Journal of Computer Virology and Hacking Techniques
https://doi.org/10.1007/s11416-021-00392-0

ORIGINAL PAPER O‘)

Check for
updates

A framework for formal analysis and simulative evaluation of security
attacks in wireless sensor networks

Cinzia Bernardeschi'® - Gianluca Dini'® - Maurizio Palmieri'® - Francesco Racciatti2

Received: 2 August 2020 / Accepted: 10 July 2021
© The Author(s) 2021

Abstract

When designing Wireless Sensor Networks it is important to analyze their security risks and provide adequate solutions
for protecting them from malicious attacks. Unfortunately, perfect security cannot be achieved, for performance reasons.
Therefore, designers have to devise security priorities, and select security mechanisms accordingly. However, in the early
stages of the design process, the concrete effects of security attacks on the system may not be clearly identified. In this paper,
we propose a framework that integrates formal verification and network simulation for enabling designers to evaluate the
effects of attacks, identify possible security mechanisms, and evaluate their effectiveness, since design time. Formal methods
are used to build the abstract model of the application, together with a set of attacks, and to state properties of general
validity. The simulator measures the impact of the attacks in terms of common network parameters, like energy consumption
or computational effort. Such information can be used to select adequate security mechanisms, then the initial abstract model
can be refined to adopt them, and finally prove that former system properties are still verified. The framework relies on
UPPAAL for formal modeling and verification and uses the Attack Simulation Framework on top of Castalia as a network

simulator. As proof of concept, a case study is shown.

Keywords Security - Wireless sensor networks - Simulation - Attack evaluation - Formal verification

1 Introduction

Wireless Sensor Networks (WSNs) are particularly vulnera-
ble to security threats, both on the physical and logical plane.
In fact, WSN nodes operate unsupervised, even in hostile
environments, without a physical line-of-defense. Moreover,

This research was partially supported by the Italian Ministry of
Education and Research (MIUR) in the framework of the CrossLab
project (Departments of Excellence).

B Maurizio Palmieri
maurizio.palmieri @ing.unipi.it

Cinzia Bernardeschi
cinzia.bernardeschi @unipi.it

Gianluca Dini
gianluca.dini @unipi.it

Francesco Racciatti

francesco.racciatti @unifi.it

Department of Information Engineering, University of Pisa,
Pisa, Italy

Department of Information Engineering, University of
Florence, Florence, Italy

Published online: 06 August 2021

WSN nodes are resource-scarce devices, so they cannot
address all the attacks to which they are exposed to [10].

A WSN should provide information security (e.g., data
integrity, and authenticity) as well as robustness to most
common attacks like denial-of-service, routing attack, and
replacement of sensors with malicious nodes, which can, for
example, ignore messages to be transmitted. The analysis
of security-related issues in WSNs has been largely studied
[7,15].

A number of development methodologies have been pro-
posed for secure application development by integrating a set
of security-related activities through the Software Develop-
ment Life-Cycle (SDL) [20]. Such activities, like the clear
definition of the security requirements, the accurate knowl-
edge of the assets of the system, the misuse cases definition,
the threat modeling, the application of risk analysis, as well as
the definition of security attacks countermeasures, may help
designers to detect security flaws and solve security issues
earlier in the system life-cycle. At later stages of develop-
ment, other practices are suggested to improve the overall
security, like secure coding, which allows typical program-
ming mistakes to be avoided, and simulation of malicious

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11416-021-00392-0&domain=pdf
http://orcid.org/0000-0003-1604-4465
http://orcid.org/0000-0002-6029-5467
http://orcid.org/0000-0002-6177-0928
http://orcid.org/0000-0002-0452-5010

C. Bernardeschi et al.

attacks at runtime, exploiting for example the environment
configuration. Similarly, penetration testing could also be
used to identify vulnerabilities.

Many of the proposed approaches apply risk analysis and
threat modeling activities in the design phase, in order to
obtain a metric-based risk assessment of threats [14,18]. For
example, in the Microsoft SDL framework, the STRIDE tool
[23] can be used to identify threats and the risk related to
each threat can be numerically estimated through some score-
based methods, e.g. the DREAD method.

The approach proposed in this paper relies on model based
design, and provides objective measurements of the impact
of threats on the system, since the design phase, by exploit-
ing both simulation and formal analysis. The possibility to
model the WSN (or the application) at a high level through
formal languages, and run such a model on a network simu-
lator, makes it possible to collect real data about attacks and
to rank security risks accordingly. This may help designers
to better select the most adequate countermeasures to imple-
ment and reach a good trade-off between security, costs, and
performances.

Generally, the process of designing and prototyping WSN
protocols and applications exploits tools like network simu-
lators [19]. Example of simulators are OMNeT++ [24], NS3
[17], Castalia [2] and Ptolemy [9].

These simulators provide practical measurements of net-
work nodes quantities like communication latency, energy
consumption, and computational effort. However, the scope
of network simulators is only limited to the simulated scenar-
ios at hand, and cannot be used to prove general properties
of the system.

Conversely, formal models of WSN protocols and applica-
tions, designed via mathematical methods, allow designers to
state properties of general validity and prove them through
automated tools. On the other hand, the inclusion of fully
detailed physical properties inside formal models may lead
to an infeasible solution search.

Formal methods have been extensively applied in the lit-
erature for modeling and analyzing sensor networks. For
example, in [8] key properties of a popular routing protocol
are analyzed, in [21] performance of protocols are evaluated,
in [6] formal methods are exploited for validating simulation
results. A combined approach for both simulation and formal
verification of WSN protocols has been proposed in [4,5].
Such an approach explores logic as a formal specification
language, executable theories for simulation, and theorem
proving for formal proofs. However, this approach only con-
siders an abstract description of the communication protocol
at the network layer.

The main contribution of this work is the definition and
the implementation of a framework that enables designers,
since the early stage of design, to (i) automatically turn a for-
mal abstract model of a WSN system into a network model;

@ Springer

(i1) describe the effects of cyber-physical attacks on the sys-
tem,; (iii) measure the effects of such attacks on the network
and the application, and identify adequate countermeasures;
(iv) refine the initial model with the adopted countermea-
sures, and test them against the attacks. In detail, starting
from abstract models described in UPPAAL [3] using the
Timed Automata formalism [1], such a framework produces
concrete network models to be simulated against attack sce-
narios through the Attack Simulation Framework (ASF) [11].
The exploitation of simulators downstream of formal meth-
ods can also provide designers with useful insights on the
physical aspects of the system, such as energy consumption
or computational effort of nodes.

As proof of concept, the framework is used to study
the flooding protocol [16], assuming the following security
issues: (i) a compromised node drops a packet; (ii) a com-
promised node tampers a packet before sending it; and (iii)
an external malicious node injects fake packets into the net-
work. Though the system shows robustness against the drop
and the tampering attacks, a critical issue related to the exces-
sive energy consumption of a certain node is found when the
packet injection attack occurs.

The paper is organized as follows: Sect. 2 provides back-
ground on the UPPAAL formal modeling framework and
the ASF. Section 3 describes the proposed approach and
the developed framework. Section 4 shows a case study and
Sect. 5 concludes with a discussion on future work.

2 Background

The section that follows introduces the basic concepts of the
tool UPPAAL, and the Attack Simulation Framework.

