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Abstract
Aim of this paper is to prove regularity results, in some Modified Local Generalized
Morrey Spaces, for the first derivatives of the solutions of a divergence elliptic second
order equation of the form

L u:=
n∑

i, j=1

(
ai j (x)uxi

)
x j

= ∇ · f , for almost all x ∈ �

where the coefficients ai j belong to the Central (that is, Local) Sarason class CVMO

and f is assumed to be in some Modified Local Generalized Morrey Spaces˜L M
p,ϕ

{x0}.
Heart of the paper is to use an explicit representation formula for the first derivatives of
the solutions of the elliptic equation in divergence form, in terms of singular integral
operators and commutators with Calderón–Zygmund kernels. Combining the repre-
sentation formula with some Morrey-type estimates for each operator that appears in
it, we derive several regularity results.

Keywords Morrey-type spaces · Integral operators · VMO · Elliptic equations
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1 Introduction andmathematical background

In this note we consider the following divergence form elliptic equation

L u:=
n∑

i, j=1

(
ai j (x)uxi

)
x j

= ∇ · f , for almost all x ∈ � (1.1)

in a bounded set � ⊂ R

n , n ≥ 3.
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We assume that L is a linear elliptic operator and its coefficients belong to the
space V M O and the vectorial field f = ( f1, f2, . . . , fn) is such that fi ∈ L M p,ϕ for
i = 1, . . . , n, with 1 < p < ∞ and ϕ positive and measurable function. The space
VMO was introduced by Sarason and it is the proper subspace of the John-Nirenberg
space BMO whose BMO norm over a ball vanishes as the radius of the ball tends to
zero.

In the last few years have been studied several differential problems on nonstandard
function spaces (see for instance [21–23]) and, in particular, several results have been
obtained on Generalized Morrey Spaces (see, for instance, [12]).

Recently, in [5,27,28] the authors studied some regularity results for solutions of
linear partial differential equations with discontinuous coefficients in nondivergence
form.

Our main result in this paper is the study of local regularity in the Generalized
Morrey Spaces L M p,ϕ of the first derivatives of the solutions of the equation under
consideration as in the past has been done in L p−spaces and in L p,λ−spaces.

See, for instance, [2] where the author obtains local regularity in the classical
Lebesgue spaces L p for the first derivatives of the solutions of the equation with
discontinuous coefficients. See, also, [24] in which has been done the same in the
Morrey spaces L p,λ. Hearth of the technique is the use of an integral representation
formula for the first derivatives of the solutions of Equation (1.1) and the boundedness
in L p,ϕ of some integral operators and commutators appearing in this formula.

Precisely, in this work we apply the boundedness on Generalized local Morrey
Spaces of singular integral operators and its commutators obtained in [13]. We would
like to point out that in the last decades a lot of authors studied the boundedness of
such operators in several functional spaces (see e.g. [1,4,14]).

Throughout the paper, we set d = supx,y∈� |x − y|, B(x, r) = {y ∈ R

n : |x − y| <

r} and �(x, r) = � ∩ B(x, r). Furthermore, by A � B we mean that A ≤ C B with
some positive constant C independent of appropriate quantities. If A � B and B � A,
we write A ≈ B and say that A and B are equivalent.

Let � be an open bounded subset of R

n , with n ≥ 3, and f be a locally integrable
function on �. We say that f belongs to the John-Nirenberg space BMO of the
functions with bounded mean oscillation if

‖ f ‖∗:= sup
B

1

|B|
∫

B
| f (x) − fB | dx < ∞

where B ranges in the set of the balls contained in � and fB is the integral average of
f over B, namely

fB := 1

B

∫

B
f (x) dx .

We say that the number ‖ f ‖∗ is the BMO-norm of f .
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If f ∈ B M O and r is a positive number, we set

η(r):= sup
x∈Rn
ρ≤r

1

|Bρ |
∫

Bρ

| f (x) − fBρ | dx,

where Bρ stands for a ball with radius ρ less than or equal to r . The function η(r) is
called VMO-modulus of f . We say that f ∈ B M O is in the space VMO of functions
with vanishing mean oscillation if

lim
r→0+ η(r) = 0.

In the sequel we denote ηi j the VMO-modulus of the coefficient ai j and

η(r) =
⎛

⎝
n∑

i, j=1

η2i j (r)

⎞

⎠

1
2

.

For further details on the V M O space, we refer the reader to [25] and to the references
therein.

The definition of local B M O space is as follows.

Definition 1.1 Let 1 ≤ q < ∞. A function f ∈ Lq
loc(R

n) is said to belong to the
C B M Oq

{x0}(R
n) (central B M O space), if

‖ f ‖C B M Oq
{x0}

= sup
r>0

( 1

|B(x0, r)|
∫

B(x0,r)

| f (y) − fB(x0,r)|qdy
)1/q

< ∞.

We set

C B M Oq
{x0}(R

n) = { f ∈ Lq
loc(R

n) : ‖ f ‖C B M Oq
{x0}

< ∞}.

In [16], Lu and Yang introduced the central B M O space C B M Oq(Rn) =
C B M Oq

{0}(Rn). Note that, B M O(Rn) ⊂ C B M Oq
{x0}(R

n), 1 ≤ q < ∞. The space

C B M Oq
{x0}(R

n) can be regarded as a local version of B M O(Rn), the space of bounded
mean oscillation, at the origin. But, they have quite different properties. The classical
John-Nirenberg inequality shows that functions in B M O(Rn) are locally exponen-
tially integrable. This implies that, for any 1 ≤ q < ∞, the functions in B M O(Rn)

can be described by means of the condition:

sup
r>0

( 1

|B|
∫

B
| f (y) − fB |qdy

)1/q
< ∞,

where B denotes an arbitrary ball in R

n . However, the space C B M Oq
{x0}(R

n) depends

on q. If q1 < q2, then C B M Oq2
{x0}(R

n) � C B M Oq1
{x0}(R

n). Therefore, there is
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no analogy of the famous John-Nirenberg inequality of B M O(Rn) for the space
C B M Oq

{x0}(R
n). One can imagine that the behavior of C B M Oq

{x0}(R
n) may be quite

different from that of B M O(Rn).

