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Abstract
Social Robots (SRs) are substantially becoming part of modern society, given their frequent use in many areas of applica-
tion including education, communication, assistance, and entertainment. The main challenge in human–robot interaction 
is in achieving human-like and affective interaction between the two groups. This study is aimed at endowing SRs with the 
capability of assessing the emotional state of the interlocutor, by analyzing his/her psychophysiological signals. The meth-
odology is focused on remote evaluations of the subject’s peripheral neuro-vegetative activity by means of thermal infrared 
imaging. The approach was developed and tested for a particularly challenging use case: the interaction between children 
and a commercial educational robot, Mio Amico Robot, produced by LiscianiGiochi©. The emotional state classified from 
the thermal signal analysis was compared to the emotional state recognized by a facial action coding system. The proposed 
approach was reliable and accurate and favored a personalized and improved interaction of children with SRs.
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1 Introduction

The use of social robots (SRs) has significantly increased 
in the last few decades, and has found applications in many 
fields, from healthcare for the elderly population [1, 2] to 
interactions with young people [3, 4].

An increasing number of studies confirmed the prom-
ise of SRs in educating and tutoring children [5, 6]. SRs 
are designed to interact with children in a natural, interper-
sonal manner, often with specific social-emotional goals in 
mind [7]. One example of SR with social-emotional pur-
pose is CosmoBot, designed to interact with children with 
and without disabilities. CosmoBot motivates children to 

develop new skills more quickly than through a traditional 
therapy session by imitating human joint movement in its 
shoulders, arms, hands, and head [8]. Another example is the 
Kaspar robot, developed for autistic children. It represents an 
attempt to help in improving their skills in social interaction 
[9]. More recently, KineTron, a robot that coaches children 
with cerebral palsy to encourage their motor training [10].

The introduction of SRs into any educational practice 
involves several technical challenges such as an SR capa-
ble of fluent and contingent interaction. To accomplish this, 
the seamless integration of a range of processes in artificial 
intelligence and robotics are crucial. Recently, a consider-
able amount of effort has been dedicated towards SRs capa-
ble of achieving natural interactions. However, SRs still have 
significant limitations. For instance, until recently, robots 
had mainly followed a pre-set script, which often did not 
follow the normal rules of interaction, causing awkward and 
unnatural conversations. Moreover, the robot needs a suffi-
ciently accurate interpretation of the social environment to 
respond appropriately [11].

Natural interactions require the recognition and under-
standing of human emotions by the robotic system, so that 
it is able to appropriately respond [12]. Leyzberg et al. [13, 
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14] showed that robots that personalize content delivery, 
based on user satisfaction during an interaction, increase 
cognitive learning gains.

A conventional approach for emotion recognition in 
human–robot interaction (HRI) is based on facial expres-
sion analysis [15–17]. The most widely used method in 
this field is the facial action coding system (FACS) [18]. 
FACS is based on facial anatomy and it operates under the 
assumption that emotions activate micro-expressions, result-
ing in subtle changes in facial muscles activity [19]. For this 
purpose, FACS defines individual components of muscle 
movement, i.e. the Action Units (AU) [20]. AUs are reliably 
associated with distinct emotions [19], basing on the six uni-
versal facial expressions (happiness, anger, disgust, sadness, 
fear, surprise). FACS is recognized as the most common 
method for emotion recognition in HRI [21–23], thanks to 
its universality in the interpretations of the emotions.

The main contribution of the present study was to develop 
an alternative method for emotion recognition, relying on 
new metrics and evaluations obtained from the interaction 
between a real robot and a child. This would have ensured a 
substantial improvement in the field of socially contingent 
interactions.

The novel approach, here described, used functional 
Infrared Imaging (fIRI), which allows to estimate the psy-
chophysiological state of an individual by contact-free 
recordings of cutaneous temperature [12].

fIRI has already been adopted in a variety of studies 
involving human emotions such as startle response, empathy, 
guilt, embarrassment, stress, fear, anxiety, and joy [24–26]. 
In fact, measuring facial cutaneous temperature and its top-
ographic distribution provides insights about the person’s 
autonomic activity. This is a result of the autonomic nervous 
system’s (ANS) role in the achievement of the human body’s 
thermal homeostasis and in the regulation of physiologi-
cal responses to emotional stimuli [27]. The ANS has two 
interacting systems: the parasympathetic and sympathetic 
systems, which usually perform counter-balancing actions 
on the temperature regulation [28]. The general response to 
psychophysical stress or adverse conditions is the activa-
tion of the sympathetic nervous system, leading to periph-
eral vasoconstriction and, therefore, to a decrease in local 
temperature [29, 30]. In contrast, during rest or pro-social 
activity, the parasympathetic nervous system predominates, 
leading to vascular relaxation accompanied by a gradual 
temperature rise [31].