2.1 UPPAAL

UPPAAL is a tool for modeling and analyzing systems
described by Timed Automata [1]. A timed automaton is a
graph characterized by

clk ==12 clk ==12
channell! channel2!
on off on off
clk <=12 clk <=12
channel2? channell?
clk:=0 clk:=0

(a) Example automaton 1 (b) Example automaton 2

Fig.1 Example of UPPAAL automata

A framework for formal analysis and simulative evaluation of security attacks in wireless sensor networks

— a set of nodes (named locations);

— one initial location;

— aset of invariant conditions, labeling locations;
— aset of edges between locations;

— aset of actions, labeling edges;

— a set of clocks;

— aset of constraints, labeling edges (guards).

The values of the clocks and the current location repre-

sent the current state of a timed automaton. Location changes
occur as a consequence of execution of edges, together with
the changes explicitly written as actions. Instead, when the
system remains in a certain location, the time progression
is represented by the increasing of the clocks values, which
happens at the same rate for all of them. As long as the current
location in the state of the timed automaton has an invariant
condition, this condition must always be verified. If an invari-
ant is no longer satisfied an edge that changes accordingly
the current state must be executed (for example an edge
that changes the variable involved in the invariant or an edge
that changes the current location); if such an edge is not exe-
cutable the timed automaton ends up in a deadlock meaning
that the system is not well defined.
Such timed automata can be connected and synchronized
to each other for modeling complex networks of timed
automata. Connections between timed automata can be
implemented using communication channels, through which
synchronization actions can be executed. Synchronization
between automata can be realized through edges, one for
each automaton to be synchronized. Such edges have to
be labeled with complementary actions, namely input and
output, which are represented through question marks (?)
for input synchronizations, and exclamation marks (!) for
output synchronizations, respectively. A timed automaton
executing an output action, synchronizes with one or more
timed automata executing input actions, and vice versa. Syn-
chronizations can be blocking or not blocking, depending on
the type of channel connecting the automata. For example,
broadcast channels are not blocking and the output action
can synchronize with many input ones.

An exemplary UPPAAL model is shown in Fig. 1 where
two automata are shown. Both automata in Fig. 1a and b have
two different locations, on and of £, a local clock variable
c1lk, used to specify the invariant of the on location and
the guard c1k <= 12 in the upper edge. Finally the two
automata synchronize on two different channels channell
and channel?2 (for example channell is the output
channel for the automaton 1 and the input channel for the
automaton 2) . The initial locations of the two automata are
complementary, i.e. automaton 1 is initially in the on location
and automaton 2 is initially in the of £, and they simultane-
ously switch from one location to the other every 12 time

‘ Atta_lck_ Attack
Description
9 Interpreter
A XML b
Network
Model
A
Attack
Results Simulator

Fig.2 Overview of the ASF workflow

units, resetting the local clock clk every time the automa-
ton moves from of f to on.

For additional details regarding Timed Automata, and their
possible usages, the readers can refer to [1] .

Automated formal verification is supported by the
UPPAAL Model Checker. UPPAAL has been chosen in
this work because of its intuitive user interface and for the
successful example of uses for wireless communication mod-
eling (e.g. [13,22]).

2.2 Attack simulation framework

The ASF can be applied to any Commercial-Off-The-Shelf
(COTS) network simulators for enabling the simulation of
the effects of cyber-physical attacks against the network and
the application [11].

Figure 2 shows an overview of the ASF workflow. ASF
provides i) an Attack Description Language (ADL), which is
a high-level language for describing the effects of the attacks
against the network and the application; ii) an Attack Inter-
preter, that converts the attack description into an Attack
Model; and iii) an Attack Simulator, that simulates the effects
of the attacks on the given Network Model, and provides sim-
ulation results.

As first step, the user builds an attack scenario, i.e. the
effects of the attacks, through the ADL are described. Then,
the Attack Interpreter turns the description of the attacks into
an XML file that contains the model of the attack scenario.
Eventually, the Attack Simulator takes both the Network
Model and the Attack Model as inputs, to simulate the effects
of the attacks and measure their impact against the attack-
free scenario. The impact of the attacks can be measured by
using many metrics. Common metrics refer to nodes’ and
network’s quantities and measure the impact of the attacks
in terms of i) degradation in performance; ii) increment in
energy consumption; and iii) reduction of network through-
put; among others [12]. Instead, more specialized metrics,

@ Springer

C. Bernardeschi et al.

like security metrics [10], measure the effects of the attacks
on system’ security.

Generally speaking, ASF is simulator agnostic, i.e. it can
work on top of any network simulator. However, the under-
lying simulator has to implement the features that make it
possible to simulate the effects of the attacks described in
the XML file containing the Attack Model. It is worth noting
that the user is not required to modify and re-build the Attack
Simulator for implementing attacks. The Attack Simulation
Language is flexible enough to let the user simulate a large
set of cyber-physical attacks, even complex ones.

2.2.1 Attack Description Language

The ADL provides a collection of primitives that allow the

user to describe an attack as a sequence of atomic events that

take place neatly. The primitives can be grouped into two sets

i) node primitives, and ii) message primitives.

Node Primitives Node primitives account for physical attacks

and allow the user to describe events that alter the physical

behavior of nodes. In detail, node primitives are:
— destroy (nodelID, t),removesnodenodeIDfrom
the network at time t.

— disable(nodeID, moduleID, t), disables the
module moduleID of the node nodeID attime t.

— deceive (nodeID, sensorID, t, val),impo
ses value val to all the readings of sensor sensorID
of node nodeID, starting from time t.

— move (nodeID, t, pos),movesthe node nodeID
to position pos at time t.

Node primitives can be used for simulating physical attacks
against target nodes like i) capture and move; or ii) physical
disruption; or iii) malfunctioning of internal components;
among others.

Message Primitives Message primitives account for cyber
attacks and allow the user to describe actions on network
packets. In detail, message primitives are:

— retrive(dst, pkt, pktF1ld),copiesthecontent
of field pktF1d of packet pkt into the variable dst.

— change (pktF1ld, pkt, src), copies the content
of variable src into field pktF1d of packet pkt.

— drop (pkt), discards the packet pkt.

— create(pkt, type, fld, wval, ...),creates
a new packet pkt of type type, and fills the field £1d
with value val. Thetypeisinthe format layer .proto
col,e.g. LINK. TMAC, that specifies a link-layer TMAC
packet. The user can specify the content of multiple fields
of the packet.

— clone (dstPkt, srcPkt), creates the packet
dstPkt as exact copy of the packet srcPkt.

@ Springer

- put (pkt, dstNode, TX|RX), puts packet pkt
either in the transmission (TX) or reception (RX) buffer
of nodes dstNodes.

Message primitives can be used for simulating cyber attacks
like 1) packet eavesdropping; or ii) packet dropping; or iii)
packetinjection; or iv) packet altering; or even v) wormholes;
among others.

Loop statements The ASL provides loop statements for spec-
ifying the periodic occurrence of a list of message primitives.
For instance, the statement:

from T every P do {<list of events>}

describes the periodic occurrence of the list of events, with
period P, starting from time T.

Conditional statements Furthermore, the ASL provides con-
ditional statements for specifying the conditional occurrence
of message primitives, which takes place depending on
the specified condition evaluated at runtime by nodes. For
instance, the statement:

from T nodes = <list of nodes> do {
filter (<condition>) {<list of events>}

}

describes the conditional occurrence of a list of events on the
declared list of nodes. In detail, starting from time T, each
target node in the list applies the £i1lter condition on all
the packets flowing through its communication stack. If the
packet satisfies the £11 ter condition, the list of events takes
place.