Lemma 1.2 ([17]) Let b be a function in C B M O p
{x0}(R

n), 1 ≤ p < ∞ and r1, r2 > 0.
Then

(
1

|B(x0, r1)|
∫

B(x0,r1)
|b(y) − bB(x0,r2)|pdy

) 1
p ≤ C

(
1 +

∣∣∣ ln
r1
r2

∣∣∣
)

‖b‖C B M O p
{x0}

,

where C > 0 is independent of b, r1 and r2.

We say that f ∈ C B M O p
{x0} is in the space CV M O p

{x0} of functions with vanishing
mean oscillation if

lim
r→0+ η(r) = 0.

The following condition is essential to the proof of the main result of the paper: A
function b is said to satisfy the well known mean value inequality if there exists a
constant C > 0 such that for any ball B ⊂ R

n

‖b(·) − bB‖L∞(Rn) � 1

|B|
∫

B
|b(x) − bB |dx . (1.2)

Also, we recall the definition of the classical Morrey Spaces, formulated byMorrey
in 1938 in [19].

For 1 < p < ∞, 0 < λ < n, we say that a measurable function f belong to the
Morrey space L p,λ(�) if its norm, defined by

‖ f ‖p
L p,λ(�)

= sup
x∈�
ρ>0

1

ρλ

∫

B(x,ρ)∩�

| f (y)|pdy

is finite.
The first author, Mizuhara and Nakai [6,18,20] extended the previous definition of

Morrey Space, introducing the Generalized Morrey Spaces (see, also [7,8,26]).

Definition 1.3 Let ϕ(x, r) be a positive measurable function on � × (0,∞) and 1 ≤
p < ∞. We denote by M p,ϕ(�) (W M p,ϕ(�)) the Generalized Morrey space (the
weak Generalized Morrey space), the space of all functions f ∈ L p

loc(�) with finite
quasinorm

‖ f ‖M p,ϕ(�) = sup
x∈�
0<r<d

1

ϕ(x, r)

1

|B(x, r)| 1p
‖ f ‖L p(�(x,r))

(
‖ f ‖W M p,ϕ(�) = sup

x∈�
0<r<d

1

ϕ(x, r)

1

|B(x, r)| 1p
‖ f ‖W L p(�(x,r))

)
.
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According to this definition we obtain, for 0 ≤ λ < n, the Morrey space L p,λ under

the choice ϕ(x, r) = r
λ−n

p :

L p,λ = M p,ϕ
∣∣∣
ϕ(x,r)=r

λ−n
p

.

In this note we are interested in the study of regularity properties of solutions to
elliptic equations in the local version ofGeneralizedMorreySpaces. In order to achieve
this purpose we need the following definitions.

Definition 1.4 Letϕ(x, r)be a positivemeasurable function on�×(0, d) and1 ≤ p <

∞. Fixed x0 ∈ �, we denote by by L M p,ϕ
{x0}(�) (W L M p,ϕ

{x0}(�)) the local Generalized
Morrey space (the weak local Generalized Morrey space), the space of all functions
f ∈ L p

loc(�) with finite quasinorm

‖ f ‖L M p,ϕ
{x0}(�) = sup

0<r<d

1

ϕ(x0, r)

1

|B(x0, r)| 1p
‖ f ‖L p(�(x0,r))

(
‖ f ‖W L M p,ϕ

{x0}(�) = sup
0<r<d

1

ϕ(x0, r)

1

|B(x0, r)| 1p
‖ f ‖W L p(�(x0,r))

)
.

Definition 1.5 Let ϕ(x, r) be a positive measurable function on � × (0, d) and 1 ≤
p < ∞.Wedenote by M̃ p,ϕ(�)

(
W M̃ p,ϕ(�)

)
themodifiedGeneralizedMorrey space

(the modified weak Generalized Morrey space), the space of all functions f ∈ L p(�)

with finite norm

‖ f ‖M̃ p,ϕ(�) = ‖ f ‖M p,ϕ(�) + ‖ f ‖L p(�)
(
‖ f ‖W M̃ p,ϕ(�) = ‖ f ‖W M p,ϕ(�) + ‖ f ‖W L p(�)

)
.

According to this definition we obtain, for λ ≥ 0, the local Morrey Space L M p,λ
{x0}

under the choice ϕ(x0, r) = r
λ−n

p :

L M p,λ
{x0}(�) = L M p,ϕ

{x0}(�)

∣∣∣
ϕ(x0,r)=r

λ−n
p

.

Definition 1.6 Let ϕ(x, r) be a positive measurable function on � × (0,∞) and 1 ≤
p < ∞. Fixed x0 ∈ �, we denote by ˜L M

p,ϕ

{x0}(�)
(̃
L M

p,ϕ

{x0}(�)
)
the modified local

Generalized Morrey space (the modified weak local Generalized Morrey space), the
space of all functions f ∈ L p(�) with finite norm

‖ f ‖̃
L M

p,ϕ

{x0}(�)
= ‖ f ‖L M p,ϕ

{x0}(�) + ‖ f ‖L p(�)

(
‖ f ‖

W L̃ M
p,ϕ

{x0}(�)
= ‖ f ‖W L M p,ϕ

{x0}(�) + ‖ f ‖W L p(�)

)
.
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Remark 1.7 For further details on Local Generalized Morrey Spaces, see for
instance [10,11,15].

