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Abstract
In this work, the bending behavior of nanoplates subjected to both sinusoidal and uniform loads in hygrothermal environ-
ment is investigated. The present plate theory is based on the classical laminated thin plate theory with strain gradient 
effect to take into account the nonlocality present in the nanostructures. The equilibrium equations have been carried out 
by using the principle of virtual works and a system of partial differential equations of the sixth order has been carried out, 
in contrast to the classical thin plate theory system of the fourth order. The solution has been obtained using a trigonomet-
ric expansion (e.g., Navier method) which is applicable to simply supported boundary conditions and limited lamination 
schemes. The solution is exact for sinusoidal loads; nevertheless, convergence has to be proved for other load types such as 
the uniform one. Both the effect of the hygrothermal loads and lamination schemes (cross-ply and angle-ply nanoplates) on 
the bending behavior of thin nanoplates are studied. Results are reported in dimensionless form and validity of the present 
methodology has been proven, when possible, by comparing the results to the ones from the literature (available only for 
cross-ply laminates). Novel applications are shown both for cross- and angle-ply laminated which can be considered for 
further developments in the same topic.

Keywords Kirchhoff plate theory · Nonlocal theory · Strain gradient theory · Hygrothermal load · Composite nanoplates · 
Cross- and angle-ply laminates

1 Introduction

Nanomaterials and nanostructures have been investigating 
recently for their innovative properties and features. The 
analysis and design of such materials and structures has 
increased rapidly in the last decades. Their application is 
extremely wide, and they can be used for different purposes 
[1–4]. Focusing on nanostructures several applications has 
been already presented in medicine [5], electronics [6], aero-
space [7] and even in civil engineering [8–10]. The most 
common of such are nanoplates, nanoroads and nanobeams.

However, classical continuum mechanics [11, 12] is not 
sufficient to capture some effects which are present at the 
nanoscale and come from the influence of the microstructure 
on the macroscale, for instance, material constituent interac-
tions create observable effects at the macroscale. As a matter 
of fact, it has been recently demonstrated that the behavior 
of nanostructures is affected by the material microstructure 
in [13–15], in addition, such effects have been also meas-
ured in experimental testing in [16, 17]. Alternatively to 
experimental testing, numerical modeling can be employed 
such as atomic models [18–20]. However, such modeling 
solutions are computationally expensive with respect to con-
tinuum mechanics. Therefore, the main aim of the present 
study is to consider a higher-order continuum mechanics 
model which is able to take into consideration a length scale 
effects. This is the most common approach considered in the 
so-called nonlocal theories [21–24], where the description 
of the structural object is dependent on one of more length 
scale parameters.

Several nonlocal theories have been presented in the sci-
entific community through the years such as couple stress 
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[25], modified couple stress [26, 27], integral type and 
micropolar [28–30], strain and stress gradient [31–35] and 
modified strain gradient [36, 37],

This work focuses on a second-order strain gradient the-
ory which is a simple and effective approach to investigate 
nonlocal effects in nanostructures. In the present case, the 
nonlocal effect is embodied in a single length scale param-
eter � which multiplies the second gradient of the strain 
field; this leads to a stress field that is not only linearly 
dependent on the strain and also on its second gradient. 
This approach has been efficiently applied to isotropic [38] 
as well as composite structures [39]. Recent works on the 
static and dynamic analysis of nanostructures have been pro-
posed. Timoshenko beam theory was combined with stress 
gradient theory for the bending phenomena of nanobeams 
made of functionally graded (FG) materials. Analogously 
Euler–Bernoulli beam theory has been used in [40] for the 
free and forced vibrations of nanobeams on elastic Pasternak 
foundation. Nonhomogeneous nanobeams on elastic medium 
have been analyzed with strain gradient effects by Civalek 
and Akgöz [41, 42]. Brischetto and co-workers used non-
local theories for the study of composite plates and shells 
subjected to thermal, hygrometric and piezoelectric stress 
[43–46]. Nanoplate problems subjected to hygrothermal 
loads have been proposed in [47–52], using different nonlo-
cal theories. Most common research works solve such non-
local problems with analytical or semi-analytical methods 
which, in general, limit the analysis to simply supported con-
ditions (for the Navier method [53]) or two sides supported 
and two arbitrary (for the Levy method [54]).