As a practical example, let us consider a node reprogram
attack in which, starting from time 50 s, the target node 2
is captured and reprogrammed for tampering the payload of
the application packets received from Node 1. In particular,
the original payload is decremented by one.

from 50 s nodes = "2" do {
filter(packet.APP.source == 1
AND packet.APP.type == DATA) {

var value = packet.APP.payload - 1;
change (packet .APP.payload, value) ;
}
}

As shown above, the dot notation packet . layer.field
is used to access the field £ield, onlayer layer, of packet
packet. As a consequence, the user has to be aware of
both i) the network protocols running on each communication
layer; and ii) the structures of such protocols’ packets.
Once the attack scenario is built by means of the ASL, it
can be interpreted by the Attack Interpreter for turning it into
the XML Attack Model. Eventually, the Attack Simulator
gets the XML Attack Model for simulating the attacks on

A framework for formal analysis and simulative evaluation of security attacks in wireless sensor networks

Physical process

A 4

Sensor Manager]

Resource Manager

by}
[}
=t
=
[« @ g
Local Event Processor

v |V

v |V

Mobility
Manager

Wireless Channel

Fig.3 Enhanced Castalia node architecture

the current Network Model. In the following, we refer to
the implementation of ASF on top of the WSN simulator
Castalia.

2.2.2 Attack Simulator

The Attack Simulator showed in Figure 2 is obtained by
enhancing the WSN simulator Castalia. In detail, the node’s
architecture and the network’s architecture are modified to
parse the Attack Model file and simulate the effects of the
attacks on the WSN, while the simulation runs.
Enhanced Castalia node Figure 3 shows the architecture of
an enhanced Castalia node. The node is provided with an
additional module, namely the Local Event Processor (LEP)
module, which operates transparently with respect to other
modules. The LEP module manages the events related to
the attacks, i.e. it performs the operations for simulating the
occurrence of attacks described through the ASL’s primitives.
Thanks to its particularly assembly, it interposes between
all the modules implementing the node’s communication
stack. In this way, it intercepts all the packets flowing through
the node’s stack. Therefore, depending on the attack to be
simulated, the LEP module can perform several operations
like 1) inspect packets; ii) alter the content of them; iii) dis-
card certain packets; and iv) create new packets and inject
them in any layer of the node’s stack. Moreover, the LEP
module can act on internal node’s components for altering
their behavior or for disabling them.
Enhanced Castalia network At network level, ASF provides
an additional module, namely the Global Event Processor

N

Physical Process 1
) (
Local GlLobaI Event Local
Event rocessor Event
o Processor
Global
Logger

(Wireless Channel

Processor

Fig.4 Enhanced Castalia network architecture

Attack Model

Parser
Abstract
&
Model
Interpreter

Simulation Results

Attack
Simulator

Fig.5 Overview of the proposed approach for evaluating the impact of
the attacks from the early stage of design

(GEP) module, which is directly connected with all the LEPs,
as shown in Figure 4. The GEP module coordinates the oper-
ations of the LEPs to perform complex attacks, like packets
injection and wormholes. Eventually, the LEP modules are
connected with the Global Logger that collects the simula-
tion data, which will be used for calculating the metrics of
interest in post-simulation.

3 Proposed approach and related framework

The approach we propose binds formal methods and sim-
ulation, with the aim of quantitatively evaluating the effects
of security attacks, and measuring the effectiveness of the
adopted countermeasures (if needed), since the early stage of
design. This approach develops on four main steps, as shown
in Figure 5. As a first step, WSN designers can use formal
methods to easily build an abstract model of the protocol or
application, to study and prove its general properties. The
abstract model can also be extended for including the attacks
against which the application has to be tested. In this way,
it is possible to prove the general properties of the system
when attacks occur, also. Then, as a second step, a network
model is generated starting from the original abstract model,
namely the abstract model that does not contain the attacks,
via a dedicated Interpreter. As a third step, the Attack Simula-
tor simulates the network model both against attack-free and
attack scenarios. When the simulation ends, the simulation
results are used to i) validate the behavior of the network
model; ii) evaluate the impact of the attacks on the net-

@ Springer

C. Bernardeschi et al.

Parser &
Interpreter

Abstract
Model

with
annotations

A
UPPAAL
Attack A
Model C++ L
F Y

INI L
NED
Network

I Model
Sources

;LZ

Attack
Scenario

System
Integrator

— Results over

Castalia

Fig. 6 Detailed workflow for binding UPPAAL with ASF on top of
Castalia

work and the application; and iii) identify countermeasures,
if needed. Eventually, as a fourth step, the abstract model can
be refined for including countermeasures. Such a workflow
can be repeated many times until the refined abstract model
behave as expected against the considered attack scenarios.

In the following, it is shown the framework implement-
ing this approach. Then, the design of an application-layer
protocol is presented as a case study.

3.1 UPPAAL/ASF integration workflow

Figure 6 shows the workflow we propose for integrating
UPPAAL with ASF over Castalia.

As afirst step, the UPPAAL model has to be enriched with
information regarding the physical features of the simulation
environment, e.g. i) the size of the simulation field; ii) the
position of nodes in the simulation field; iii) the latency of the
channels; among others. UPPAAL does not take into account
the physical features at all. However, such information are
mandatory for performing network simulation.

The enrichment of the UPPAAL model takes place
in the related XML file, precisely in the system tag,
using annotations, i.e. comments having the format:
//@<Annotation>. UPPAAL does not take into account
such annotations at all, since they are written as comments
in system description source code. As an example, the fol-
lowing code shows the annotation of the position of Node
1.

//@Position (20, 50, 10) nodel := relay(l);

@ Springer

In detail, the position of Node 1 is (x = 20, y = 50, z = 10)
from the origin in the Cartesian coordinate system, which is
used by Castalia as a coordinate system.

As a second step, the XML file produced by UPPAAL
is parsed by the Parser for building a standard object-
oriented model of the UPPAAL timed automata. Next, such
an object-oriented model is processed by the Interpreter,
which produces a set of source files, accordingly to the under-
lying Simulator. In particular, the Interpreter produces a set
of C++ and INI files that implement the actual behavior of
the network. Then, the System Integrator bundles the files
produced by the Interpreter with the Simulator.

Eventually, as a fourth step, the Simulator runs the simu-
lation and produces results. The analysis of such results may
underline some problematic aspects that had not been taken
into consideration while building the initial abstract model.
If so, the abstract model is refined for addressing such issues.
The whole process can be repeated until the system starts to
behave as expected.

Additionally, the user can study the behavior of the system
against attack scenarios of interest. Such attack scenarios can
be included either at UPPAAL level, or at Simulator level,
or both. By introducing the attack scenarios in UPPAAL,
the user can check if the system’s properties are still sat-
isfied despite the attacks. For doing so, the attacks have to
be actually integrated in the original abstract model, namely
the abstract model without attacks. Instead, when performing
the attacks on the Simulator, the user can precisely measure
the impact of them on the network and the application. For
doing so, the attacks have to be modeled through the Attack
Description Language provided by ASFE. Then, the analysis
of the simulation results may lead to the adoption of coun-
termeasures. As a consequence, the initial abstract model is
refined and the whole process repeats for evaluating the effec-
tiveness of such countermeasures. It is worth noting that the
framework refers to the original abstract model for obtaining
the related network model, and not to the abstract model that
includes the attacks.

3.2 Implementation of the integration framework

Castalia comes with a set of ready-to-use components that
cover the entire communication stack. Such components
are fully tunable and customizable and can be combined
with each other for implementing the desired behavior
on each layer of the communication stack. The proto-
type we propose exploits such ready-to-use components.
In fact, it interprets the UPPAAL model for generating the
application-layer module from scratch. Then, it combines the
generated application-layer module with ready-to-use mod-
ules that implement bottom layers. The section that follows
describes key design elements of the framework for integrat-
ing UPPAAL with ASF over Castalia.