Let � be a bounded open set in R

n , n ≥ 3, let us consider

L u ≡ −
n∑

i, j=1

(
ai j (x)uxi

)
x j

= ∇ · f , a.e. x ∈ �, (1.3)

and, fixed x0 ∈ R

n , we suppose that there exists p ∈]1,+∞[ and a positivemeasurable
function ϕ defined on R

n × (0,∞) such that:

f = ( f1, . . . , fn) ∈ [
L M p,ϕ

{x0}(�)
]n; (1.4)

ai j (x) ∈ L∞ ∩ CV M Omax{p,p′}
{x0} ,∀i, j = 1, . . . , n; (1.5)

ai j (x) = a ji (x), ∀i, j = 1, . . . , n, a.a. x ∈ �; (1.6)

∃κ > 0 : κ−1|ξ |2 ≤ ai jξiξ j ≤ κ|ξ |2, ∀ξ ∈ R

n, a.a. x ∈ �. (1.7)

We say that a function u is a solution of (1.3) if u, ∂xi u ∈ L p(�), ∀i = 1, . . . , n
and for some 1 < p < ∞ and

∫

�

ai j uxi ϕx j dx = −
∫

�

fiϕxi dx, ∀ϕ ∈ C∞
0 (�).

2 Calderón–Zygmund kernel and preliminary results

In order to present the representation formula for the first derivatives of a solution
of 1.3, we find it convenient to present the definition of Calderón–Zygmund kernel:

Definition 2.1 Let k : R

n\{0} → R. We say that k(x) is a Calderón–Zygmund kernel
(C-Z kernel) if: .

(1) k ∈ C∞(Rn\{0});
(2) k(x) is homogeneous of degree −n;
(3)

∫



k(x) dx = 0, where 
 = {x ∈ R

n : |x | = 1}.
Many authors obtained several boundedness results for integral operators involving
Calderón–Zygmund kernels. For instance, in [3] the authors studied the boundedness
ofCalderón–Zygmund singular integral operators and commutators onMorreySpaces.
Recently, in [13] the authors extended the previous results inGeneralizedLocalMorrey
Spaces.

The previous theorem was proved using the following important result contained
in [10].
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Theorem 2.2 Let x0 ∈ R

n, 1 ≤ q < ∞, K be a Calderón–Zygmund singular integral
operator and the functions ϕ1, ϕ2 satisfy the condition

∫ ∞

r

ess inf
t<τ<∞ ϕ1(x0, τ ) τ

n
q

t
n
q +1

dt ≤ C ϕ2(x0, r), (2.1)

where C does not depend on r. Then for 1 < q < ∞ the operator K is bounded from
L Mq,ϕ1

{x0} (Rn) to L Mq,ϕ2
{x0} (Rn) and for 1 ≤ q < ∞ the operator K is bounded from

L Mq,ϕ1
{x0} (Rn) to W L Mq,ϕ2

{x0} (Rn). Moreover, for 1 < q < ∞

‖K f ‖L M
q,ϕ2{x0}

≤ c ‖ f ‖L M
q,ϕ1{x0}

,

where c does not depend on x0 and f and for q = 1

‖K f ‖
W L M

1,ϕ2{x0}
≤ c ‖ f ‖

L M
1,ϕ1{x0}

,

where c does not depend on x0 and f .

Precisely, using the boundedness of the Calderón–Zygmund singular integral oper-
ators from L M p,ϕ

{x0}(R
n) in itself (see [10]), the following theorem is valid that will be

crucial in the sequel.

Theorem 2.3 Let x0 ∈ R

n, 1 < p < +∞, K be a Calderón–Zygmund singular
integral operator and the measurable function ϕ : R

n × (0,∞) → R

+ satisfy the
conditions

∫ ∞

r

(
1 + ln

t

r

)ess inf
t<s<∞ ϕ1(x0, s)s

n
p

t
n
p +1

dt ≤ C ϕ2(x0, r), (2.2)

where C does not depend on r and x0.

If a ∈ C B M Omax{p,p′}
{x0} (Rn), the commutator

[a, K ]( f ) = aK f − K (a f )

is a bounded operator from L M p,ϕ
{x0}(R

n) in itself.

Precisely, for every f ∈ L M p,ϕ
{x0}(R

n), we have

‖[a, K ]( f )‖L M p,ϕ
{x0}

≤ c‖a‖
C B M Omax{p,p′}

{x0}
‖ f ‖L M p,ϕ

{x0}
.

To prove Theorem 2.3, we first give some auxiliary lemmas.
In this section we are going to use the following statement on the boundedness of

the weighted Hardy operator

H∗
wg(t):=

∫ d

t
g(s)w(s)ds, 0 < t < d < ∞,
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where w is a fixed function non-negative and measurable on (0, d).
The following lemma was proved in [10], see also [9].

Lemma 2.4 Let v1, v2 and w be positive almost everywhere and measurable functions
on (0, d). The inequality

ess sup
0<t<d

v2(t)H∗
wg(t) ≤ C ess sup

0<t<d
v1(t)g(t) (2.3)

holds for some C > 0 for all non-negative and non-decreasing g on (0, d) if and only
if

B := ess sup
0<t<d

v2(t)
∫ d

t

w(s)ds

ess sup
s<τ<d

v1(τ )
< ∞. (2.4)

Moreover, if C∗ is the minimal value of C in (2.3), then C∗ = B.