The aim of this study is to provide a trigonometric analyt-
ical and semi-analytical solutions to the bending problem of 
composite thin nanoplates subjected to hygrothermal using 
nonlocal second-order strain gradient theory. Sinusoidal and 
uniform loads for cross- and angle-ply laminates are stud-
ied, and for every uniform distribution considered also the 
convergence analysis for both displacement and stress fields 
is performed. This paper is structured as follows: after the 
introductory section, the theoretical background for Kirch-
hoff thin plates in hygrothermal environment is developed, 
using second-order strain gradient theory. Then, in order to 
validate the calculation code, implemented in MATLAB, 
various comparisons with the literature are reported [55–58]. 
After the comparisons, the results obtained for different lam-
ination schemes and different types of loads are provided. 
Finally, remarks and conclusions are reported at the end of 
this paper.

2  Theoretical background

Consider a laminated thin nanoplate, modeled with the 
Kirchhoff plate theory, subjected to hygrothermal stresses 
[59]. The plate is composed of k orthotropic layers oriented 
at angles �1 ; �2;… ;�k . The thickness of the k-th oriented 
layer, along the z axis, is defined as hk = zk+1 − zk.

Introduced the reference system as in Fig. 1, we can 
define the displacement field of a generic point of the solid 
by means of the triad of displacement components U, V, W, 
which are functions of the coordinates (x, y, z).

where �⊤ =
{
u v w

}
 represent the components of the 

displacement vector of a generic point placed on the refer-
ence surface of the plate. �3 is the 3 × 3 identity matrix.

From this model, we can trace the relationships between 
displacement components and deformation components that 
make up the compatibility equations.

(1)

⎧
⎪⎨⎪⎩

U

V

W

⎫
⎪⎬⎪⎭
= �3� + z

⎡
⎢⎢⎢⎣

0 0
�

�x

0 0
�

�y

0 0 0

⎤⎥⎥⎥⎦
�

(2)� =

⎧
⎪⎨⎪⎩

�xx
�yy
�xy

⎫
⎪⎬⎪⎭
=

⎧
⎪⎨⎪⎩

�(0)
xx

�(0)
yy

� (0)
xy

⎫
⎪⎬⎪⎭
+ z

⎧
⎪⎨⎪⎩

�(1)
xx

�(1)
yy

� (1)
xy

⎫⎪⎬⎪⎭

Fig. 1  Laminate general layout
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where the superscript (0) stands for membrane strain whereas 
(1) for bending strain, and

We introduce the Q(k)

ij
 representing the rigidity of the ortho-

tropic k-th ply into the plate reference system. The stiff-
nesses relate the stress components to the strain components, 
allowing to write the constitutive equations, and are defined 
through the following relationships as a function of engi-
neering constants

In order to know the mechanical behavior of nanoplates 
subjected to hygrothermal stress, we introduce the nonlocal 
elastic theory of second-order strain gradient. Therefore, the 
constitutive equations take the following form

where Q̄(k)

ij
 are the classical reduced elastic stiffnesses [55] 

in the geometric reference plane. The same can be done for 
the hygrothermal properties of the material as

It is convenient to report the constitutive equation in matrix 
form as

where � is the nonlocal ratio and the operator 
∇2 = �2∕�x2 + �2∕�y2 . The variation of hygrothermal 
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loads along the thickness is governed by the following 
relationships

where T0 , C0 represent the constant distributions of tem-
perature and humidity, analogously T1 , C1 indicate the lin-
ear distributions of temperature and humidity. Note that all 
parameters are characterized by the same units since linear 
terms are multiplied by z/h.

By integrating the stresses along the thickness, we obtain:

(9)
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Introducing the � , � and � matrices, called membrane stiff-
ness matrix, bending stiffness matrix and bending-membrane 
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and vectors �� , �� , �� , �� , �� and �� containing the hygro-
thermal properties of the material

(11)
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The stress characteristics as a function of the displacements 
take the following form

where subscripts xx , yy represent second-order derivatives 
with respect to x and y applied to the operators defined in 
Eq. (4).

To obtain the balance equations we use the principle of 
virtual works �U + �V = 0 , where �U is the variation of 
elastic energy and �V  is the potential of external work done 
by applied forces.

Integration by parts of the strain energy is
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Only transverse loads are applied to the plate, thus, potential 
of external work done by applied forces is
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where � =
{
0 0 q

}⊤.
The balance equations and the boundary condition result 

to be

Replacing Eqs. (14) and (15) in Eq. (20), the strong form of 
the problem is obtained.

3  Navier solution

In this section, we introduce the Navier displacements field 
for an orthotropic cross-ply and angle-ply laminate. The 
solution is obtained by substituting the Navier displacements 
field in the balance equation.