A framework for formal analysis and simulative evaluation of security attacks in wireless sensor networks

3.2.1 UPPAAL model annotations

The integration framework requires the user to annotate the
position of nodes, only. In fact:

— the position is the only parameter that cannot be auto-
matically inferred from the UPPAAL abstract model;

— the UPPAAL model involves the application-layer only,
bottom layers are omitted;

— Castalia provides a set of ready-to-use modules for imple-
menting the whole communication stack;

— modules’ physical parameters of bottom layers can be
tuned after integration.

In the following, it is shown the tag system of the
enriched XML file related to the system topology depicted in
Fig. 8. Nodes are positioned accordingly to Castalia’s coor-
dinate reference system.

// @Position (10, 0, 0)
sourcenode := source();

// @Position (0, 10, 0)
nodel := relay(1);

// @Position (20, 10, 0)
node2 := relay(2);

// @Position (10, 20, 0)
node3 := relay(3);

// @Position (30, 20, 0)
noded4 := relay(4);

system sourcenode, nodel, node2, node3, node4;

3.2.2 Parser and Interpreter

The Parser parses the annotated XML file produced by
UPPAAL and builds an object-oriented model of the timed
automata. Such an object-oriented model is independent
of the underlying Simulator. Conversely, the Interpreter is
strictly coupled with the Simulator, since it produces the
source files that will be bundled with it. In the following,
we focus on the files produced by the Interpreter.

Network Configuration The overall network configuration
is contained in the file omnetpp . ini, which is extracted
from the XML tag system. Such a file defines the num-
ber of nodes, the positioning of them, and the applications
running on each layer of their communication stacks. More-
over, it contains all the network’s physical parameters, like
the latency of the channel, the transmission power of nodes’
antennas, the nodes’ internal clock, and many others. By tun-
ing such parameters, it is possible to generate several different
configurations of the same network, without re-building the
Simulator.

Global data structures and type aliasing Global C/C++ head-
ers containing global data structures and type aliasing are
extracted from the global XML tag declaration. Such
data and types are stored in the file UppaalGlobal.h,
which will be imported by all the classes using global data
or types.

Application-layer packet The structure of the application-
layer packet, used by all the network nodes, is obtained
from the definition of the UPPAAL communication chan-
nel, which is contained in the text of the global XML tag
declaration. In detail, the Interpreter stores the NED
description of the packet structure in the file UppaalPacket
.msg. Such a file will be used during the build of the sim-
ulator, for producing the files UppaalPacket_m.h and
UppaalPacket_m. cc, which contains the C++ model of
the packet itself. The header UppaalPacket_m.h will be
imported by all the classes sending and receiving application-
layer packets.

Nodes’ applications The Interpreter produces one appli-
cation for each XML tag template. Each node of the
network runs a certain application, namely template, in its
application-layer simple module. From a general point of
view, an application is made by:

— one NED description of the simple module executing the
application;
— aset of C/C++ files implementing the application itself.

In detail, each application is provided with a Finite State
Machine (FSM), that implements the behavior described by
the XML template. Referring to the content of the XML tag
template:

— each location accounts for one FSM’ state;
— each transition accounts for one FSM’s transition.

Moreover, the application is provided with the FSM’s
transition map, used to let the FSM evolve. All of FMS’s
transitions implements the following abstract functions:

bool
AbstractTransition: :checkGuard() ;

bool
AbstractTransition: :doSynchronization() ;

std: :string

AbstractTransition: :doAssignments () ;

The functions checkGuard, doSynchronization,and
doAssignments implement the UPPAAL transition’s
guard, synchronization and assignments, respectively.

The FSM evolves according to the node’s clock, through
the execution of transitions, namely performing the UPPAAL
transition’s assignments. At each clock tick, the application
retrieves all the outgoing transitions for the current node from

@ Springer

C. Bernardeschi et al.

the FSM transition map. Then, it executes the transition that
satisfies both the guard and the synchronization conditions.
If no transition is possible, the FSM does not evolve in the
current clock frame. Conversely, if more transitions can be
performed, the application executes one of them randomly.
Nodes synchronization In Castalia, nodes asynchronously
communicate with each other. Moreover, when transmit-
ting, nodes broadcast packets. UPPAAL transmission and
reception synchronizations are supported in Castalia in two
different ways.

Transitions containing a transmission synchronization
can be always executed if the related guard is satisfied.
A UPPAAL transmission synchronization, for example on
channel 0, i.e. message [0] !, results in the broadcast of a
UppaalApplication packet, as shown in the following code:

UppaalPacket* uppaalPacket;
uppaalPacekt = new UppaalPacket (nodeid) ;
toNewtorkLayer (uppaalPacket, BROADCAST) ;

After the packet is broadcasted, it is received by all nodes
positioned inside the sender’s transmission range.

To support the UPPAAL reception synchronization, each
node is provided with a reception buffer on the application-
layer. Such a buffer follows the FIFO policy. Nodes store
UppaalPackets into the reception buffer as soon as they are
received.

Then, when a reception transition is executed, for example
on channel 0, i.e. message [0] ?, it results in the scanning
of the reception buffer, looking for the first UppaalPacket
received from Node 0. If the target UppaalPacket is found,
then the transition is executed. Otherwise, the FSM does not
evolve in the current clock frame.

4 Case study

This section shows a case study with the application of the
proposed framework to the flooding protocol [16], which is
used to forward messages from a source node to all the mem-
bers of the network, using each node as arelay of the message.
Flooding can be used, for example, to distribute code updates
to all nodes.

4.1 Application model in UPPAAL

The applications running on network nodes are modeled
via parametric timed automata, by exploiting the UPPAAL
template system. Such timed automata are parametric with
respect to the node id. In general, leaving out initialization
and final states, network nodes have only one main state from
which a set of outgoing transitions starts. Such transitions
account for the reception/transmission of packets from/to
other network nodes.

@ Springer

chnl[0]? receive(id,0)
chnl[1]? receive(id,1)
chnl[2]? receive(id,2)
chnl[3]? receive(id,3)
chnl[4]? receive(id,4)

n>0

chnlfid]!

bmessageslid] := buffer[0],
update()

Fig.7 Abstract model of a generic relay node

Moreover, network nodes are connected through a not
blocking broadcast channel. It is worth noting that the trans-
mission of messages results in the broadcast of them. Such
a broadcast channel is modeled through the global array
chnl indexed by the type node_t, which defines the
size of the array itself. Similarly, we model the messages
exchanged between network nodes through the global array
bmessages indexed by node_t. Moreover, we assume
that the timestamp uniquely identifies every message. There-
fore, we use the global declarations that follow, where the
variable NODES represents the number of network nodes:
const int NODES = ...;
typedef int[0,NODES-1] node_t;
typedef int timestamp;

chan chnl[node_t]:
timestamp bmessages[node_t];

In the following, we refer to a WSN made up of five nodes 1)
one source node; and ii) four relay nodes. The detailed model
of such nodes is described in Sect. 4.1.1.

Figure 7 represents the template of a generic node. In
detail, the model of a node is made by one location, one edge
for the action of sending a message and NODES edges for
receiving a message from every other node. In the specific
topology considered in this case study there are:

— five edges execute the input actions chnl[0]? ---
chnl[4]7?;
— one edge executes the output action chnl [1d]!.

The input action chnl [1] ? is the action executed by a
node for receiving a message from the node i. Similarly,
the output action chnl[i] !bmessages[i] represents
the action executed by node i to broadcast the message
bmessages[i].