Remark 2.5 In (2.3) and (2.4) it is assumed that 1
∞ = 0 and 0 · ∞ = 0.

Lemma 2.6 Let x0 ∈ R

n, 1 < p < ∞, b ∈ C B M Omax{p,p′}
{x0} (Rn) and K be a

Calderón–Zygmund singular integral operator. Then the inequality

‖[b, K ]( f )‖L p(B) � ‖b‖
C B M Omax{p,p′}

{x0}
r

n
p

∫ ∞

2r

(
1 + ln

t

r

)
t−

n
p −1‖ f ‖L p(B(x0,t))dt

holds for any ball B = B(x0, r) and for all f ∈ L p
loc(R

n).

Proof Let 1 < p < ∞, b ∈ B M O(Rn), and K be a Calderón–Zygmund singular
integral operator. For arbitrary x0 ∈ R

n , set B = B(x0, r) for the ball centered at x0
and of radius r . Write f = f1 + f2 with f1 = f χ2B and f2 = f χ �

(2B)
. Hence

[b, K ]( f )(x) ≡ J1 + J2 + J3 + J4 = (
b(x) − bB

)
K ( f1)(x)

− K
((

b(·) − bB
)

f1
)
(x) + (

b(x) − bB
)
K ( f2)(x) − K

((
b(·) − bB

)
f2

)
(x).

We get

‖[b, K ]( f )‖L p(B) ≤ ‖J1‖L p(B) + ‖J2‖L p(B) + ‖J3‖L p(B) + ‖J4‖L p(B).
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From the boundedness of K on L p(Rn), (1.2) and Lemma 1.2 (see [29] [inequality
(1.3)]) it follows that:

‖J1‖L p(B) ≤ ‖(b(·) − bB
)
K ( f1)(·)‖L p(B)

≤ ‖b(·) − bB‖L∞(B)‖K ( f1)‖L p(B)

� |B|−1‖b(·) − bB‖L1(B) ‖ f1‖L p(Rn)

≈ |B|−1+ 1
p′ ‖b(·) − bB‖L p(B) ‖ f ‖L p(2B) r

n
p

∫ ∞

2r
t−1− n

p dt

� ‖b‖C B M O p
{x0}

r
n
p

∫ ∞

2r
t−

n
p −1‖ f ‖L p(B(x0,t))dt .

From (1.2) and Lemma 1.2 (see [29] [inequality (1.3)]) for J2 we have

‖J2‖L p(B) ≤ ‖K
(
b(·) − bB

)
f1‖L p(B)

� ‖b(·) − bB‖L∞(B)‖K ( f1)‖L p(B)

� |B|−1‖b(·) − bB‖L1(B) ‖ f ‖L p(2B)

≈ |B|−1+ 1
p′ ‖b(·) − bB‖L p(B) ‖ f ‖L p(2B) r

n
p

∫ ∞

2r
t−1− n

p dt

� ‖b‖C B M O p
{x0}

r
n
p

∫ ∞

2r
t−

n
p −1‖ f ‖L p(B(x0,t))dt .

For J3, it is known that x ∈ B, y ∈ �
(2B), which implies 1

2 |x0 − y| ≤ |x − y| ≤
3
2 |x0 − y|.

By Fubini’s theorem and applying Hölder inequality we have

|K ( f2)(x)| �
∫

�
(2B)

| f (y)|
|x0 − y|n dy

≈
∫ ∞

2r

∫

2r<|x0−y|<t
| f (y)|dy t−1−ndt

�
∫ ∞

2r

∫

B(x0,t)
| f (y)|dy t−1−ndt

�
∫ ∞

2r
‖ f ‖L p(B(x0,t)) |B(x0, t)|1− 1

p
dt

tn+1

�
∫ ∞

2r
t−

n
p −1 ‖ f ‖L p(B(x0,t)) dt .
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Hence, from Lemma 1.2 we get

‖J3‖L p(B) = ‖(b(·) − bB
)
K ( f2)(·)‖L p(B)

� ‖b(·) − bB‖L p(B)

∫ ∞

2r
t−

n
p −1 ‖ f ‖L p(B(x0,t)) dt

� ‖b‖C B M O p
{x0}

r
n
p

∫ ∞

2r
t−

n
p −1 ‖ f ‖L p(B(x0,t)) dt .

For x ∈ B by Fubini’s theorem applying Hölder inequality and from Lemma 1.2
we have

|K
((

b(·) − bB
)

f2
)
(x)| �

∫

�
(2B)

|b(y) − bB | | f (y)|
|x − y|n dy

�
∫

�
(2B)

|b(y) − bB | | f (y)|
|x0 − y|n dy

≈
∫ ∞

2r

∫

2r<|x0−y|<t
|b(y) − bB | | f (y)|dy

dt

tn+1

�
∫ ∞

2r

∫

B(x0,t)
|b(y) − bB(x0,t)| | f (y)|dy

dt

tn+1

+
∫ ∞

2r
|bB(x0,r) − bB(x0,t)|

∫

B(x0,t)
| f (y)|dy

dt

tn+1

�
∫ ∞

2r
‖(b(·) − bB(x0,t))‖L p′

(B(x0,t))
‖ f ‖L p(B(x0,t))

dt

tn+1

+
∫ ∞

2r
|bB(x0,r) − bB(x0,t)|‖ f ‖L p(B(x0,t)) |B(x0, t)|1− 1

p t−n−1dt

� ‖b‖
C B M O p′

{x0}

∫ ∞

2r
|B(x0, t)| 1

p′ ‖ f ‖L p(B(x0,t))t
−n−1 dt

+ ‖b‖
C B M O p′

{x0}

∫ ∞

2r

(
1 + ln

t

r

)
t−

n
p −1 ‖ f ‖L p(B(x0,t))dt

� ‖b‖
C B M O p′

{x0}

∫ ∞

2r

(
1 + ln

t

r

)
t−

n
p −1 ‖ f ‖L p(B(x0,t))dt .