The coefficients ĉij and FT

i,mn
 will be specified in the cor-

responding paragraphs for the specific case. Equation (22) 
can be solved by the method of static condensation. Conse-
quently, the static solution is

where

3.1  Cross‑ply laminate

In this section, the analytical solution for cross-ply laminates 
is developed. The simply supported boundary condition for 
cross-ply laminates result to be:
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In order to satisfy the boundary condition, Navier displace-
ments field is assumed to be

A trigonometric development is also used for the mechanical 
and hygrothermal loads shown as

where � = m�∕a e � = n�∕b . The coefficients ĉij for the 
cross-ply laminate are [39]
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The Navier solution for cross-ply laminate with sim-
ply supported boundary condition is valid only if: 
A16 = A26 = B16 = B26 = D16 = D26 = 0 ; thus, it can be 
developed for laminates with a single generally orthotropic 
layer, symmetrically laminated plates with multiple specially 
orthotropic layers and antisymmetric cross-ply laminated plates.

3.2  Angle‑ply laminate

In this section, the analytical solution for angle-ply laminates 
is developed. The simply supported boundary condition for 
angle-ply laminates results to be:

(32)

u(0, y) = u(a, y) = 0 ; v(x, 0) = v(x, b) = 0

w(x, 0) = w(x, b) = 0 ; w(0, y) = w(a, y) = 0

�w

�x

||||(x,0) =
�w

�x

||||(x,b) = 0 ;
�w

�y

||||(0,y) =
�w

�y

||||(a,y) = 0

Table 1  Displacements ( ̄w ) 
of a cross-ply square plate 
simply supported, subjected 
to a sinusoidal temperature 
distribution

Reddy [55] Present

(0) 1.0312 1.0312
(0/90) 1.1504 1.1504
(0/90/0) 1.0312 1.0312
(0∕90)

5
1.0331 1.0331

Table 2  Displacements ( ̄w ) and 
stresses ( ̄𝜎 ) of a cross-ply (0/90) 
square plate, simply supported, 
subjected to a sinusoidal 
temperature distribution

Sayyad [58] Present

w̄ 1.1504 1.1504
�̄�
xx

0.307 0.3074
�̄�
yy

0.307 0.3074

Table 3  Displacements ( ̄w ) of a cross-play square plate, simply sup-
ported, subjected to a sinusoidal temperature distribution, assuming 
that the thermal properties of the material do not depend on the effec-
tive disposition of the laminae (Zenkour, FPT, HPT and SPT) are the 
theories considered in [56])

Zenkour [56]

Zenkour FPT HPT SPT Present

(0) 1.0313 1.0313 1.0313 1.0313 1.0312
(0/90) 1.6765 1.6765 1.6766 1.6766 1.6765
(0/90/0) 1.0949 1.0949 1.0950 1.0950 1.0944

Table 4  Displacement (w̄) of a laminate (0/90/0) for different kind of load and for different values of ratio a/b 

a/b Zenkour [57]

Thermal load (T
0
= 0,T

1
= 100;C

0
= 0,C

1
= 0)

FPT HPT SPT Present

0.5 1.07408 1.07413 1.07414 1.07384
1.0 1.09485 1.09497 1.09499 1.09438
2.0 0.76433 0.76424 0.76423 0.76452

a/b Hygrothermal load (T
0
= 0,T

1
= 100;C

0
= 0,C

1
= 3 × 10−4)

FPT HPT SPT Present

0.5 1.11308 1.11316 1.11317 1.11271
1.0 1.19565 1.19587 1.19590 1.19477
2.0 0.92694 0.92696 0.92697 0.92684

Table 5  Displacements ( ̄w ) and stresses ( ̄𝜎 ) of a simply supported 
square cross-ply nanoplates, with different layout and for different 
values of nonlocal parameter, subjected to a sinusoidal temperature 
distribution (T

0
= 0)

(�∕a)2 w̄ �̄�
xx

�̄�
yy

�̄�
xy

0 (0) 1.0312 0.0263 − 0.9914 0.5089
(0/90) 1.1504 − 0.3074 0.3074 0.5677
(0/90/0) 1.0312 0.0263 − 0.9914 0.5089
(0∕90)

2
1.0454 0.1241 − 0.1241 0.5159

0.05 (0) 0.5190 6.4245 − 1.3081 0.2561
(0/90) 0.5790 6.2566 − 6.2566 0.2857
(0/90/0) 0.5190 6.4245 − 1.3081 0.2561
(0∕90)

2
0.5261 6.4737 − 6.4737 0.2596

0.10 (0) 0.3467 8.5760 − 1.4147 0.1711
(0/90) 0.3868 8.4638 − 8.4638 0.1909
(0/90/0) 0.3467 8.5760 − 1.4147 0.1711
(0∕90)

2
0.3515 8.6089 − 8.6089 0.1735

(31)