Concerning the literature on the evaluation of the psy-
chophysiological state of the children using thermal infra-
red imaging, some works have been published in the last 
decades. They mainly concerned guilt [25], the reaction to 
a stressful situation [27, 32, 33], up to the impaired emo-
tional regulation in children suffering from Moebius syn-
drome [34].

Compared to conventional techniques, fIRI relies on 
involuntary biological signal changes for emotion detection 
with the additional advantage of accessing the child’s psy-
chophysiological state, in a contact-less fashion. Further-
more, emotion detection, based on the continuous monitor-
ing of the physiological signals, offers a solution that is free 
from the artifact of social masking.

To the state of the art, the only study using fIRI during 
child-robot interaction is represented by the Robot AVatar 
thermal Enhanced (RAVE) prototype project [35]. The pro-
ject involved a robot which engaged babies’ interest and 
identified when babies were “ready to learn” by classifying 
their facial thermal responses [36].

The solution, proposed here, relied on the findings 
reported in [35] and it was designed for applications where 
the cooperation with the subject was not guaranteed. It 
consisted of a Computational Psychophysiological Mod-
ule (CPM), able to assess the temperature modulations in 
a specific facial Region Of Interest (ROI), i.e. the nose tip, 
and discriminate, in real-time, three macro-levels of their 
emotional engagement. The three macro-levels were: posi-
tive engagement, macroscopically associated with increas-
ing temperature of the child’s nose tip; neutral engagement, 
associated with a constant trend of the nose tip temperature; 
negative engagement, associated with a decreasing trend of 
the nose-tip temperature, thus suggesting an increasing level 
of stress.

The real-time processing for computational psychophysi-
ology by means of thermal IR imaging in the realistic sce-
nario has been already demonstrated [37–39] by employing 
high-end thermal infrared cameras. In this perspective, the 
present study aimed to develop a viable solution for social 
robots integrating consumer market technology and low-
cost Original Equipment Manufacturer (OEM) based com-
ponents. Proper computational methods were developed for 
the goal of providing a commercial low-cost educational 
robot, adapting its behavior to the engagement level of the 
interacting child.

2  Materials and Methods

2.1  Participants

The experimental session involved 31 children, aged from 
4 to 5 years old, including 4 children with social interaction 
difficulties. The study was conducted in the primary school 
“G. Rocchetti” of Torrevecchia Teatina (CH)—Italy, in the 
Italian language.

Before the start of the experimental trials, the parents 
were widely informed about the purpose and protocol of the 
study and they signed an informed consent form.
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2.2  Materials and Data Acquisition

The SR employed in this study was Mio Amico Robot pro-
duced by Liscianigiochi© (https ://www.lisci anigr oup.com/
mio-amico -robot -inter attiv o/sched a/24435 ).

The robot is equipped with voice recognition, activated 
from up to 5 meters away, and with the Text To Speech 
(TTS) program, allowing semantic analysis and speech syn-
thesis. These systems allow the robot to interact with the 
child. When the robot asks a question, the “listening” mode 
is activated immediately, waiting for the child’s answer. The 
robot, after listening to the command, performs the required 
action. Moreover, it can move in all directions (forward, 
backward, right, left), turn on itself and move its head.

The most important hardware devices of Mio Amico are 
listed below (Table 1).

For the purpose of this study, Mio Amico was equipped 
also with a radiometric OEM thermal camera, FLIR Lep-
ton 3.5® (long-wave infrared (LWIR) sensor, uncooled 
Vanadium Oxide (Vox) microbolometer, thermal sensitiv-
ity < 50 mK, frame rate < 9 Hz, 160 × 120 pixel matrix). 
It is a micro-thermal camera with the dimensions of 
11.8 × 12.7 × 7.22 mm. It was embedded in the head of Mio 
Amico, next to the robot webcam, to ensure vertical align-
ment and equal orientation of both imaging devices.