��
Remark 2.7 The statement of Theorem 2.3 follows by Lemmas 2.4 and 2.6.

In order to achieve the regularity results, we must prove the following theorem.

Theorem 2.8 Let � be an open bounded subset of R

n, d = supx,y∈� |x − y| < ∞,

�(x0, r) = � ∩ B(x0, r), x0 ∈ �, 0 < r ≤ d, 1 ≤ q < p < ∞, 1
q = 1

p + 1
n and

T g(x) =
∫

�

g(y)

|x − y|n−1 dy.
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(i) Let 1 < q < ∞. If g ∈ Lq(�) such that

∫ d

r
t−

n
p −1‖g‖Lq (�(x0,t)) dt < ∞ for all r ∈ (0, d), (2.5)

then for any r ∈ (0, d) the inequality

‖T g‖L p(�(x0,r)) ≤ cr
n
p

∫ d

r
t−

n
p −1‖g‖Lq (�(x0,t)) dt + cr

n
p ‖g‖Lq (�) (2.6)

holds with constant c > 0 independent of g, x0 and r.
(i i) Let q = 1. If g ∈ L1(�) satisfies condition (2.5), then for any r ∈ (0, d) the

inequality

‖T g‖W L p(�(x0,r)) ≤ cr
n
p

∫ d

r
t−

n
p −1‖g‖L1(�(x0,t)) dt + cr

n
p ‖g‖L1(�) (2.7)

holds with constant c > 0 independent of g, x0 and r.

Proof Let 1 ≤ q < p < ∞. Since

r
n
p

∫ d

r
t−

n
p −1‖g‖Lq (�(x0,t)) dt ≥ r

n
p ‖g‖Lq (�(x0,r))

∫ d

r
t−

n
p −1 dt

≈ ‖g‖Lq (�(x0,r))(d
n
p − r

n
p ), r ∈ (0, d),

we get that

‖g‖Lq (�(x0,r)) � r
n
p

∫ d

r
t−

n
p −1‖g‖Lq (�(x0,t)) dt + r

n
p ‖g‖Lq (�), r ∈ (0, d). (2.8)

(i). Assume that 1 < q < ∞. Let r ∈ (0, d/2). We write g = g1 + g2 with
g1 = gχ�(x0,2r) and g2 = gχ�\�(x0,2r). Taking into account the linearity of T , we
have

‖T g‖L p(�(x0,r)) ≤ ‖T g1‖L p(�(x0,r)) + ‖T g2‖L p(�(x0,r)). (2.9)

Since g1 ∈ Lq(�), in view of (2.8), the boundedness of T from Lq(�) to L p(�)

implies that

‖T g1‖L p(�(x0,r)) ≤ ‖T g1‖L p(�) � ‖g1‖Lq (�) ≈ ‖g‖Lq (�(x0,2r))

� r
n
p

∫ d

r
t−

n
p −1‖g‖Lq (�(x0,t)) dt + r

n
p ‖g‖Lq (�), (2.10)

where the constant is independent of g, x0 and r .
We have

|T g2(x)| �
∫

�\�(x0,2r)

|g(y)|
|x − y|n−1 dy, x ∈ �(x0, r).
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It is clear that x ∈ �(x0, r), y ∈ �\(�(x0, 2r)) implies 1
2 |x0 − y| ≤ |x − y| <

3
2 |x0 − y|. Therefore we obtain that

‖T g2‖L p(�(x0,r)) � r
n
p

∫

�\(�(x0,2r))

|g(y)|
|x0 − y|n−1 dy.

By Fubini’s theorem, we get that

∫

�\�(x0,2r)

|g(y)|
|x0 − y|n−1 dy

≈

∫

�\�(x0,2r)

|g(y)|
(
1 +

∫ d

|x0−y|
ds

sn

)
dy

=
∫

�\�(x0,2r)

|g(y)| dy +
∫

�\�(x0,2r)

|g(y)|
(∫ d

|x0−y|
ds

sn

)
dy

=
∫

�\�(x0,2r)

|g(y)| dy +
∫ d

2r

(∫

2r≤|x0−y|≤s
|g(y)| dy

)
ds

sn

≤
∫

�

|g(y)| dy +
∫ d

2r

(∫

�(x0,s)
|g(y)| dy

)
ds

sn
.

Applying Hölder’s inequality, we obtain

∫

�\�(x0,2r)

|g(y)|
|x0 − y|n dy � ‖g‖Lq (�) +

∫ d

2r
s− n

p −1‖g‖Lq (�(x0,s)) ds.