F
T

1,mn
= −�

[(
A�
1
T0,mn +

1

h
B�
1
T1,mn

)
+
(
A
�

1
C0,mn +

1

h
B
�

1
C1,mn

)]

F
T

2,mn
= −�

[(
A�
2
T0,mn +

1

h
B�
2
T1,mn

)
+
(
A
�

2
C0,mn +

1

h
B
�

2
C1,mn

)]

F
T

3,mn
= �2

[(
B�
1
T0,mn +

1

h
D�

1
T1,mn

)
+
(
B
�

1
C0,mn +

1

h
D

�

1
C1,mn

)]

+ �2
[(

B�
2
T0,mn +

1

h
D�

2
T1,mn

)
+
(
B
�

2
C0,mn +

1

h
D

�

2
C1,mn

)]
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Fig. 2  Displacements ( ̄w ) of 
cross-ply nanoplates (0/90) 
(a) and (0∕90)

2
 (b) subjected 

to sinusoidal thermal load, for 
different values of a/b ratio and 
nonlocal parameter (�∕a)2

Fig. 3  Stresses ( ̄𝜎 ) of square 
plates (0/90) (a–c) and (0∕90)

2
 

(d–f) subjected to sinusoidal 
thermal load, for different non-
local parameters (�∕a)2
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In order to satisfy the boundary condition, the Navier dis-
placements field is assumed to be

It is similar to what was done before the loads are (27), (28), 
(29).

The coefficients ĉij for the angle-ply laminate are [39]

The hygrothermal load vector have the following form:

(33)

u(x, y) =

∞∑
m=1

∞∑
n=1

Umn sin �x cos �y

v(x, y) =

∞∑
m=1

∞∑
n=1

Vmn cos �x sin �y

w(x, y) =

∞∑
m=1

∞∑
n=1

Wmn sin �x sin �y

(34)

ĉ11 = 𝛼2A11 + 𝛽2A66 + �
2
[
𝛼4A11 + 𝛼2𝛽2

(
A11 + A66

)
+ 𝛽4A66

]

ĉ12 = 𝛼𝛽
(
A12 + A66

)
+ �

2
[
𝛼3𝛽

(
A12 + A66

)
+ 𝛼𝛽3

(
A12 + A66

)]

ĉ13 = −3𝛼2𝛽B16 − 𝛽3B26 − �
2
[
3B16

(
𝛼4𝛽 + 𝛼2𝛽3

)
+ B26

(
𝛼2𝛽3 + 𝛽5

)]

ĉ22 = 𝛽2A22 + 𝛼2A66 + �
2
[
𝛼2𝛽2

(
A22 + A66

)
+ 𝛼4A66 + 𝛽4A22

]

ĉ23 = −𝛼3B16 − 3𝛼𝛽2B26 − �
2
[
B16

(
𝛼5 + 𝛼3𝛽2

)
+ 3B26

(
𝛼𝛽4 + 𝛼3𝛽2

)]

ĉ33 = 𝛼4D11 + 2𝛼2𝛽2
(
D12 + 2D66

)
+ 𝛽4D22

+ �
2
[
𝛼6D11 + 𝛼4𝛽2

(
D11 + 2D12 + 4D66

)

+ 𝛼2𝛽4
(
D22 + 2D12 + 4D66

)
+ 𝛽6D22

]

(35)

F
T

1,mn
= −�

[(
A�
3
T0,mn +

1

h
B�
3
T1,mn

)
+
(
A
�

3
C0,mn +

1

h
B
�

3
C1,mn

)]

F
T

2,mn
= −�

[(
A�
3
T0,mn +

1

h
B�
3
T1,mn

)
+
(
A
�

3
C0,mn +

1

h
B
�

3
C1,mn

)]

F
T

3,mn
= �2

[(
B�
1
T0,mn +

1

h
D�

1
T1,mn

)
+
(
B
�

1
C0,mn +

1

h
D

�

1
C1,mn

)]

+ �2
[(

B�
2
T0,mn +

1

h
D�

2
T1,mn

)
+
(
B
�

2
C0,mn +

1

h
D

�

2
C1,mn

)]

Fig. 4  Relative error in logarithmic scale by varying n, m for the uni-
form thermal load

Table 6  Displacements ( ̄w ) and stresses ( ̄𝜎 ) of a simply supported 
square cross-ply nanoplates, with different layout and for different 
values of nonlocal parameter, subjected to a uniform temperature load 
distribution ( m, n = 1, 3, 5,… , 199 ; T

0
= 0)

