeled graph motifs. Data Min Knowl Disc 32(2):1–28
Micale G, Pulvirenti A, Ferro A, Giugno R, Shasha D (2019) Fast methods for finding significant motifs on labelled

multi-relational networks. J Compl Netw 00:1–22
Milo R, Kashtan N, Itzkovitz S, et al. (2004) On the uniform generation of random graphs with prescibed degree

sequences. Cond Mat 0312028:1–4

http://konect.cc/
https://github.com/hetio/hetionet
https://martorana.email/RaME/


Martoranaet al. Applied Network Science            (2020) 5:58 Page 23 of 23

Milo R, Shen-Orr S, Itzkovitz S, et al. (2002) Network motifs: simple building blocks of complex networks. Science
298(5594):824–827

Newman MEJ, Strogatz SH, Watts DJ (2001) Random graphs with arbitrary degree distributions and their applications.
Phys Rev E 026118:64

Nowicki K, Snijders T (2001) Estimation and prediction for stochastic block structures. J Am Stat Assoc 96:1077–1087
Park J, Newman M (2003) The origin of degree correlations in the internet and other networks. Phys Rev E 68:026112
Picard F, Daudin JJ, Koskas M, et al. (2008) Assessing the exceptionality of network motifs. J Comput Biol 15(1):1–20
Prill R, Iglesias PA, Levchenko A (2005) Dynamic properties of network motifs contribute to biological network

organization, Vol. 3
Ribeiro P, Silva S (2014) G-Tries: a data structure for storing and finding subgraphs. Data Min Knowl Disc 28(2):337–377
Shen-Orr SS, Milo R, Mangan S, et al. (2002) Network motifs in the transcriptional regulation network of Escherichia coli.

Nat Genet 31:64–68
Squartini T, Garlaschelli D (2011) Analytical maximum-likelihood method to detect patterns in real networks. New J Phys

13(8):083001
Wernicke S (2006) Efficient detection of network motifs. IEEE/ACM Trans Comput Biol Bioinforma 3(4):347–359

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Abstract
	Keywords

	Introduction
	Definitions
	EDD model

	Previous work
	Analytical model for the expectation of non-induced motifs
	Occurrence probability under the EDD random model
	Mean and variance of the count

	Analytical model for the expectation of induced motifs

	A novel analytical model for the expectation of induced motifs
	Direct estimation of occurrence probability of induced motifs
	Additive Set: an effective data structure for induced probability computation
	Mean and variance of induced motifs
	RaME: rapid matrix elaboration

	Complexity analysis
	Complexity of RaME
	Complexity of kocay lemma-based method
	Discussion

	Experimental results
	Dataset
	Experiments on the KONECT dataset
	A case study: Hetionet knowledge graph

	Conclusions
	Abbreviations
	Acknowledgments
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

