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Stress level effect on mobility of dry granular flows
of angular rock fragments

Abstract Granular flows of angular rock fragments such as rock ava-
lanches and dense pyroclastic flows are simulated numerically bymeans
of the discrete element method. Since large-scale flows generate
stresses that are larger than those generated by small-scale flows, the
purpose of these simulations is to understand the effect that the stress
level has on flowmobility. The results show that granular flows that slide
enmass have a flowmobility that is not influenced by the stress level. On
the contrary, the stress level governs flow mobility when granular flow
dynamics is affected by clast agitation and collisions. This second case
occurs on a relatively rougher subsurface where an increase of the stress
level causes an increase of flowmobility. The results show also that as the
stress level increases, the effect that an increase of flow volume has on
flow mobility switches sign from causing a decrease of mobility at low
stress level to causing an increase of mobility at high stress level. This
latter volume effect corresponds to the famousHeim’smobility increase
with the increase of the volume of large rock avalanches detected so far
only in the field and for this reason considered inexplicable without
resorting to extraordinary mechanisms. Granular flow dynamics is
described in terms of dimensionless scaling parameters in three different
granular flow regimes. This paper illustrates for each regime the func-
tional relationship of flow mobility with stress level, flow volume, grain
size, channel width, and basal friction.

Keywords Rock avalanches . Pyroclastic flows . Stress
level . Flow volume . Mobility

Introduction
The understanding of the energy dissipation mechanisms of dense
flows of rock fragments such as rock avalanches (Hungr et al.
2014) and block-and-ash flows (Cas and Wright 1988) is essential
in hazard mitigation efforts. This understanding is however frus-
trated by the intricate interplay of the too many variables
governing the mobility of these flows. With this in mind, we have
studied in the laboratory (Cagnoli and Romano 2010, 2012a, b) and
with numerical simulations (Cagnoli and Piersanti 2015, 2017,
2018) the effects of grain size, flow volume, and channel width
on the mobility over a rough subsurface of dry granular flows of
angular rock fragments. But these are not the only important
variables.

Rock avalanches and the dense underflow of block-and-ash
flows are dry granular flows of angular rock fragments. Rock
avalanches are dry because their extensive fragmentation during
motion generates new intergranular spaces that cannot be filled by
water during their relatively short travel times (Hungr et al. 2014).
Pyroclastic flows are dry because of their high volcanic tempera-
tures. In nature, these flows descend down open channels with
speed varying over time and space so that they are characteristi-
cally unsteady, nonuniform, with a free top surface and some
lateral confinement. These features (unsteady, nonuniform, dry,
able to dilate vertically, and laterally confined) are defining and
need to be shared with flow models.

The validation of laboratory modelling by means of field-scale
flows is not straightforward because natural flows are too fast and
too dangerous to be approached at close range and direct mea-
surements of relevant quantities can be precluded. Moreover, most
flows in nature are too large to be replicated with a unity-scale
factor in indoor or outdoor experimental facilities and scaling
criteria are usually poorly fulfilled. Field data also do not neces-
sarily provide trustworthy validations of numerical simulations
since any good match can be due to compensating errors caused
by speculative values of too many variables and boundary condi-
tions (Dyson 2004).

Nevertheless, small-scale flows are widely studied in many
laboratories to gain insight into the behavior of their larger
counterparts in nature. But since solid stresses are much small-
er in small-scale granular flows than in their full-scale field
counterparts (Hungr and Morgenstern 1984), a fundamental
question arises concerning the influence of the stress level
on the mobility of granular flows. For example, speed, thick-
ness, and surface inclination of a steady and uniform layer of
moving glass beads discharged from a hopper in a laboratory
were modeled by means of the μ(I)-rheology (Jop et al. 2006),
where the ratio between shear and normal stresses seems to
decrease as the normal stress increases, even if it is not clear the
impact that this sort of decrease, if any, may possibly have on
the mobility of geophysical flows at scales larger than that of the
laboratory.

By increasing the acceleration of gravity n times inside a geotech-
nical centrifuge, an experimenter can replicate field-scale stress levels
in a 1/n scale model (Bowman et al. 2010; Ng et al. 2017). A centrifuge
can therefore be useful, but granular flows in it are affected by
undesired effects such as 1) the flow runouts that are modified by
Coriolis acceleration when flowmotion has a radial component within
the centrifuge, 2) the gravity experienced by the flow that changes as
function of its distance from the rotation axis, and 3) the bulk density
of the flow that is affected by its orientation (Bowman et al. 2012;
Turnbull et al. 2015; Bryant et al. 2015; Cabrera and Wu 2017).