As depicted by Fig. 7, the output action chnl[id]!
is enabled only if the global variable bmessages[id]
contains at least one message to send, i.e. if n > 0. It is
relevant to point out that n represents the number of mes-
sages to be forwarded, whereas buf fer [0] represents the
messages stored in the head of the local buffer of the node
id, which is the FIFO buffer that contains all the mes-
sages to be forwarded. When a message is sent, it is stored

A framework for formal analysis and simulative evaluation of security attacks in wireless sensor networks

into the global array bmessages, i.e. bmessages[1d]
= buffer[0], then the function update () is executed
for updating node’s local data structures, as described in
Sect. 4.1.1.

Conversely, the inputaction chnl [1] ? is always enabled.

However, messages broadcasted by node i are received by
node id only if nodes 1 and id are neighbors. The function
receive (id, 1) implements the receiving of messages
from neighbors, as described in Sect. 4.1.1.

4.1.1 Flooding protocol

Flooding [16] is a one-to-many routing protocol, in which
a dedicated node (the base station) needs to communicate
general information to all the nodes of the network. As an
example, flooding can be applied for dynamic route dis-
covery. A simple version of flooding behaves as follows:
whenever a network node receives a message, it is forwarded
to all its neighbors only if it has not already been forwarded;
otherwise, it is dropped. Moreover, nodes drop old messages
also, when received. In the following, an interesting property
of the flooding protocol is stated.

Property P: every node receives all the messages sent by
the base station, and every message that was received is then
forwarded only once.

Relay nodes Referring to the abstract model of a generic relay
node depicted in Fig. 7, nodes are provided with the local
data structures that follow, in order to support the flooding
protocol.

const int MSGS = ...;

typedef int [0,MSGS-1] checker_t;

const int DIM = ...;

typedef in [0,DIM-1] size_t;

timestamp TS;

timestamp buffer [DIM];

int n;

timestamp logger [DIM];

int m;

MSGS represents the number of messages sent by the base
station; T'S stores the most recent timestamp of received mes-
sages; buf fer is a FIFO buffer that stores messages waiting
to be forwarded; and, finally, the buffer Logger stores the
already broadcasted messages. The latter buffer will be used
to check the Property P.

Moreover, for implementing the flooding algorithm on
relay nodes, the functions receive and update of the
timed automaton depicted in Fig. 7 can be specialized as
follows.
void receive (int j) {

if (neighbor (id, Jj)
&& bmessages([j] > TS
&& n < DIM-1)) {
buffer[n] = bmessages[]j];

TS = bmessages[j];
n++;

Source
Node

Fig.8 Network topology

}

void update() {
n--;
for(i size_t) {
buffer[i-1]l=buffer[i];
}
if (m < DIM-1) {
logger[m] = bmessages[id];
m++;

Where n and m represent the current number of elements
stored in buffer and logger, respectively. In detail,
the test bmessages[j] > TS in the function receive
evaluates false when the node id receives either an old
or an already received message. In such cases, the received
message is not stored into buffer and is dropped. More-
over, after broadcasting a message, the function update ()
executes a backward one-position shift of buffer.

Figure 8 shows the network topology we consider. More-
over, we assume the communication range between nodes
is one hop. As a consequence, the function receive (id,
i) of relay nodes is tailored on such network parameters,
and returns true if the nodes id and i are one-hop neigh-
bors, false otherwise. As an example, receive (4, 2)
returns true, since Node 2 is a one-hop neighbor of Node 4.
Conversely, receive (4, 3) returns false, since Node
3 is two-hops far away from Node 4.

Source node Fig. 9 shows the UPPAAL template that mod-
els the base station, named Source node, of the flooding
algorithm. The Source node broadcasts a brand new mes-
sage every clk units. Messages sent by Source node are
incrementally timestamped, from 1 to MSGS, which is the
last message sent. After sending MSGS messages, the Source
node stops transmitting.

Network According to the network topology (Fig. 8), the
UPPAAL network is specified as follows.

sourcenode
nodel

:= source();
:= relay (1) ;

@ Springer

C. Bernardeschi et al.

bmessages[0] < MSGS and clk ==1
chnl[0]!

bmessages[0] := bmessages[0]+1,
clk:=0

@ ck<=1

bmessages[0] := 0

Fig.9 Abstract model of the Source node

node2 := relay(2);
node3 := relay(3);
noded4 := relay(4);

e

system sourcenode, nodel, node2, node3, node4;

Where source and relay (id) represent the templates
for the Source node and the Relay nodes, respectively. The
Property P of the flooding protocol, which was previously
described, can be checked via UPPAAL by exploiting the
formulas that follow.

A<>(forall (i:checker_t)
nodel.logger[i] == 1 + 1)
A<>(forall (i:checker_t)
node2.logger[i] == 1 + 1)
A<>(forall (i:checker_t)
node3.logger[i] == 1 + 1)
A<>(forall (i:checker_t)
node4.logger[i] == 1 + 1)

In detail, we test the Property P against the content of the
buffer logger of all relay nodes. For each node, the buffer
logger stores all the messages forwarded by it. Referring to
the formulas above, logger [1] represents the (i+1)-th
message that was forwarded by a certain node.

The Property P is proved to be true if, for each relay node,
foreach i suchasie [0, MSGS),logger[i] storesthe
timestamp i+1. In this case, all nodes forwarded only once
all the messages they received.

It is worth noting that UPPAAL tests the formulas above
against all the possible execution paths of the protocol. In
particular, such formulas have been proved to be true in our
attack free simulation scenario.

4.1.2 Modeling attacks

Referring to the network topology shown in Fig. 8, we con-
sider three attacks (i) Packet dropping attack; (ii) Packet
tampering attack; and (iii) Packet injection attack.
Packet dropping attack In the first attack, at a random time,
the compromised node drops exactly one packet that, instead,
should have been sent to its neighbors. Figure 10 shows the
model of the compromised node that drops the packet.
Simulations done via UPPAAL show the results that fol-
low.

@ Springer

chnl[0]? receive(id,0)
chnl[1]? receive(id,1)
chnl[2]? receive(id,2)
chnl[3]? receive(id,3)
chnl[4]1? receive(id,4)

n>0

chnllid]!

bmessages[id] := buffer[0],
update()

attacked == false
andn >0
attacked := true,
n:=n-=1,

shift()

Fig. 10 UPPAAL template modeling the packet dropping attack

chnl[0]? receive(id,0)
chnl[1]? receive(id,1)
chnl[2]? receive(id,2)
chnl[3]7 receive(id,3)
chnl[4]? receive(id,4)

n>0

chnl[id]!

bmessages[id] := buffer[0],
update()

attacked == false

and n >0

buffer[0] = buffer[0]+2,
attacked := true

Fig. 11 Template modeling the packet tampering attack

— when the adversary compromises Node 1, the Property P
described in 4.1.1 is still satisfied, since Node 3 receives
a copy of the dropped packet from Node 2, thanks to link
redundancy;

— when the adversary compromises Node 2, the Property P
is not satisfied anymore because Node 4 does not receive
a copy of the dropped packet since there is no redundancy
on links connecting Node 4 with other network nodes.

Packet tampering attack In the second attack, the compro-
mised node sends exactly one fake packet to its neighbors.
Such a packet contains a fake timestamp, which is ahead in
time compared to the current time. The reception of the fake
packet causes, on the recipient, the discarding of all the gen-
uine packets that carry a timestamp older than the fake one.
Figure 11 shows the model of the compromised node that
tampers the packet.

Simulations and model checking done via UPPAAL show
the following results.