Thus the inequality

‖T g2‖L p(�(x0,r)) � r
n
p

∫ d

r
s− n

p −1‖g‖Lq (�(x0,s)) ds + r
n
p ‖g‖Lq (�) (2.11)

holds for all r ∈ (0, d/2) for q ≥ 1.
Finally, combining (2.10) and (2.11), we obtain that

‖T g‖L p(�(x0,r)) � r
n
p

∫ d

r
s− n

p −1‖g‖Lq (�(x0,s)) ds + r
n
p ‖g‖Lq (�)

holds for all r ∈ (0, d/2) with a constant independent of f , x0 and r .
Let now r ∈ [d/2, d). Then, using (Lq(�), L p(�))-boundedness of T , we obtain

‖T g‖L p(�(x0,r)) ≤ ‖T g‖L p(�) � ‖g‖Lq (�) ≈ r
n
p ‖g‖Lq (�),

and inequality (2.6) holds.
(ii). Assume that q = 1. Let again r ∈ (0, d/2). We write g = g1 + g2 with

g1 = gχ�(x0,2r) and g2 = gχ�\�(x0,2r). Taking into account the linearity of T , we
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have
‖T g‖L p(�(x0,r)) ≤ ‖T g1‖L p(�(x0,r)) + ‖T f2‖L p(�(x0,r)). (2.12)

Since g1 ∈ Lq(�), in view of (2.8), the boundedness of T from L1(�) to W L p(�)

implies that

‖T g1‖W L p(�(x0,r)) ≤ ‖T g1‖W L p(�) � ‖g1‖L1(�) ≈ ‖g‖L1(�(x0,2r))

� r
n
p

∫ d

r
t−

n
p −1‖g‖L1(�(x0,t)) dt + r

n
p ‖g‖L1(�), (2.13)

where the constant is independent of f , x0 and r .
On the other hand, since

‖T g2‖W L p(�(x0,r)) ≤ ‖T g2‖L p(�(x0,r))

using (2.11), we get that

‖T g2‖W L p(�(x0,r)) � r
n
p

∫ d

r
s− n

p −1‖g‖L1(�(x0,s)) ds + r
n
p ‖g‖L1(�) (2.14)

holds true for all r ∈ (0, d/2).
Combining (2.12), (2.13) and (2.14), we see that inequality (2.7) holds true for all

r ∈ (0, d/2) with a constant independent of g, x0 and r .
If r ∈ [d/2, d), then, using the boundedness of T from L1(�) to W L p(�), we

obtain that

‖T g‖W L p(�(x0,r)) ≤ ‖T g‖W L p(�) � ‖g‖L1(�) ≈ r
n
p ‖g‖L1(�),

and, inequality (2.7) holds. ��
In order to achieve the regularity results, we must prove the following theorem.

Theorem 2.9 Let � be an open bounded subset of R

n, x0 ∈ �, 1 ≤ q < p < ∞,
1
q = 1

p + 1
n . Let also ϕ1(x, r) and ϕ2(x, r) two positive measurable functions defined

on � × (0, d) such that the following condition is fulfilled:

∫ d

r

ess inf
t<τ<∞ ϕ2(x0, τ ) τ

n
q

t
n
p +1

dt ≤ C ϕ1(x0, r), (2.15)

where C does not depend on r. Then, in the case q > 1 for every g ∈ ˜L M
q,ϕ2

{x0} (�), the

function T g(x) is a.e. defined, T g belongs to the space ˜L M
p,ϕ1

{x0} (�) and there exists
c = c(q, ϕ1, ϕ2, n) > 0 such that

‖T g‖̃
L M

p,ϕ1
{x0} (�)

≤ c‖g‖̃
L M

q,ϕ2
{x0} (�)

.
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In the case q = 1 the function T g belongs to the space˜L M
p,ϕ1

{x0} (�) and there exists
c = c(ϕ1, ϕ2, n) > 0 such that

‖T g‖̃
L M

p,ϕ1
{x0} (�)

≤ c‖g‖̃
L M

1,ϕ2
{x0} (�)

.

Proof By Theorem 2.8 and Theorem 2.4 with v2(r) = ϕ1(x0, r)−1, v1(r) =
ϕ2(x0, r)−1r− n

q and w(r) = r− n
p for q > 1 we have

‖T g‖̃
L M

p,ϕ1
{x0} (�)

� sup
0<r<d

ϕ1(x0, r)−1
∫ d

r
‖ f ‖Lq (�(x0,t))

dt

t
n
p +1

+ ‖T g‖L p(�)

� sup
0<r<d

ϕ2(x0, r)−1 r− n
q ‖g‖Lq (�(x0,r)) + ‖g‖Lq (�)

= ‖g‖L M
q,ϕ2{x0} (�)

+ ‖g‖Lq (�)

= ‖g‖̃
L M

q,ϕ2
{x0} (�)

and for q = 1

‖T g‖̃
L M

p,ϕ1
{x0} (�)

� sup
0<r<d

ϕ1(x0, r)−1
∫ d

r
‖ f ‖L1(�(x0,t))

dt

t
n
p +1

+ ‖T g‖L p(�)

� sup
0<r<d

ϕ2(x0, r)−1 r−n ‖g‖L1(�(x0,r)) + ‖g‖L1(�)

= ‖g‖
L M

1,ϕ2{x0} (�)
+ ‖g‖L1(�)

= ‖g‖̃
L M

1,ϕ2
{x0} (�)

.

��
From Theorem 2.9 we get the following corollary.

Corollary 2.10 Let � be an open bounded subset of R

n, 1 ≤ q < p < ∞, 1
q = 1

p + 1
n .

Let also ϕ1(x, r) and ϕ2(x, r) two positive measurable functions defined on �×(0, d)

such that the following condition is fulfilled:

∫ d

r

ess inf
t<τ<d

ϕ2(x, τ ) τ
n
q

t
n
p +1

dt ≤ C ϕ1(x, r), (2.16)

where C does not depend on x and r. Then, in the case q > 1 for every g ∈ M̃q,ϕ2(�),
the function T g(x) is a.e. defined, T g belongs to the space M̃ p,ϕ1(�) and there exists
c = c(q, ϕ1, ϕ2, n) > 0 such that

‖T g‖M̃ p,ϕ1 (�) ≤ c‖g‖M̃q,ϕ2 (�).