(�∕a)2 w̄ �̄�
xx

�̄�
yy

�̄�
xy

0 (0) 1.4334 − 1.8854 − 1.3228 4.3043
(0/90) 1.7296 − 1.9998 1.9998 3.5070
(0/90/0) 1.4862 − 2.5797 − 1.1460 3.7548
(0∕90)

2
1.5823 − 2.2999 2.2999 3.0573

0.05 (0) 0.7966 3.6172 − 1.2545 0.5341
(0/90) 0.9126 3.4753 − 3.4753 0.5437
(0/90/0) 0.8065 3.4880 − 1.2151 0.5118
(0∕90)

2
0.8313 3.6223 − 3.6223 0.4894

0.10 (0) 0.5376 6.5226 − 1.3572 0.3409
(0/90) 0.6128 6.4163 − 6.4163 0.3523
(0/90/0) 0.5430 6.4518 − 1.3355 0.3289
(0∕90)

2
0.5580 6.5357 − 6.5357 0.3177

Fig. 5  Displacements ( ̄w ) of 
cross-ply nanoplates (0/90) 
(a) and (0∕90)

2
 (b) subjected 

to uniform thermal load, for 
different values of a/b ratio and 
nonlocal parameter (�∕a)2
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Fig. 6  Stresses ( ̄𝜎 ) of square 
plates (0/90) (a–c) and (0∕90)

2
 

(d–f) subjected to uniformal 
thermal load, for different non-
local parameters (�∕a)2

Fig. 7  Displacements ( ̄w ) of 
cross-ply nanoplates (0/90) (a) 
and (0∕90)

2
 (b) subjected to 

sinusoidal hygrothermal load, 
for different values of a/b ratio 
and nonlocal parameter (�∕a)2
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The Navier solution for angle ply laminate with sim-
ply supported boundary condition is valid only if: 
A16 = A26 = B11 = B12 = B22 = B66 = D16 = D26 = 0 ; thus, 
it can be developed for laminates with a single generally 
orthotropic layer, symmetrically laminated plates with multi-
ple specially orthotropic layers and antisymmetric angle-ply 
laminated plates.

4  Results and discussion

In this section, the analytical solutions for cross- and angle-
ply laminates subjected to thermal and hygrothermal loads 
are carried out. For each study case, the comparison between 
classical and nonlocal theory is shown. The properties of the 

Table 7  Displacements ( ̄w ) and stresses ( ̄𝜎 ) of a simply supported 
square cross-ply nanoplates, with different layout and for different 
values of nonlocal parameter, subjected to a sinusoidal hygrothermal 
load distribution ( T

0
= C

0
= 0)

(�∕a)2 w̄ �̄�
xx

�̄�
yy

�̄�
xy

0 (0) 1.0898 − 0.5411 − 1.6168 0.5378
(0/90) 1.3563 − 1.2873 1.2873 0.6693
(0/90/0) 1.0898 − 0.5411 − 1.6168 0.5378
(0∕90)

2
1.1216 − 0.3225 0.3225 0.5535

0.05 (0) 0.5485 6.2211 − 1.9515 0.2707
(0/90) 0.6826 5.8456 − 5.8456 0.3369
(0/90/0) 0.5485 6.2211 − 1.9515 0.2707
(0∕90)

2
0.5645 6.3311 − 6.3311 0.2786

0.10 (0) 0.3665 8.4949 − 2.0641 0.1808
(0/90) 0.4561 8.2440 − 8.2440 0.2251
(0/90/0) 0.3665 8.4949 − 2.0641 0.1808
(0∕90)

2
0.3771 8.5685 − 8.5685 0.1861

Fig. 8  Stresses ( ̄𝜎 ) of square 
plates (0/90) (a–c) and (0∕90)

2
 

(d–f) subjected to sinusoidal 
hygrothermal load, for different 
nonlocal parameters (�∕a)2
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material considered for the numerical solution are E1 = 25 , 
E2 = 1 , G12 = 0.5 , �12 = 0.25 , �2∕�1 = 3 , �1 = 10−6 , �1 = 0 , 
�2 = 0.44 . Please note that the units of measures are not 
reported because a consistent system of units has been used. 
The plates considered are rectangular with a ratio a∕h = 100 
and the total height of the laminate is kept constant indepen-
dently of the number of plies from which it is composed. 
Initially, comparisons were made with the results found in 
the scientific literature. The formulas used to normalize the 
results and the point at which they are calculated are shown 
as

(36)

w̄ = w(a∕2, b∕2)
10h

𝛼1T1b
2
, �̄�xy =

𝜎xy(a, b,−h∕2)

E2𝛼1T1b

�̄�xx =
𝜎xx(a∕2, b∕2,−h∕2)

E2𝛼1T1b
, �̄�yy =

𝜎yy(a∕2, b∕2, h∕2)

E2𝛼1T1b

The results for comparison with references found in the 
literature were obtained considering a sinusoidal ther-
mal load that varies linearly along the plate thickness 
ΔT(x, y, z) = zT1∕h.