The SR processing unit and the thermal camera com-
municated via USB, using the GetLab PureThermal2 I/O 

module. The module handled powering and low-level com-
munication with the Lepton camera. It allowed control and 
data capturing from the processing unit side using the stand-
ard USB Video Class (UVC) protocol. The exchanged data 
was the full radiometric 14-bit raw data from the sensor 
(including all relevant telemetry data).

Both the visible and thermal data were processed and 
stored on the ODROID XU4 processing unit of the SR 
(Fig. 1).

2.3  Procedure

According to the International Academy of Thermology 
(IACT) guidelines, prior to the measurement session, chil-
dren acclimated for about 15 min inside the experimental 
room. The room was kept at steady temperature and humid-
ity (23 ± 1 °C; 50–60% relative humidity) and without any 
direct air ventilation on the participants [26].

The experimental protocol, summarized in Fig. 2, was 
composed of an “event-related” paradigm. Specifically, the 
events consisted of the following two types of actions:

1. Robot telling a fairy tale;
2. Robot singing a song.

The choice of one or the other action depended on the 
will of the child.

Table 1  List of Mio Amico 
hardware devices and 
functionalities

Hardware device Functionality

ELP 5MP Webcam
Tactile sensor Located behind the robot head. It allows the recogni-

tion of caresses and it is used to turn the robot on
Distance sensor It allows the robot to avoid obstacles when it is moving
Motors Movement of wheels, arms, and neck
Inertial measurement unit (IMU) Ultrasonic and temperature sensors
Microphone and speakers Oral interaction with the child
Led matrix for the face Led matrix smiley-shaped, used as robot face
Pack batteries Power supply

Fig. 1  a Mio Amico Robot; b, c 
two examples of child and robot 
interaction under the supervi-
sion of an adult

https://www.liscianigroup.com/mio-amico-robot-interattivo/scheda/24435
https://www.liscianigroup.com/mio-amico-robot-interattivo/scheda/24435
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The experimental protocol was structured in two phases. 
In the first phase (Familiarization), the SR introduced 
itself and asked the child the following sequence of ques-
tions: “What’s your name?”; “How old are you?”;“How are 
you today?”;“Do you want to play with me?”. At the end 
of each question, the robot waited for the child’s answer 
before asking another question.

The second phase (Interaction) consisted in the pres-
entation of the actions. The robot started telling a fairy 
tale, lasting about 30 s. At the end of the action, the robot 
queried the CPM module:

• If the prevailing status of the child (identified by the 
CPM) during the robot action was positive then the SR 
asked: “You seem amused, right?”

• If the prevailing state was negative, then the SR asked: 
“You seem bored, right?”

Following the child’s response, the type of the next 
action was selected:

• If the child confirmed that he/she was amused, the 
action remained the same;

• If the child said he/she was bored, the action changed 
and, in this case, a song was sung.

At the second occurrence of the same action, i.e. after 
listening to two consecutive fables or two songs, if the 
child still seemed amused the robot asked:

“Do you want to hear another fairy tale, or do you want 
me to sing you a song?”

Each experimental test consisted of 6 events. The time 
between the end of the event and the beginning of the robot 
question was about 1.5 s (i.e. waiting time + random delay).

At the end of the sixth event, as a conclusion of the ses-
sion and as confirmation of the child’s general satisfaction 
with the SR, it said:

“Well, for today our time together is over, did you enjoy 
playing with me? … Thank you, my friend”.

2.4  Behavioral Data Analysis

The analysis of the expressive component of emotion starts 
from the assumption that the different emotions are corre-
lated with specific configurations of the face. The analysis of 
facial expressions was performed through the software Fac-
eReader 7 (developed by VicarVision and Noldus Informa-
tion Technology, https ://www.noldu s.com/human -behav ior-
resea rch/produ cts/facer eader ). FaceReader 7 is a software 
for automatic recognition of FACS. It has already been used 
in literature and validated in various research studies [40].

By using FaceReader 7, the steps in recognizing emotions 
are represented by the identification of the face, then by its 
modeling and lastly by the expressive classification of the 
emotions (Fig. 3).