Since previous studies have risen the issue of the stress level
without delineating its consequences on flow mobility, here, to
avoid the undesired effects of laboratory centrifuges, the impor-
tant role played by the stress level on granular flow dynamics is
detailed by carrying out numerical simulations of scale down
granular flows where the acceleration of gravity is made to vary
in value without the use of a centrifuge. This enables an assess-
ment of the relevance of small-scale laboratory experiments when
modelling geophysical flows. It also provides a quantitative expla-
nation of the stress level effect on flow mobility in a coherent and
multivariate framework of the interplay between stress level,
grains size, flow volume, channel width and basal friction. This
allows the description of granular flow mobility in three different
regimes by means of dimensionless scaling parameters that are the
result of a dimensional analysis.
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Geometry of slope and particles in the 3D numerical simulations
The model slope upon which the scale-down granular flows travel
consists of an upper straight ramp and a lower curved portion
whose combined length is ~1.6 m (Fig. 1). The hyperbolic sine
equation of the longitudinal profile of the curved portion with
variables in meters is

z ¼ 0:3−0:085sinh−1 11:765 xð Þ: ð1Þ

To comply with geometric and kinematic similarity require-
ments, this equation is that of the slightly modified profile of
Mayon volcano in the Philippines (Becker 1905) and the trape-
zoidal cross section of both slope parts (Fig. 1) corresponds in
nature to a V-shaped topographic incision with sediment
infilling in the centre (see photo 14 in Zhang and Yin (2013)
and photo 6 in Quan Luna et al. (2012)). The lateral side
inclination θ (Fig. 1) is the same in all simulations (27°) since
different θ values result in different flow mobility (Cagnoli and
Piersanti 2017). The slope of the straight portion is 47° from the
horizontal. This same slope geometry was used in the laboratory
by Cagnoli and Romano (2010, 2012a, b) and in the numerical
simulations by Cagnoli and Piersanti (2015, 2017, 2018). In na-
ture, rock clasts are angular and angular clasts need to be
considered in the numerical simulations as well. Here, they
are simulated by one angular shape only (cubic) considering
that different proportions of different clast shapes result in
different flow mobility (Cagnoli and Piersanti 2015).

Scaling of stresses, accelerations, forces, speeds, and time
The geometric scaling factor n is defined as the ratio of a charac-
teristic length λ in the natural prototype (subscript P) to the
corresponding length λ in the model (subscript M):

n ¼ λP

λM
: ð2Þ

Since the densities of the different materials are the same in
simulations and natural counterparts, both volumes V and masses
m have ratios of model to prototype equal to 1/n3.

For the stresses to be the same in model and natural prototype,
the acceleration of gravity in the model has to be n times larger
than that in the prototype (otherwise the stresses are
underestimated). The consequences of

aM ¼ n � aP ð3Þ

(where a is an acceleration such as that of gravity g) on the scaling
of stresses, forces, speeds, and time are as follows. The stresses σ
are equal in model and prototype because

σP ¼ FP

AP
¼ mP � aP

AP
¼

n3 �mM � aM
n

n2 � AM
¼ FM

AM
¼ σM ; ð4Þ

where F is force and A is area. The relationship between the forces
is

FP ¼ mP � aP ¼ n3 �mM � aM
n

¼ n2 � FM : ð5Þ

Speeds in model and prototype are identical, whereas time in
model is n times smaller than that in prototype because

ΔuP
tP

¼ aP ¼ aM
n

¼ ΔuM
n � tM ; ð6Þ

where u is speed and t time, so that

uP ¼ uM ð7Þ

and

tP ¼ n � tM : ð8Þ

The stress level is represented hereafter by the geometric factor
n, because, when Eq. (3) is true: 1) the stress level is equal in model
and corresponding prototype and 2) the stress level in model and
corresponding prototype is proportional to n (a stress in a large-
scale prototype is equal to n multiplied by the stress in its small-
scale model computed with n = 1).

Scaling of flow mobility and its functional relationships
The reciprocal of mobility of a flow is measured by using the
apparent coefficient of friction

μA ¼ h
l
; ð9Þ

where h is the vertical drop of the centre of mass of the granular
material and l is its horizontal distance of travel. Distances h and l
are measured from the position of the centre of mass of the
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Fig. 1 Longitudinal profile of the channels. The inset shows their trapezoidal cross-
section. CM stands for center of mass
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granular masses at rest before collapsing to the position of the
centre of mass of the final deposits (Fig. 1). The center of mass is
the only point that can be used as proxy for the entire flow since it
is the only point that moves as though the total mass of all clasts
were concentrated there and all external forces were applied there.