Considering the effective disposition of the plies in terms 
of thermal properties of the material, it is possible to com-
pare the values obtained with the values reported in the book 
[55] (Table 1) and in the article [58] (Table 2).

If the effective disposition of the plies is not consid-
ered for thermal properties, the comparison with Zenkour 
(Tables 3, 4) can be carried out.

The validity of the code is demonstrated for sinusoidal 
loads and without nonlocal parameters. Subsequently, the 
analysis of the cross- and angle-ply laminates for different 
values of the ratio of nonlocality and different lamination 
schemes is discussed.

Fig. 9  Relative error in logarithmic by varying of n,  m for uniform 
hygrothermal load

Fig. 10  Displacements ( ̄w ) of 
cross-ply nanoplates (0∕90)

2
 

(a) and (0∕90)
2
 (b) subjected to 

uniform hygrothermal load, for 
different values of a/b ratio and 
nonlocal parameter (�∕a)2

Table 8  Displacements ( ̄w ) and stresses ( ̄𝜎 ) of a simply supported 
square cross-ply nanoplates, with different layout and for different 
values of nonlocal parameter, subjected to an uniform hygrothermal 
load distribution ( m, n = 1, 3, 5,… , 199 ; T

0
= C

0
= 0)

(�∕a)2 w̄ �̄�
xx

�̄�
yy

�̄�
xy

0 (0) 1.4872 − 2.3277 − 2.0522 4.9225
(0/90) 2.0394 − 3.2269 3.2269 4.1321
(0/90/0) 1.5543 − 3.2032 − 1.8347 4.1702
(0∕90)

2
1.6977 − 2.9068 2.9068 3.2801

0.05 (0) 0.8365 3.2990 − 1.9125 0.5779
(0/90) 1.0760 2.8083 − 2.8083 0.6409
(0/90/0) 0.8493 3.1336 − 1.8627 0.5484
(0∕90)

2
0.8919 3.3367 − 3.3367 0.5251

0.10 (0) 0.5652 6.3510 − 2.0117 0.3675
(0/90) 0.7226 6.0106 − 6.0106 0.4153
(0/90/0) 0.5722 6.2603 − 1.9841 0.3517
(0∕90)

2
0.5986 6.3938 − 6.3938 0.3408
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4.1  Cross‑ply laminates

In Table 5, the results obtained for a sinusoidal thermal load 
with linear distribution along the plate thickness are shown. 
It is noted that the symmetrical laminates have the same 
behavior independently from the nonlocal parameter, while 
a significant reduction of displacements and an increase of 
normal stresses is observed as the ratio (�∕a)2 increases, for 
the tangential stress there is instead a decrease.

In Fig. 2, the behavior of the antisymmetric plates, when 
the ratio between a and b sides and the nonlocal parameter 

vary, is analyzed. From the graphs, it is noted how the verti-
cal displacement stabilizes after reaching the ratio a∕b = 1.5 
and also the reduction of the vertical displacement as the 
nonlocal parameter increases.

Figure 3 represents the normal stresses in the two direc-
tions and the tangential in-plane stress, of the plate subjected 
to the sinusoidal thermal load with linear distribution along 
the thickness. The plates considered are squared with con-
stant a/h ratio and composed by two and four crossed lami-
nae, respectively. From these graphs, it can be observed how 
the normal stresses and the shear stress have different trends, 

Fig. 11  Stresses ( ̄𝜎 ) of square 
plates (0/90) (a–c) and (0∕90)

2
 

(d–f) subjected to uniform 
hygrothermal load, for different 
nonlocal parameter (�∕a)2
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when the nonlocal parameter increases the first ones regis-
tering an increase while the second ones show a decrease.

In order to study the uniform temperature distribution, it 
was necessary first to study the convergence of the solution 
by increase m and n because, unlike the sinusoidal distri-
bution that represents a closed form solution, a sufficient 
number of trigonometric functions are needed to accurately 
approximate the load. Figure 4 shows in double logarithmic 
scale the relative error with respect to the expansion order 
used.

The convergence analysis shows that m, n = 199 is an 
excellent approximation for w̄ and an acceptable solu-
tion in terms of �̄� , so this value was used in the following 
applications.

The vertical displacements of the plate subject to uniform 
thermal load (Table 6) are greater than the previous case.