For the specific aim of this study, the valence and arousal 
indices, identified by the FaceReader 7 software, were taken 
into account. Valence index, on the one hand, indicates 
whether the subject’s current emotional state is positive or 
negative. Joy is the only emotion considered entirely posi-
tive, whereas sadness, anger, fear, and disgust are consid-
ered negative. Surprise, instead, can be considered both 

Fig. 2  Procedure overview. The 
behavior of the robot depended 
on the CPM outcome, which 
takes its input from the thermal 
camera. The robot’s behav-
ior consisted of two types of 
actions: robot telling a fairy 
tale or robot singing a song. 
At the end of each event, the 
robot asked the child a ques-
tion. Depending on the CPM 
outcome the robot’s question 
could have been “You seem 
amused, right?” or “You seem 
bored, right?”. Based on the 
child’s response, the next action 
was selected

https://www.noldus.com/human-behavior-research/products/facereader
https://www.noldus.com/human-behavior-research/products/facereader


International Journal of Social Robotics 

1 3

positive and negative. Arousal index, on the other hand, 
indicates whether the subject is responsive or not, at that 
given moment and for that given stimulus, and how active 
he/she is. The product of these two behavioral indices (VA) 
was integrated into a decision-making model, which allowed 
to provide outgoing discrimination between three states 
(positive, negative and neutral). This model was based on 
the widely used “Circumplex Model of Affect” [41], which 
has valence and arousal indices as dependent variables. For 
instance, according to the Circumplex Model, “excited” is an 
affective state with high arousal and positive valence (high 
positive VA), while “angry” describes a high arousal state 
and negative valence (high negative VA). Therefore, for the 
purpose of this study, the three-level of emotional engage-
ment were identified as follows:

• Positive engagement: VA’s positive values (i.e., VA > 0);
• Neutral engagement: a low negative value of VA (i.e., 

− 0.1 < VA < 0), since for the requirement of the study, 

neutral engagement was considered as a sort of disen-
gagement.

• Negative engagement: VA’s values lower than − 0.1 (i.e., 
VA < 0.1).

The principal limits of this behavioural analysis approach 
were: (1) adequate image contrast; (2) partial or total occlu-
sion of the face from the scene.

2.5  Computational Psychophysiology Module (CPM)

The Computational Psychophysiology Module (CPM) 
is a tool that assesses temperature modulations within 
facial ROIs. Based on such modulations, the tool was able 
to classify, in real-time, three macro-levels of the child’s 
emotional engagement. The CPM used visible and infra-
red imaging sensors, both embedded in the robot head. 
The visible images were employed for face detection and 
landmarks localization through state-of-the-art computer 

Fig. 3  Example of analysis of a visible video by means of FaceReader 7
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vision algorithms [42, 43]. Landmarks location in the vis-
ible images were then transformed in thermal images coordi-
nates, relying on an optical calibration approach. Landmark 
coordinates were used to identify and track facial ROIs in the 
thermal images. ROIs’ average temperatures over time were 
estimated, processed and utilized for classification. The real-
time classification was used by the robot’s main program 
to identify the psychophysiological state. For the sake of 
clarity, the only nose tip ROI was considered in this study. 
Further explanations are available in 2.5.3 section.

In the next sections, visible and thermal data analysis 
and the classification of thermal responses will be discussed 
separately.

2.5.1  CPM: Visible and Thermal Data Co‑registration

A preliminary step, in the described work, consisted in an 
optical calibration procedure between the two imaging sys-
tems, i.e. visible and thermal devices.

First, it was necessary to calculate the intrinsic and extrin-
sic parameters. The former ones are specific for each sensor, 
whereas the latter is related to the specific geometrical trans-
formation between the two imaging coordinates systems.

The typical procedure for estimating these parameters 
relies on the location of a known configuration of points, 
seen from different angles and simultaneously acquired by 
the two imaging devices. Typically, the corners of a black 
and white checkerboard are localized. Knowing the dimen-
sions of the checkerboard’s squares, the parameters are esti-
mated as to allow an optimal correspondence between the 
pixel coordinates in the image and the coordinates in real 
units.

For the purpose of this study, a special checkerboard, 
whose details were clearly detectable by both the visible-
spectrum and the thermal camera was designed.

The developed solution consisted of an adhesive decal 
made of black vinyl with a cutting plotter, stuck to an alu-
minum plate (Fig. 4a). The details of the checkerboard 
were clearly detectable in the thermal images, given the 
different emissivity values of aluminum and plastics 
(εaluminium  = 0.090; εplastics =  0.950 [44]) (Fig. 4b).