The aim of this paper is to find out the functional relationships
of flow mobility (or its reciprocal μA) with quantities such as grain
size δ, flow volume V, flow length L, channel width w, flow speed u,
stress level (represented by geometric factor n that enters model
gravity g) and the coefficients of static (μScs) and rolling (μRcs)
friction between clasts and subsurface:

μA ¼ F 1 δ;V ; L;w; u; g; μScs; μRcs
� �

: ð10Þ

Grain size δ is considered the pertinent length scale for the grain-
scale mechanics that generates the stresses whereas flow length L is
considered the pertinent length scale for the flow as a whole
(Iverson et al. 2010). Speed u is needed for gravity g to enter a
dimensionless scaling parameter for dynamic similarity. Since the
granular masses collapse from rest and their speed gradually
increases to reach a maximum value and then it decreases before
deposition, quantity u is this maximum speed. Friction coefficients
μScs and μRcs are not only those of the basal surface but also those
of the lateral surfaces which slope toward the centre of the chan-
nels and constrain the granular masses also from below (Fig. 1). In
general, granular flow mobility is affected by many more quanti-
ties whose values are held deliberately constant in this study as will
be shown later. Moreover, there are no intergranular fluids (such
as gases or water) that can alter solid interactions.

Equation (10) has nine quantities with two fundamental dimen-
sions (length and time). For this reason, according to the Pi
Theorem of dimensional analysis (Barenblatt 1996), it is equivalent
to a functional relationship containing seven dimensionless pa-
rameters. In this new relationship, grain size δ is used to scale the
other variables with only length as their dimension, u and g are
combined together, whereas μA, μScs and μRcs are already dimen-
sionless parameters and do not need to be combined:

μA ¼ F 2
V 1=3

δ
;
L
δ
;
w
δ
;

uffiffiffiffiffi
gL

p ; μScs; μRcs

� �
: ð11Þ

In Eq. (11), grain size δ is used to scale V, L and w because δ affects
the energy dissipation of the flows by determining their number of
clasts and clast number density and thus their clast agitation
(Cagnoli and Romano 2010, 2012b; Cagnoli and Piersanti 2017,
2018). Indeed, the first independent dimensionless ratio is an
increasing function of the total number of particles in the flow,
whereas the second and third ratios are an increasing function of
the number of particles distributed in space along the flow length
and width, respectively. The fourth independent dimensionless
ratio is a Froude number.

Scaling of inertial and gravitational forces: the Froude number
The main forces affecting the dynamics of dense granular flows
(such as rock avalanches or block-and-ash flows) are inertial and
gravitational forces (gravity is their driving force). The ratio of
inertial to gravitational forces is called Froude number that can be
written also as

Fr ¼ uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L gcosα

p ; ð12Þ

since slope angle α is dimensionless.
It is usually the thickness H of the flow that is adopted in Eq.

(12) as characteristic length L (Choi et al. 2017). Here, Fr with H has
a value averaged over all the flows of this paper equal to 5.6 ± 0.2
that falls within the range from 0.5 to 7.6 typical of natural debris
flows (Cui et al. 2015). However, H varies so much from the front
to the rear of the flow (Ng et al. 2019) and in different moments
during the flow travel time that Fr with H can acquire, for a single
flow, a large range of possible values. Moreover, H in granular
flows is an ambiguous concept because of their ever-changing
dilated top surface made of agitated and colliding particles. In
particular, the erratic positions of agitated particles introduce a
larger percentage error in H than in the length of these flows
because flow length is much longer than H and H does not
increase as significantly as flow length does when flow volume
increases (see for example graph 10 in Lo (2000)). Thus, a com-
parison of Fr values computed with H by different authors can be
misleading. Flow speed as well differs significantly during the
travel time and in different positions within a flow. In addition,
slope inclination α is not constant along a curved chute.

To avoid uncertainties, here Fr is computed for the granular
flows when they have reached their maximum speed. Therefore, u
is this maximum speed (computed as the maximum during the
flow descent of the average speed of all particles), L is the length of
the flow with maximum speed (computed as the distance along the
slope between the most distal and most proximal clasts) and α is
the slope inclination in the position of the center of mass of the
flow with maximum speed. These characteristic quantities are
straightforward to measure and generate no ambiguities. However,
since the Froude number neglects the micro-interactions that
occur in granular flows such as grain-grain contacts and collisions
(Choi et al. 2015), other scaling parameters are needed to fully
characterize the granular flow behavior.