A framework for formal analysis and simulative evaluation of security attacks in wireless sensor networks

messages > 0

chnlv!
bmessages[NODES] := -1,
messages--

Fig. 12 Template modeling the injection attack

— When the adversary compromises Node 1, the Property
P is not satisfied if Node 3 receives the fake packet from
Node 1 before the genuine packets carrying timestamps
older than the fake one from Node 2. Conversely, the
Property P is satisfied if Node 3 receives from Node 2 all
the genuine packets carrying timestamps older than the
fake one before the fake packet from Node 1.

— When the adversary compromises Node 2, the Property
P is not satisfied anymore because Node 4, after receiv-
ing the fake packet, discards all the subsequent genuine
packets received from Node 4 that carry timestamps older
than the fake one.

As shown in Figs. 10 and 11, both the attacks are modeled

by adding exactly one transition to the model of the relay
node shown in Fig. 7. Both attacks occur at random time and
execute only once.
Packet injection attack In the packet injection attack, at ran-
dom times, an external malicious node sends one message
to a victim node. Such a message contains a timestamp that
does not interfere with the protocol, as the malicious node is
external to the network. Figure 12 shows the UPPAAL model
of the malicious node that implements the packet injection
attack. Since it is not possible to specify an infinite number in
UPPAAL, the malicious node only sends a fixed number of
messages, messages, using a newly introduced broadcast
channel chnlv. All the genuine nodes of the network syn-
chronize on chnlv but only the designated victim actually
receives the message. Simulations done via UPPAAL show
that the Property P is never affected by the packet injection
attack.

4.1.3 Flooding protocol network simulation

The System Integrator bundles the files produced by the Inter-
preter with ASF on top of Castalia, then builds the simulator.
After that, simulations can be performed. It is worth noting
that Castalia makes it possible to have several different con-
figurations for the same WSN, without re-build the simulator
from scratch. A certain WSN model may have several dif-
ferent configurations that differ from each other due to i) the
positioning of the nodes; ii) the latency of the channel; iii)
the bottom layers protocols; iv) or other tuning parameters.
Batch processing can be used for simulating a large number
of different configurations for a certain WSN model, with

the aim of validating a large number of different scenarios
through simulation.

In the following, a sample of a simulation report provided
by ASF over Castalia, when simulating the attack-free sce-
nario, is shown. In detail, it lists the packets received by Node
4 during a simulation run. The clock period of all nodes is
100 ms.

Noded> at time 0.74 sec received value 5 from
node 2

Noded> at time 0.84 sec received value 6 from
node 2

Noded> at time 0.94 sec received value 7 from
node 2

In the attack-free scenario, Node 4 receives all the packets
sent by the Source node, through Node 2, without repeated
messages coming from the same node.

Packet dropping attack The packet dropping attack is
described through the Attack Description Language as fol-
lows:

from 0 s nodes = "2" do {
var target = RND * 10;
filter (packet.APP.type == FLOODING
AND packet.APP.data == target) {

drop (packet) ;

Starting from the beginning, i.e. at time zero, the target node
2 is captured and reprogrammed for dropping the applica-
tion packet of type FLOODING carrying the value target.
The attack triggers when the packet filter intercepts a packet
carrying a certain target value. The target value is chosen as
arandom integer value in [0, 10), to enforce the random
occurrence time of the attack. The monotonic growing inte-
ger value contained in the application packet payload ensures
that only one packet is dropped, i.e. the packet intercepted
by the packet filter that carries the random target value.

When simulating the packet dropping attack, Node 4 never
receive the packet dropped by node 2, accordingly to the
results provided by UPPAAL. For example, the result of a
simulation run of the packet dropping attack is:

Noded> at time 0.74 sec received value 5 from
node 2

Noded> at time 0.84 sec received value 6 from
node 2

Noded> at time 1.04 sec received value 8 from
node 2

In this case, when the attack occurs, Node 4 does not

receive the packet 7 from Node 2. Conversely, when attack-
ing Node 1, the system always shows robustness against the

@ Springer

C. Bernardeschi et al.

packet dropping attack, thanks to the redundancy provided
by Node 2.

Packet tampering attack The packet tampering attack is
described through the Attack Description Language as fol-
lows:

from 0 s nodes = "2" do {
var target = RND * 10;
var fakeValue = target + RND * 10;

filter (packet.APP.type == FLOODING
AND packet.APP.data == target) {
change (packet.APP.data, fakevalue) ;
}

Like in the packet dropping attack, the random occurrence
time is enforced by choosing a random target value, and the
monotonic growing value carried by the application packets
ensures that only one packet is tampered. When the attack
triggers, the intercepted packet’s data payload is tampered
with the value fakeValue, which is ahead in time with
respect to the value target.

When simulating the packet tampering attack, after receiv-
ing the fake packet containing a value ahead in time, Node
4 discards all the subsequent packets carrying seemingly old
values, accordingly to the results provided by UPPAAL. For
instance, the result of a simulation run of the packet tam-
pering attack, in which target = 7 and fakeValue =
12 is:

Noded4> at time 0.75 sec received value 6 from

node 2

Noded4> at time 0.85 sec received value 12 from
node 2

Node4> at time 0.95 sec DISCARDED value 8, from
node 2

Node4> at time 1.05 sec DISCARDED value 9, from
node 2

Node4> at time 1.15 sec DISCARDED value 10, from
node 2

Noded> at time 1.25 sec DISCARDED value 11 from
node 2

Noded> at time 1.35 sec DISCARDED value 12 from
node 2

Noded> at time 1.45 sec received value 13 from
node 2

Noded> at time 1.55 sec received value 14 from
node 2

In this case, when the attack occurs, at 0.85 sec Node 4
receives the packet carrying the fake value 12 (instead of
7). As a consequence, Node 4 discards all the subsequent
packets, until the value reaches 13, which is accepted, at 1.45
sec. Like in the packet dropping attack, the system is robust
against the packet tampering attack when attacking Node 1,
thanks to the redundancy provided by Node 2.

@ Springer

A possible solution to cope with both the drop and the
packet tampering attack may be the insertion of redundant
paths connecting Node 4 with other network nodes, like Node
3 and Source Node.

Packet injection attack The packet injection attack is described
through the Attack Description Language as follows:

from 0 s every 200 ms do {
packet pkt;
var target = [2];

create(pkt, APP.Flooding) ;

change (pkt.source, 0);

change (pkt.value, 0);

put (pkt, target, RX, 0);

The packet injection attack takes place from the beginning,
with an injection rate of one packet every 200ms, i.e. 5
fake packets per second. First, it creates an application-layer
packet pkt of type Flooding, which is intended to be pro-
cessed by the application that runs on the application-layer of
network nodes. The fake packet appears to be sent by Source
Node, and carries zero as value, which should not inter-
fere with the system operations, accordingly to UPPAAL.
Then, the packet, which is meant to be received by Node 2,
is injected in the network by an external device. In detail,
the packet does not flow through the entire communication
stack of Node2, but it is directly stored in the RX buffer
of its application-layer module. However, for simulating the
effects of the reception of such a packet, the Resource Man-
ager module of Node 2 is triggered as if a genuine packet
had been received by the Radio module, then decreasing the
remaining battery charge, accordingly.