The optical calibration process used already developed 
procedures, implemented in OpenCV [45]. An example of 
the application of the distortion correction obtained through 
the calibration process is showed in Fig. 4c.

Generally, optical calibration is valid at a fixed distance. 
To overcome this constraint, the distance of the face from 
the camera was estimated over time, basing on an anatomi-
cal model. The results appeared to be adequately precise 
for subsequent analyses, in the range of distances involved.

The calibration process has to be done only once before 
the whole experimental session.

2.5.2  CPM: Thermal Data Extraction and Analysis

For the extraction of physiological signals, an automatic 
data processing pipeline was implemented. Signal process-
ing techniques were chosen on the basis of their efficiency 
in terms of computational load, to allow acceptable perfor-
mance for real-time processing.

The first phase relied on the visible image to detect the 
child’s face and locate specific facial landmarks, correspond-
ing to the eyebrows, the edges of the eyes, the nose tip, the 
chin. For the face localization, an object detector based 
on the histogram of oriented gradients (HOG) [42] was 
used. The extraction of landmarks was based, instead, on a 
regression tree ensemble algorithm. From the coordinates 
extracted in the visible frame, the corresponding positions 
in the thermal image were obtained, thanks to a previous 
procedure of optical calibration (ref. Section 2.5.1).

Subsequently, thermal signals were extracted from the 
nose tip region. The extracted raw signal was not imme-
diately suitable for the analysis, due to both the intrinsic 
noise, given the low resolution of the thermal sensor, and 
the possible temporary absences of data. It was possible 
to compensate for both problems, without losing relevant 
information for psychophysiological purposes. A constant 
sampling frequency was guaranteed, interpolating linearly 
in each missing signal segment, lasting less than a second. A 
3-sample boxcar FIR filter was applied to the reconstituted 
signal, to compensate for the low signal to noise ratio (SNR) 
of the thermal data.

Fig. 4  Checkerboard used for 
calibration: a visible image; b 
thermal image with detected 
edges; c thermal image after the 
distortion correction
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The processed signals were used as indicators of activa-
tion of the sympathetic/parasympathetic system.

An example of the interface, developed for the extraction 
of the thermal signals, is shown in Fig. 5.

2.5.3  CPM: Classification of the Psychophysiological 
Response

To calculate information about the child’s affective state, the 
processed thermal signal of the nose tip region was used. 
The classification task was performed using a data-driven 
approach, guided by the behavioral analysis outcome. In 
detail, the dynamic of the nose tip thermal signal was clas-
sified based on the VA index (ref. Section 2.4). The only 
nose tip region was considered as the salient ROI because of 

its strict neurovascular relationship with adrenergic activity, 
associated with expression of emotional states [30].

Classification problems are well suited for machine learn-
ing approaches. Although many neural network (NN) mod-
els have been developed, the multi-layer perceptron (MLP) 
feed-forward neural network is still extensively used [46]. 
A NN consists of units (neurons), arranged in layers, which 
convert an input vector into some output [47]. NN is defined 
feed-forward since a unit feeds its output to all the units 
on the next layer. A three-layer structure, widely validated 
in literature, was employed in the present study, given its 
capability to solve most classification problems. The three 
layers include one input layer, one hidden layer, and one 
output layer. Each layer is composed of several units, all 
connected with each other, except for the units in the same 
layer. The input layer, the hidden layer, and the output layer 

Fig. 5  Example of analysis of thermal signals. The coordinates of the 
landmarks detected in the visible image (a) are reported on the cor-
responding thermal image (b). The data processed by the CPM are: 

pose (c), ROIs temperature (d), eye ratio (e), breath (f), blinking (g), 
arousal (h), tracking performance (i)
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are used for data input, data processing, and data output, 
respectively. Data processing or training involves adjusting 
the parameters, or the weights and biases, of the model to 
minimize the classification error [48]. The desired output 
was identified as the emotional state predicted by the VA 
index (ref. Section 2.4). Input data, instead, consisted of the 
first-time derivative of the signal, which provides informa-
tion about how quickly the temperature over time.

In detail, accounting for the delay in temperature 
response, an interval of 5 s was considered sufficient to dis-
criminate changes in emotional state. Therefore, the input 
data were set as the average value of the temperature’s first 
derivative in 5 s. The desired output was defined as the emo-
tional state, detected by the VA index, prevalently occurring 
during the same period of time.