In Fig. 5, the displacements as a function of the a/b ratio 
are shown, where in particular you can see the peak of the 
displacements for the ratio that assumes a value between 1.5 
and 2 after which it undergoes a slight flexion and tends to 
stabilize, whereas with the nonlocal parameter other than 

zero, the vertical displacements after the peak do not stabi-
lize but continue to decrease with increasing aspect ratios.

As for the sinusoidal thermal load, also for the uniform 
one there are the increase of normal stresses and the decrease 
of shear stress, these effects are well visible in Fig. 6.

Once the part related only to the thermal load has been 
completed, the combined load is analyzed, i.e., a distribu-
tion of temperature and a concentration of humidity acting 
simultaneously on the cross laminated plate. The values of 
the two loads acting on the plate are T0 = 0, T1 = 100 and 
C0 = 0,C1 = 3 × 10−4 and are both distributed linearly along 
the plate thickness (Fig. 7).

In Fig. 8, the trend of normal and shear stresses is shown, 
along the thickness of two laminates that differ from each 
other for the number of plies, both subjected to hygrothermal 
load.

As aforementioned, to study the uniform distribution it is 
necessary to perform the convergence analysis as shown in 
Fig. 9. This analysis is carried out both on the relative error 
on the displacements and on the stresses. It is underlined that 
the stresses result to have much lower precision in compari-
son to the displacements, for which a not large trigonometric 
expansion would be needed to obtain an accurate result.

In Fig. 10, according to what previously detected for 
the uniform load, the peak of the displacements around 
a∕b = 1.5 and after a slight bending that tends to stabilize 
for the higher values of the a/b is observed.

Finally in Fig. 11, the plots of normal and tangential 
stresses along the thickness of the laminates, with layout 
(0/90) and (0∕90)2 , subjected to uniform hygrothermal 
load and for different values of the nonlocal parameter, are 
reported results are listed in Tables 7 and 8.

4.2  Angle‑ply laminates

No values could be found in the literature for the antisym-
metric angle-ply plates in order to carry out a comparison 

Table 9  Displacements ( ̄w ) and stresses ( ̄𝜎 ) of a simply supported 
square angle-ply nanoplates, with different layout and for different 
values of nonlocal parameter, subjected to a sinusoidal thermal load 
distribution ( T

0
= C

0
= 0)

(�∕a)2 w̄ �̄�
xx

�̄�
yy

�̄�
xy

0 (− 45/45) 0.7246 3.2024 − 3.2024 3.8865
(− 45∕45)

2
0.5822 3.5988 − 3.5988 3.5253

(− 45∕45)
4

0.5688 3.6039 − 3.6039 3.5235
0.05 (− 45/45) 0.3647 5.2220 − 5.2220 1.9560

(− 45∕45)
2

0.2930 5.4215 − 5.4215 1.7742
(− 45∕45)

4
0.2863 5.4240 − 5.4240 1.7733

0.10 (− 45/45) 0.2437 5.9010 − 5.9010 1.3069
(− 45∕45)

2
0.1958 6.0343 − 6.0343 1.1854

(− 45∕45)
4

0.1913 6.0360 − 6.0360 1.1848

Fig. 12  Displacements ( ̄w ) of 
angle-ply nanoplates (− 45/45) 
(a) and (− 45∕45)

2
 (b) subjected 

to sinusoidal thermal load, for 
different values of a/b ratio and 
nonlocal parameter (�∕a)2



 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2021) 43:274

1 3

274 Page 14 of 20

as previously done for cross-ply laminated plates. Except for 
the comparison with the literature values, the cases studied 
follow similar cases as in the previous section. The material 
properties also remain unchanged compared to the case of 
cross laminated plates.

It is analyzed the behavior of several angle-ply square 
plates subjected to a sinusoidal thermal load (T0 = 0, T1 = 1) 
distributed linearly along the thickness. The results, for the 
different layout and nonlocal parameter values, are presented 
in Table 9 and in Fig. 12.

Figure 13 depicts the normal and shear stresses for angle-
ply nanoplates subjected to sinusoidal thermal load.