Once received by Node 2, all fake packets are discarded,
as shown in the following execution sample:

Node2> at time 0.20 sec DISCARDED value 0 from

node 0

Node2> at time 0.21 sec received value 2 from
node 0

Node2> at time 0.31 sec received value 3 from
node 0

Node2> at time 0.40 sec DISCARDED value 0 from
node 0

Node2> at time 0.41 sec received value 4 from
node 0

Node2> at time 0.51 sec received value 5 from
node 0

Node2> at time 0.60 sec DISCARDED value 0 from
node 0

In this case, Node 2 receives and discards a fake packet every
200 ms, while genuine packets are correctly received and pro-
cessed by the application. However, the power consumption

A framework for formal analysis and simulative evaluation of security attacks in wireless sensor networks

60

T T T T
Node 2 energy consumption s

55 - b

50 |- 8

40 | .
35 b .
30

%

Scenario

Energy consumption (mJ)
-
o
T

Fig. 13 Energy consumption of Node 2 in attack-free and attack sce-
narios

Table 1 Energy consumption of Node 2 for each simulation scenario

Energy consumption(mlJ)

No Attack 40.79
Drop 40.68
Tamper 40.71
Injection 500 ms 43.22
Injection 250 ms 45.61
Injection 200 ms 49.24

caused by the reception of fake packets may drain the battery
of Node 2, resulting in the breakdown of the network. In such
a case, Node 4 will not connect with other nodes anymore,
and will remain isolated from the network.

Then, even if the packet injection attack does not interfere

with the flooding protocol at application level, it results in
draining the battery of the target node. Consequently, it could
cause the interruption of the service due to the breakdown of
the network earlier than expected.
Power consumption Figure 13 shows the impact of attacks on
the power consumption of Node 2. Results were obtained by
means of 20 simulation runs, whose length was 600 seconds
each. Nodes are equipped with the CC2320 radio chipset.
For the packet injection attack, we considered three injection
rates (i) 500 ms, i.e. 2 fake packets per second; (ii) 250 ms,
i.e. 4 fake packets per second; and (iii) 200 ms, i.e. 5 fake
packets per seconds.

As expected, the power consumption of Node 2 among the
attack-free scenario, the packet dropping attack scenario and
the packet tampering attack scenario, is nearly unchanged.
When the packet dropping attack occurs, the Node 2 saves
the transmission of exactly one packet. Conversely, when
the packet injection attack occurs, the energy consumption
of Node 2 grows as the injection rate grows.

Table 1 shows the energy consumption of Node 2 for each
simulation scenario. In particular, the energy consumption of

ready == 1 chnl[0]? receive(4,0)
ready == 1 chnl[1]? receive(4,1)
ready == 1 chnl[2]?receive(4,2)
ready == 1 chnl[3]? receive(4,3)
ready == 1 chnl[4]? receive(4,4)

. [<=dutyfreq

TSec

n > 0 && ready==
chnl[4]!

bmessages[4] := buffer[0],
update()

t == dutyfreq && ready ==
goidle()

t == dutyfreq && ready ==
wakeup()

Fig. 14 Model for the relay node 4 with duty cycle

Node 2 when the packet injection attack occurs at its maxi-
mum extent grows of 20.7%.

A possible solution for mitigating the impact of the packet
injection attack may be represented by synchronizing nodes
activity by means of a duty cycle.

4.2 Abstract model refinement

This section shows the UPPAAL implementation of a duty
cycle as a possible countermeasure for mitigating the power
drain issue.
Duty cycle The UPPAAL template of a node of the network
has been extended with a duty cycle: the node periodically
turns on/off with a periodicity of dutyfreq time units (see
Figure 14 for the resulting model of the node with id 4).
The template of the node is extended with a variable named
ready which represents the state of the node: ready ==
1 implies that the node is on while ready == 0 implies
that the node is off. The node can receive and send messages
only if it is on (condition ready == 1 on all the guards
of the transitions with a synchronization on chnl) and the
functions wakeup () and goidle () change the value of
ready accordingly. The invariant t<=dutyfreq together
with the guards on the wakeup () and goidle () transi-
tions forces the periodic transition of the ready variable.
Itis important to notice that the value of duty freqisnot
a constant value: the functions wakeup () and goidle ()
can modify its value in order to obtain different balancing
between radio on and radio off. For example if wakeup ()
sets the value of dutyfreq to be three times greater than
the value set by the goidle () than itis possible to achieve
a 75% duty cycle.

4.2.1 Attacks on refined model

Under the assumption of a correct synchronization between
all the nodes of the network the Property P is still satisfied in

@ Springer

C. Bernardeschi et al.

60 T

T
NoDC [
DC75% [

55 | DC50% M |
50 b
45 | 1
40 | N
35 | b

30 [b

Energy consumption (mJ)

Scenario

Fig. 15 Energy consumption of Node 2 with different duty-cycles in
the considered simulation scenarios

the attack free scenario and the results of the analysis depicted
in Sect. 4.1.2 still hold.

The UPPAAL template of a node has been extended with a
variable named receivedmessages, which is a counter
of the messages received, and a variable named links
which represents the number of reachable genuine nodes;
these new variables can be used to write the following for-
mula, where

(nodel.links+
node2.links+
node3.links+
node4.links) *MSGS

is the number of expected messages sent among the genuine
nodes:

A[] (nodel.receivedmessages +
node2.receivedmessages +
node3.receivedmessages +
noded .receivedmessages

> (nodel.links+
node?2 .
node3.links+
node4.links) *MSGS

links+

)

The formula states that for all possible execution trace, in all
the states of the system, the sum of the messages received by
each node is less that or equal to the number of expected mes-
sages. For the system without the packet injection attack this
formula is true, while the introduction of the packet injection
attack falsifies it.

4.2.2 Refined model network simulation

The refined model is simulated against the previous sce-
narios. The latter simulation results fit with the former results,

@ Springer

Table2 Overview of energy consumption of Node 2 with various duty
cycles

Energy consumption (mJ)

No DC DC 75% DC 50%
No attack 40.79 32.49 24.31
Drop 40.68 32.43 24.30
Tamper 40.71 3245 2433
Injection 500 ms 43.22 34.52 25.31
Injection 250 ms 45.61 36.55 26.90
Injection 200 ms 49.24 38.89 29.42

described in Sect. 4.1.3, for both the dropping attack and the
tampering attack scenarios, as well as the attack-free sce-
nario. Conversely, the implementation of a duty cycle on
nodes helps to reduce the impact of the packet injection
attack, but does not nullify its effects, since Node 2 con-
tinues to receive fake packets in the time frames in which it
is fully operative. It is worth considering that the objective
of the injection attack is to drain nodes’ batteries without
being detected. Then, a massive injection of fake packets,
for exploiting the time frames in which the target node is
operative, would result in a very high, if not prohibitive,
transmission rate. Furthermore, such an attack would become
actually a Denial of Service attack and would be promptly
detected. In fact, the chances of detecting such an attack
grows as the injection rate grows.

In detail, the latter simulations consider Duty Cycles (DC)
of 75% and 50%, respectively. As shown in Fig. 15, power
consume decrease as the duty cycle decreases. On the other
hand, too long downtimes may adversely affect the network
throughput, and ultimately be incompatible with the appli-
cation.

Table 2 shows the energy consumption of Node 2 for all the
simulation scenarios. In particular, when the packet injection
attack occurs at its maximum extent, the energy consumption
of Node 2 decreases of (i) 4.7% if using a duty cycle of 75%;
and (ii) 27.9% if using a duty cycle of 50%; with respect to
the attack free scenario with no duty cycle. So, a duty cycle
of 50% is an effective solution for mitigating the effects of
the packet injection attack performed at his maximum extent.