MLP algorithm was run in SPSS 25.0 (SPSS Inc., Chi-
cago, IL, USA). The dataset has been partitioned into train-
ing and testing samples, 70%, and 30% respectively, ran-
domly assigned. The used activation function on the output 
layer was the softmax, whereas the gradient descendent was 
chosen as optimization algorithm.

3  Results

Concerning the extraction and analysis tools of CPM, the 
performance of the described procedure was very high, as 
only a few samples per video were lost (on average, 82.75% 
of the thermal data was correctly tracked and available for 

successive analysis). Besides, through the described algo-
rithms and the employed hardware (single-board Odroid 
XU4), a high speed of extraction and processing of the sig-
nals was guaranteed (~ 20 frames per second).

Concerning the classification process (described in 
Sect. 2.5.3), the results of the MLP analysis are reported 
in Fig. 6, showing the Receiver Operating Characteristic 
(ROC) curve for each category. Each curve treats each cat-
egory as the positive state versus the aggregate of all the 
other categories. By analyzing the coordinate points of each 
ROC curve, the classifier thresholds were established, to 
accomplish a compromise between sensitivity and specific-
ity. These thresholds were applied to the average value of 
the first-time temperature derivative in 5 s, to switch from a 
positive, neutral or negative emotional state.

Table 2 shows the specific threshold levels (points marked 
with an asterisk in Fig. 6) applied to the average value of 
temperature’s first-time derivative (avg_TD).

The thresholds relative to the neutral state derived from 
the positive and negative threshold levels; therefore, the 
value of avg_TD between − 0.004 and 0.007 fell in neutral 
emotional state.

The overall MLP accuracy is described through the con-
fusion matrix reported in Table 3.

An overall level of accuracy of 71% was reached, while a 
precision level of 69%, 60%, and 77% is ensured for positive, 
neutral and negative emotional states respectively.

Figure 7 shows the emotional state of a random subject 
obtained by means of FaceReader 7 and the emotional state 
of the same subject, obtained as a result of MLP processing.

A representative example of CPM output and perfor-
mance in positive, neutral or negative emotional state rec-
ognition is shown in Fig. 8, for one randomly chosen subject.

Fig. 6  ROC curves representing the MLP outcome performed 
through SPSS. The ROC curve illustrates the true positive rate 
against the false-positive rate at various threshold settings. The points 
marked with an asterisk represent the threshold cut-off that maxi-
mizes (sensitivity + specificity) for each curve. The values of each 
cut-off are reported in Table  2. The 45° line represents the no-dis-
crimination line

Table 2  Thresholds obtained as a cut-off point from ROC curve anal-
ysis

Class Thresholds Specificity Sensitivity

Positive avg_TD > 0.007 0.73 0.67
Negative avg_TD <  − 0.004 0.82 0.60

Table 3  Confusion matrix visualizing the performance on the 17-per-
son validation set. The overall accuracy of the CPM module predic-
tion was 71%

Ground truth CPM Prediction

Positive Neutral Negative

 Positive 51 2 5 Accuracy
71% Neutral 12 15 9

 Negative 10 8 48
Precision 69% 60% 77%
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The filtered nose tip thermal signal and the inferred ther-
mal emotional state of the subject are also reported in Fig. 8.

For the sake of clarity, only 17 videos, out of a total of 
31, were processed and were part of the validation analy-
sis of the procedure. The main reasons for the video to be 
excluded were:

• problems in face detection, i.e. the child’s face was not 
recognized by the face detector module, because of the 
low quality of the visible video;

• breathing artifacts, i.e. the thermal signal of the nose tip 
was heavily corrupted by the breathing signal. The two 
contributes of signals could not be separable, given also 
the low thermal resolution of the employed thermal cam-
era;

• excessive movements of the robot head.

4  Discussion

In the last decades, SRs have been widely employed with 
children for many purposes, i.e. education, health, commu-
nication. However, some limitations have been observed 
during human–robot interaction, mainly due to non-natural 
cooperation between the two parts.

In the present study, a novel methodology, allowing for 
a suitable and natural interaction between SR and children 
is presented. Using the developed method, it was possible 
to classify, with a sufficient level of accuracy, the engage-
ment state of the child, while interacting with an artificial 
agent. To achieve this goal, the thermal facial response of 
children, i.e. nose tip temperature signal, was monitored and 
categorized in real-time during an experimental session with 
Mio Amico Robot. The classification was carried out using a 
data-driven approach, relying on FACS, which is recognized 
as gold standard in emotion recognition in HRI [21–23]. By 

comparing the emotional state classified from thermal signal 
analysis with the emotional state recognized by Facereader 7 
(VA index), the engagement level of the child was assessed.