Regularity of solutions of elliptic equations in divergence… Page 15 of 20 13

In the case q = 1 the function T g belongs to the space W M̃ p,ϕ1(�) and there
exists c = c(ϕ1, ϕ2, n) > 0 such that

‖T g‖W M̃ p,ϕ1 (�) ≤ c‖g‖M̃1,ϕ2 (�).

3 Application to partial differential equations

Let us consider the divergence form elliptic equation (1.3), in a bounded set � ⊂ R

n ,
n ≥ 3. We set


(x, t) = 1

n(2 − n)ωn
√
det{ai j (x)}

⎛

⎝
n∑

i, j=1

Ai j (x)ti t j

⎞

⎠

2−n
2

,


i (x, t) = ∂

∂ti

(x, t), 
i j (x, t) = ∂

∂ti∂t j

(x, t),

M = max
i, j=1,...,n

max|α|≤2n

∥∥∥∥
∂α
i j (x, t)

∂tα

∥∥∥∥
L∞(�×
)

,

for a.a. x ∈ B and ∀t ∈ R

n\{0}, where Ai j denote the entries of the inverse matrix of
the matrix {ai j (x)}i, j=1,...,n , and ωn is the measure of the unit ball in R

n .
It is well known that 
i j (x, t) are Calderón–Zygmund kernels in the t variable.
Let r , R ∈ R

+, r < R and ϕ ∈ C∞(�) be a standard cut-off function such that for
every ball BR ⊂ �,

ϕ(x) = 1 in Br , ϕ(x) = 0, in �\BR .

Then if u is a solution of (1.3) and v = ϕu we have

L(v) = ∇ · G + g,

where

G = ϕ f + u A∇ϕ,

g = 〈A∇u,∇ϕ〉 − 〈 f ,∇ϕ〉.

Using the notations above, we are able to recall an integral representation formula for
the first derivatives of a solution u of (1.3).

Lemma 3.1 For every i = 1, . . . , n, let ai j ∈ L∞(Rn)∩C B M Omax{p,p′}
{x0} satisfy (1.6)

and (1.7), let u be a solution of (1.3) and let ϕ, g and G defined as above. Then, for
every i = 1, . . . , n we have
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∂xi (ϕu)=
n∑

h, j=1

P.V .

∫

BR


i j (x, x − y){(a jh(x) − a jh(y))∂xh(ϕu)(y) − G j (y)} dy

−
∫

BR


i (x, x − y)g(y) dy +
n∑

h=1

cih(x)Gh(x), ∀x ∈ BR,

setting cih = ∫
|t |=1 
i (x, t)th dσt .

Using the representation formula stated in Lemma 3.1, we can obtain a regularity
result for the solutions to (1.3).

Theorem 3.2 Let ai j be such that (1.5), (1.6), (1.7) are true, we assume that the con-
dition (2.15) is fulfilled and that ϕ2 � ϕ1. Let also suppose that u is a solution of (1.3)

such that ∂xi u ∈ ˜L M
q,ϕ2

{x0} (�), for all i = 1, . . . , n, f ∈ [˜L M
q,ϕ1

{x0} (�)]n, x0 ∈ �. Let
ϕ ∈ C∞(�) a standard cut-off function. Then, for any K ⊂ � compact there exists a
constant c(n, p, ϕ1, ϕ2, dist(K , ∂�)) such that

(i) ∂xi u ∈ ˜L M
p,ϕ1

{x0} (K ), ∀i = 1, . . . , n,

(i i) ‖∂xi u‖̃
L M

p,ϕ1
{x0} (K )

� ‖u‖̃
L M

p,ϕ1
{x0} (�)

+ ‖∂xi u‖̃
L M

q,ϕ2
{x0} (�)

+ ‖ f ‖̃
L M

q,ϕ1
{x0} (�)

,

∀i = 1, . . . , n,

where 1
p = 1

q + 1
n .

Proof Let K ⊂ � be a compact set. Using Lemma and the boundedness of the
commutator proved in [13], we obtain the following estimate:

‖∂xi (ϕu)‖̃
L M

p,ϕ1
{x0} (K )

≤ ‖C[ai j , ϕ]∂xh (uϕ)‖̃
L M

p,ϕ1
{x0} (K )

+ ‖K G‖̃
L M

p,ϕ1
{x0} (K )

+‖T g‖̃
L M

p,ϕ1
{x0} (K )

+ ‖G‖̃
L M

p,ϕ1
{x0} (K )

≤ c‖a‖
CV M Omax{p,p′}

{x0}
‖∂xh (uϕ)‖̃

L M
p,ϕ1
{x0} (K )

+ ‖G‖̃
L M

p,ϕ1
{x0} (K )

+‖g‖̃
L M

q,ϕ2
{x0} (K )

+‖G‖̃
L M

p,ϕ1
{x0} (K )

,

where the norm ‖a‖
CV M Omax{p,p′}

{x0}
is taken in the set BR .

Taking into account that a ∈ CV M Omax{p,p′}
{x0} , we can choose the radius R of the ball

BR such that c‖a‖
CV M Omax{p,p′}

{x0}
< 1

2 . This remark allow us to write
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‖∂xi (ϕu)‖̃
L M

p,ϕ1
{x0} (K )

≤ ‖G‖̃
L M

p,ϕ1
{x0} (K )

+ ‖g‖̃
L M

q,ϕ2
{x0} (K )

+ ‖G‖̃
L M

p,ϕ1
{x0} (K )

≈ ‖G‖̃
L M

p,ϕ1
{x0} (K )

+ ‖g‖̃
L M

q,ϕ2
{x0} (K )

= ‖ϕ f + u A∇ϕ‖̃
L M

p,ϕ1
{x0} (K )

+ ‖〈A∇u,∇ϕ〉 − 〈 f ,∇ϕ〉‖̃
L M

q,ϕ2
{x0} (K )

≤ ‖ f ‖̃
L M

p,ϕ1
{x0} (K )

+ ‖u‖̃
L M

p,ϕ1
{x0} (K )

+ ‖∂xi u‖̃
L M

q,ϕ2
{x0} (K )

+ ‖ f ‖̃
L M

q,ϕ2
{x0} (K )

.