5 Conclusions

This paper presents ongoing work on a security-aware design
approach for WSN applications and protocols. Such an
approach exploits the integration between formal methods
and network simulators enhanced for reproducing security
attacks. This enables WSN designers to gather valuable
insights on the realistic behavior of the abstract model since
design time, thus helping them to recognize design flaws and

A framework for formal analysis and simulative evaluation of security attacks in wireless sensor networks

security-related issues, and then select and validate appro-
priate countermeasures.

As a proof of concept, we have built a framework that
integrates the model checker UPPAAL with the network
and attack simulator ASF. Our framework has been used
to study the robustness of a flooding application-layer pro-
tocol against a set of predefined attacks and highlighted a
design issue related to power consumption when a packet
injection attack has occurred. Then, a countermeasure has
been implemented and its effectiveness evaluated. The case
study demonstrated that it is fundamental to obtain concrete
measurements about the behavior of the system when attacks
occur.

As further work, new evaluation metrics based on secu-
rity aspects can be introduced. Such metrics can be used to
conduct a deeper analysis of the effects of the attacks on
the system, and to rank them in order to select the most sig-
nificant countermeasures. Moreover, our framework can be
integrated with additional off-the-shelf network simulators,
e.g. INET and Simulink, for extending its application domain
to more complex systems, like integrated clinical environ-
ments, or smart grids. Finally, additional formal method
tools, such as theorem provers can be considered, to over-
come the problem of state space explosion, which is usually
raised by model checkers when modeling complex systems.

Acknowledgements The authors would like to thank the anonymous
referees for their useful comments and suggestions.

Funding Open access funding provided by Universita di Pisa within
the CRUI-CARE Agreement.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput.
Sci. 126(2), 183-235 (1994)

2. Boulis, A., Pediaditakis, D.: Castalia - A simulator for Wire-
less Sensor Networks and Body Area Networks, version 3.3,
User’s Manual (2013). https://github.com/boulis/Castalia/blob/
master/Castalia

3. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on UPPAAL
4.0 (20006). http://www.it.uu.se/research/group/darts/papers/texts/
new-tutorial.pdf

4. Bernardeschi, C., Masci, P., Pfeifer, H.: Early prototyping of wire-
less sensor network algorithms in PVS. In: Computer Safety,
Reliability, and Security, 27th International Conference, pp. 346—
359 (2008)

5. Bernardeschi, C., Masci, P., Pfeifer, H.: Analysis of wireless sensor
network protocols in dynamic scenarios. In: Stabilization, Safety,
and Security of Distributed Systems, 11th International Sympo-
sium, pp. 105-119 (2009)

6. Bhargavan, K., Gunter, C., Lee, 1., Sokolsky, O., Kim, M.,
Obradovic, D., Viswanathan, M.: Verisim: formal analysis of net-
work simulations. IEEE Trans. Softw. Eng. 28(2), 129-145 (2002)

7. Bhushan, B., Sahoo, G.: Recent advances in attacks, technical chal-
lenges, vulnerabilities and their countermeasures in wireless sensor
networks. Wireless Personal Commun. 98(2), 2037-2077 (2018)

8. Bolton, C., Lowe, G.: Analyses of the reverse path forwarding rout-
ing algorithm. In: Intl. Conf. on Dependable Systems and Networks
Proceedings, pp. 485—494. IEEE Computer Society (2004)

9. Buck,J.,Ha,S., Lee, E.A., Messerschmitt, D.G.: Ptolemy: a frame-
work for simulating and prototyping heterogeneous systems. Int.
J. Comput. Simulat. 4, 155-182 (1994)

10. Cardenas, A.A., Roosta, T., Sastry, S.: Rethinking security proper-
ties, threat models, and the design space in sensor networks: a case
study in scada systems. Ad Hoc Netw. 7(8), 1434—1447 (2009)

11. Dini, G., Tiloca, M.: Asf: An attack simulation framework for wire-
less sensor networks. 2012 IEEE 8th International Conference on
Wireless and Mobile Computing, Networking and Communica-
tions (WiMob) pp. 203-210 (2012)

12. Dini, G., Tiloca, M.: On simulative analysis of attack impact
in wireless sensor networks. In: 2013 IEEE 18th Conference
on Emerging Technologies Factory Automation (ETFA), pp. 1-8
(2013)

13. Fatima, T., Saghar, K., Ihsan, A.: Evaluation of model checkers
SPIN and UPPAAL for testing wireless sensor network routing pro-
tocols. In: 2015 12th International Bhurban Conference on Applied
Sciences and Technology (IBCAST), pp. 263-267 (2015)

14. Fonseca, J., Vieira, M.: A survey on secure software development
lifecycles. In: Software Development Techniques for Constructive
Information Systems Design, pp. 57-73. IGI Global (2013)

15. Healy, M., Newe, T., Lewis, E.: Security for wireless sensor net-
works: A review. In: 2009 IEEE Sensors Applications Symposium,
pp- 80-85 (2009)

16. Heinzelman, W., Kulik, J., Balakrishnan, H.: Adaptive protocols
for information dissemination in wireless sensor networks. In: Pro-
ceedings of International Conference on Mobile Computing and
Networking, pp. 174-185. ACM (1999)

17. Henderson, T., Riley, G., Floyd, S., Roy, S., et al.: The NS Manual
(2019)

18. Hudaib, A., Alshraideh, M., Surakhi, O., Alkhanafseh, M.: A sur-
vey on design methods for secure software development. Int. J.
Comput. Technol. 16, 7047-7064 (2017)

19. Lazarescu, M.T., Lavagno, L.: Wireless Sensor Networks, pp. 1-
42. Springer, Netherlands, Dordrecht (2017)

20. Mohammad, A., Alqatawna, J., Abushariah, M.: Secure software
engineering: Evaluation of emerging trends. In: 2017 8th Interna-
tional Conference on Information Technology (ICIT), pp. 814-818
(2017)

21. Nair, S., Cardell-Oliver, R.: Formal specification and analysis of
performance variation in sensor network diffusion protocols. In:
Symposium on Modeling, Analysis and Simulation of Wireless
and Mobile Systems Proceedings, pp. 170-173. ACM (2004)

22. Rashid, A., Hasan, O., Saghar, K.: Formal analysis of a ZigBee-
based routing protocol for smart grids using UPPAAL. In: 2015
12th International Conference on High-capacity Optical Networks
and Enabling/Emerging Technologies (HONET), pp. 1-5 (2015)

23. Shostack, A.: Threat Modeling: Designing for Security. Wiley,
Hoboken (2014)

24. Varga, A.: OMNeT++ (2014). https://doc.omnetpp.org/omnetpp4/
manual

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/boulis/Castalia/blob/master/ Castalia
https://github.com/boulis/Castalia/blob/master/ Castalia
http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf
http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf
https://doc.omnetpp.org/omnetpp4/manual
https://doc.omnetpp.org/omnetpp4/manual

	A framework for formal analysis and simulative evaluation of security attacks in wireless sensor networks
	Abstract
	1 Introduction
	2 Background
	2.1 UPPAAL
	2.2 Attack simulation framework
	2.2.1 Attack Description Language
	2.2.2 Attack Simulator

	3 Proposed approach and related framework
	3.1 UPPAAL/ASF integration workflow
	3.2 Implementation of the integration framework
	3.2.1 UPPAAL model annotations
	3.2.2 Parser and Interpreter

	4 Case study
	4.1 Application model in UPPAAL
	4.1.1 Flooding protocol
	4.1.2 Modeling attacks
	4.1.3 Flooding protocol network simulation

	4.2 Abstract model refinement
	4.2.1 Attacks on refined model
	4.2.2 Refined model network simulation

	5 Conclusions
	Acknowledgements
	References