The advantage of using fIRI compared to FACS consists 
of the availability of recognizing the psychophysiological 
state of the child, relying on involuntary biological signals 
measurement. Thus, it allows to avoid the artifact of social 
masking, making it suitable also for children who lack the 
ability to express emotions [34]. Moreover, basing the evalu-
ation of the emotional state only on the anatomic informa-
tion (e.g., relying only on the visible imaging) rather than the 
functionality of a specific facial area, could be misleading. 
Besides, concerning the emotional state identification, the 
social context of use is crucial and can constitute a bias in 
the canonical methods used for this purpose [49, 50]. fIRI 
permits to overcome these limitations, adding information 
also on the functionality of a facial area and allowing meas-
urements of spontaneous and not self-regulated parameters.

Although there is a considerable interest in the use of 
fIRI for recognizing emotions, the relationship between the 
thermal signal and the two dimensions of the emotion (i.e. 
arousal and valence), is not well defined yet. Pavlidis et al. 
and Kosonogov et al. indicated that facial thermal imaging is 
a reliable technique for the assessment of emotional arousal 
[51, 52]. On the other hand, Salazar-López reported a strong 
correlation of thermal imaging with emotional valence [53]. 
In the present study, to account for both emotional dimen-
sions, the product of the two indices was considered as rep-
resentative of the child engagement. Additional data across 
a wider sample of emotional states would be needed to better 
clarify the precision of fIRI in recognizing emotions.

At the state of the art, the presented work constitutes the 
first step towards a more natural interaction between the arti-
ficial agent and the child, based on physiological signals. 
Furthermore, it was performed in real-time and in a non-
invasive fashion, ensuring to maintain an ecologic condition 

Fig. 7  The emotional state of 
a random subject obtained by 
means of FaceReader 7 (a) and 
the emotional state of the same 
subject, obtained from MLP 
processing (b)
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Fig. 8  Example of the CPM 
performance in the detection of 
a positive b neutral and c nega-
tive emotional state. The index 
of the identified emotional state 
(Thermal EM state) and the fil-
tered thermal signal is reported 
below each visible and thermal 
frame. The red line indicates the 
time point related to the visible 
and thermal frames
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during measurements. Despite the availability of thermal 
signals from several ROIs (i.e. perioral area, glabella) and 
different additional information (i.e. head pose, blinking 
signals) (refer to Fig. 5), the chosen strategy relied on the 
contribution of the only nose-tip thermal signal. This choice 
accomplishes a compromise between the accuracy in predic-
tion of emotional state and the computational load for the 
machinery. The nose tip region was considered because of 
its strict neurovascular relationship with adrenergic activity, 
associated with expression of emotional states [30]. Moreo-
ver, the nasal area revealed the strongest responsiveness to 
the facial expressions compared to other regions as forehead, 
cheeks and mouth areas [54].

On the other hand, however, it is important to mention 
that there are several limitations to consider for further 
improvements. First of all, it would be necessary to study 
a wider sample of population, to establish more accurate 
threshold levels for the discrimination of the emotional 
states. Secondly, since the real-time tracking of thermal 
videos relied on disposable packages for visible videos, 
all the limitations of the above-mentioned solutions were 
directly inherited by the presented method. In particular, 
the developed technique seems not to work properly in case 
of partial absence of light or partial occlusion of the subject 
from the scene. A further improvement would be to develop 
a real-time tracker, based on the only IR videos, acquired 
by low-resolution thermal cameras, to avoid problems due 
to low-light environment and to directly accede to the psy-
chophysiology state of the human interlocutor.

5  Conclusion

In the present work, a novel and original method, allowing 
for a natural interaction between SR and children is pre-
sented. By using the developed technique and low-cost OEM 
thermal infrared sensors, it was possible to classify, with 
a sufficient level of accuracy, the child engagement, while 
interacting with an artificial agent. At the state of the art, the 
presented work constitutes the first step towards a reliable 
interaction between the child and the robot, based on the 
assessment of psychophysiological response. It was realized 
in real-time and in a non-invasive fashion, ensuring to main-
tain an ecologic condition during measurements.
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