Now we apply the hypothesis ϕ2 � ϕ1, obtaining the following estimate for the norm
‖ f ‖̃

L M
q,ϕ2
{x0}

:

‖ f ‖̃
L M

q,ϕ2
{x0} (K )

≤ sup
0<r<d

1

ϕ2(x0, r)

1

|B(x0, r)| 1q
‖ f ‖Lq (|B(x0,r)∩K ) + ‖ f ‖Lq (K )

� sup
0<r<d

1

ϕ1(x0, r)

1

|B(x0, r)| 1q
‖ f ‖Lq (|B(x0,r)∩K ) + ‖ f ‖Lq (K )

= ‖ f ‖L M
q,ϕ1{x0} (K )

+ ‖ f ‖Lq (K ) = ‖ f ‖̃
L M

q,ϕ1
{x0} (K )

.

Using the previous estimate we finally obtain that

‖∂xi u‖̃
L M

p,ϕ1
{x0} (K )

≤ C

(
‖u‖̃

L M
p,ϕ1
{x0} (�)

+ ‖∂xi u‖̃
L M

q,ϕ2
{x0} (�)

+ ‖ f ‖̃
L M

q,ϕ1
{x0} (�)

)
,

∀i = 1, . . . , n,

��
From Theorem 3.2 we get the following corollary.

Corollary 3.3 Let ai j ∈ L∞(Rn) ∩ V M O such that (1.6), (1.7) are true, we assume
that the condition (2.16) is fulfilled and that ϕ2 � ϕ1. Let also suppose that u is a

solution of (1.3) such that ∂xi u ∈ ˜L M
q,ϕ2

{x0} (�), for all i = 1, . . . , n, f ∈ [M̃ p,ϕ1(�)]n.
Let ϕ ∈ C∞(�) a standard cut-off function. Then, for any K ⊂ � compact there
exists a constant c(n, p, ϕ1, ϕ2, dist(K , ∂�)) such that

(i) ∂xi u ∈ M̃ p,ϕ1(K ), ∀i = 1, . . . , n,

(i i) ‖∂xi u‖M̃ p,ϕ1 (K ) � ‖u‖M̃ p,ϕ1 (�) + ‖∂xi u‖M̃q,ϕ2 (�) + ‖ f ‖M̃q,ϕ1 (�),

∀i = 1, . . . , n,

where 1
p = 1

q + 1
n .

In the case ϕ1(x, r) = ϕ2(x, r) we get the following corollaries.

Corollary 3.4 Let ai j be such that (1.5), (1.6), (1.7) are true, we assume that ϕ(x, r)

positive measurable function defined on � × (0, d) and the following condition is
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fulfilled:
∫ d

r

ess inf
t<τ<∞ ϕ(x0, τ ) τ

n
q

t
n
p +1

dt ≤ C ϕ(x0, r),

where C does not depend on r.

Let also suppose that u is a solution of (1.3) such that ∂xi u ∈ ˜L M
q,ϕ

{x0}(�), for all

i = 1, . . . , n, f ∈ [˜L M
q,ϕ

{x0}(�)]n, x0 ∈ �. Let ϕ ∈ C∞(�) a standard cut-off function.
Then, for any K ⊂ � compact there exists a constant c(n, p, ϕ, dist(K , ∂�)) such
that

(i) ∂xi u ∈ ˜L M
p,ϕ

{x0}(K ), ∀i = 1, . . . , n,

(i i) ‖∂xi u‖̃
L M

p,ϕ

{x0}(K )
� ‖u‖̃

L M
p,ϕ

{x0}(�)
+ ‖∂xi u‖̃

L M
q,ϕ

{x0}(�)
+ ‖ f ‖̃

L M
q,ϕ

{x0}(�)
,

∀i = 1, . . . , n,

where 1
p = 1

q + 1
n .

Corollary 3.5 Let ai j ∈ L∞(Rn) ∩ V M O satisfy (1.6), (1.7) are true, we assume that
ϕ(x, r) positive measurable function defined on �×(0, d) and the following condition
is fulfilled:

∫ d

r

ess inf
t<τ<∞ ϕ(x, τ ) τ

n
q

t
n
p +1

dt ≤ C ϕ(x, r),

where C does not depend on x, r .
Let also suppose that u is a solution of (1.3) such that ∂xi u ∈ M̃q,ϕ(�), for all

i = 1, . . . , n, f ∈ [M̃q,ϕ(�)]n. Let ϕ ∈ C∞(�) a standard cut-off function. Then,
for any K ⊂ � compact there exists a constant c(n, p, ϕ, dist(K , ∂�)) such that

(i) ∂xi u ∈ M̃ p,ϕ(K ), ∀i = 1, . . . , n,

(i i) ‖∂xi u‖M̃ p,ϕ(K ) � ‖u‖M̃ p,ϕ(�) + ‖∂xi u‖M̃q,ϕ(�) + ‖ f ‖M̃q,ϕ(�),

∀i = 1, . . . , n,

where 1
p = 1

q + 1
n .
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