Fig. 13  Stresses ( ̄𝜎 ) of square 
plates (− 45/45) (a–c) and 
(− 45∕45)

2
 (d–f) subjected to 

sinusoidal thermal load, for 
different nonlocal parameters 
(�∕a)2

Fig. 14  Relative error in logarithmic scale by varying of n, m for uni-
form thermal load
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Fig. 15  Displacements ( ̄w ) of 
angle-ply nanoplates (− 45/45) 
(a) and (− 45∕45)

2
 (b) subjected 

to uniform thermal load, for 
different values of a/b ratio and 
nonlocal parameter (�∕a)2

Table 10  Displacements ( ̄w ) 
and stresses ( ̄𝜎 ) of a simply 
supported square angle-ply 
nanoplate, with different 
layout and for different 
values of nonlocal parameter, 
subjected to a uniform 
thermal load distribution 
( m, n = 1, 3, 5,… , 199 ; 
T
0
= C

0
= 0)

(�∕a)2 w̄ �̄�
xx

�̄�
yy

�̄�
xy

0 (− 45/45) 1.0184 4.5920 − 4.5920 28.0253
(− 45∕45)

2
0.8093 4.7182 − 4.7182 29.4244

(− 45∕45)
4

0.7897 4.5746 − 4.5746 31.3414
0.05 (− 45/45) 0.5612 4.7544 − 4.7544 3.8661

(− 45∕45)
2

0.4491 4.9801 − 4.9801 3.6439
(− 45∕45)

4
0.4386 4.9590 − 4.9590 3.7088

0.10 (− 45/45) 0.3785 5.4754 − 5.4754 2.4890
(− 45∕45)

2
0.3031 5.6379 − 5.6379 2.3310

(− 45∕45)
4

0.2961 5.6267 − 5.6267 2.3655

To study the uniform temperature distribution, it was nec-
essary to carry out a convergence analysis of the results, as 
it was done in the previous section. Figure 14 displays in 
double logarithmic scale the relative error as function of 
the trigonometric expansion considered. As for the case of 
the cross-ply nanoplates also here m, n = 199 is considered 
sufficient (as also indicated by Reddy [12] for elastic plates) 
for a good approximation of the results.

Once again an increase is observed in the vertical dis-
placement of the plate under the action of a uniform load 
compared to the sinusoidal thermal load (Fig.  15 and 
Table 10).

In Fig. 16, normal and shear in-plane stresses are shown 
along the thickness of the laminates, with layout (− 45/45) 
and (− 45∕45)2 , subjected to uniform thermal load and for 
different values of the nonlocal parameter.

In the following, the case of plates subjected to both 
thermal load and hygrometric concentration is studied. 
The results of a sinusoidal distribution of the loads will 
be reported first (Figs.  17,  18 and Table  11) and then 
those related to the uniform distribution (Figs. 20, 21 and 
Table 12) with relative convergence analysis (Fig. 19). The 
material properties remain those already used for cross lami-
nated plates.
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Fig. 16  Stresses ( ̄𝜎 ) of square 
plates (− 45/45) (a–c) and 
(− 45∕45)

2
 (d–f) subjected to 

uniform thermal load, for differ-
ent nonlocal parameter (�∕a)2

Fig. 17  Displacements ( ̄w ) of 
angle-ply nanoplates (− 45/45) 
(a) and (− 45∕45)

2
 (b) subjected 

to sinusoidal hygrothermal load, 
for different values of a/b ratio 
and nonlocal parameter (�∕a)2
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Fig. 18  Stresses ( ̄𝜎 ) of square 
plates (− 45/45) (a–c) and 
(− 45∕45)

2
 (d–f) subjected to 

sinusoidal hygrothermal load, 
for different nonlocal parameter 
(�∕a)2

Fig. 19  Relative error in logarithmic scale by varying of n, m for uni-
form hygrothermal load

5  Conclusions

This paper investigates the bending behavior of simply 
supported cross-ply and angle-ply nanoplates subjected to 
hygrothermal load using nonlocal strain gradient theory in 
combination with Kirchhoff plate theory. The analytical 
solution is obtained thanks to Navier displacement fields. 
Outcomes have been compared to other works wherever pos-
sible, showing good agreement. In the work, an increase in 
stiffness was observed after the introduction of the nonlocal 
parameter �.

Many results are presented here for the first time. For 
sinusoidal distribution, the thermal and hygrothermal prob-
lems are developed for both cross- and angle-ply laminates, 
and for uniform distribution in addition to displacements and 
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Fig. 20  Displacements ( ̄w ) of 
angle-ply nanoplates (− 45/45) 
(a) and (− 45∕45)

2
 (b) subjected 

to uniform hygrothermal load, 
for different values of a/b ratio 
and nonlocal parameter (�∕a)2

Fig. 21  Stresses ( ̄𝜎 ) of square 
plates (− 45/45) (a–c) and 
(− 45∕45)

2
 (d–f) subjected to 

uniform hygrothermal load, for 
different nonlocal parameter 
(�∕a)2
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stresses outcomes, the convergence analysis is carried out. 
These results can be used as benchmark for further studies 
within the same topic.
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