Granular scaling parameter χ for a rough subsurface
The first three independent variables of Eq. (11) are combined to
define the following dimensionless parameter:

χ ¼ V 1=3δ
L w

: ð13Þ

Parameter χ is the product of

Γ ¼ V 1=3

δ
ð14Þ

and the reciprocal of

γ ¼ L w
δ2

: ð15Þ

The dimensionless quantity Γ is an increasing function of the total
number of clasts in the granular flow since it corresponds to V/δ3. The
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dimensionless quantity γ is an increasing function of the number of
clasts in contact with the channel basal surface since it is proportional to
the number of clasts whose sum of cross-sections covers completely an
area L timesw (the cross-sectional area of a clast is δ2). Quantities in Eq.
(13) are again those of granular flows with maximum speed. L is their
length andV is the sum of all clast volumes in each flow (i.e., the volume
of its solid mass). Width w is the smallest distance between the inclined
sidewalls that is where the flows are laterally constrained the most (Fig.
1). Cagnoli and Romano (2012a) and Cagnoli and Piersanti (2017)
showed that μA is proportional to χ according to a linear relationship
in scaled-down granular flows on a rough subsurface and n= 1.

Granular scaling parameter ψ for a rough subsurface
The first and third independent variables of Eq. (11) are combined
to define the following dimensionless parameter

ψ ¼ δ2

V 1=3w
: ð16Þ

Parameter ψ is the product of the reciprocal of Γ (Eq. (14)) and the
reciprocal of

Ω ¼ w
δ
; ð17Þ

which is an increasing function of the number of clasts that fit the
channel width along the transversal direction. Quantities in Eq.
(16) are those of flows with maximum speed as in Eq. (13). Cagnoli
and Romano (2012b) and Cagnoli and Piersanti (2018) introduced
ψ for small-scale granular flows on a rough subsurface and n = 1.

Scaled clast agitation
The fluctuation of the total force exerted by the granular flows
on the subsurface is used to compare the basal clast agitation of
the flows. The magnitudes Fi of this force form a time series of
values that are equally spaced in time from the initial collapse
of the granular mass to after its final deposition. The following
parameter is computed in a selected time window of the time
series:

D ¼ ΔF
F
— ; ð18Þ

where F
—

is the average force exerted by the entire flow on the
subsurface in that time window and

ΔF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fi−Pið Þ2h i

q
ð19Þ

is the average (symbolized by the angle brackets) deviation of
magnitudes Fi from the values Pi of a second-order polynomial
fitting the data points (or two second-order polynomials when the
data points are asymmetrically distributed). For the comparison
between the D values to be meaningful, this time window has the
same size (here 30 data points) and is located in the same moment
of flow history in all simulations.

The larger ΔF, the larger the number of force values that are
more different from the fitting curve so that ΔF measures particle
agitation (the fitting curve represents the Fi values with zero
agitation). Parameter D is thus a scaled particle agitation at the
base of the flows. It is worth noting that an average squared
deviation occurs in the definition of the so-called granular tem-
perature as well (Ogawa 1978). Cagnoli and Romano (2012b) and
Cagnoli and Piersanti (2018) showed that D computed for basal
stresses is proportional to parameter ψ according to a linear
relationship in scaled-down granular flows on a rough subsurface
and n = 1.

3D numerical simulations
The numerical simulations are three-dimensional and are based
on the discrete element method (DEM). This method upholds the
defining granular nature of the geophysical flows studied here by
taking into consideration all clast-clast and clast-boundary inter-
actions. In DEM simulations, there is no need to impose a criteri-
um for deposition since the flows stop by themselves when they
dissipate all their kinetic energy. The DEM software employed has
been developed by DEM Solutions Ltd. and is called EDEM. Its
contact model is illustrated by Cagnoli and Piersanti (2015).

In these DEM simulations the granular flows travel on a 3D
channel created by means of a CAD software (Fig. 2) with the
geometry of Fig. 1. The software uses in its calculations the mass,
volume, and moment of inertia of the cubic clasts, whereas the
impact forces during particle collisions are estimated as a function
of the overlapping of sets of rigidly connected spheres inscribed
within the cubes (Fig. 2). This type of numerical simulations
(Cagnoli and Piersanti 2015, 2017, 2018) has been validated by
laboratory experiments (Cagnoli and Romano 2010, 2012a, b)
which confirm that the simulations account well for the interac-
tions of angular clasts and that the functional relationships ob-
tained by means of the discrete element method are real. At low
stress level, this is demonstrated by comparing the results illus-
trated here with those of the above-mentioned laboratory experi-
ments. At high stress level, DEM simulations predict the same flow
volume effect on flow mobility observed in the field as will be
shown later.

Table 1 illustrates the fifteen combinations of the values in both
numerical models and corresponding natural prototypes of geo-
metric scaling factor n, gravity g, slope height, channel width w,
grain size δ and granular mass m. The number of clasts in a model
and the corresponding prototypal flow is identical (Table 1). The
three n values considered here are 1, 100, and 1000, which result in
three accelerations of gravity in the numerical models equal to 9.8,
980, and 9800 m/s2, respectively (even if gravity in their corre-
sponding natural prototypes is always 9.8 m/s2). The three n values
result also in prototypal slope heights equal to 0.5, 50, and 500 m,
respectively (even if the slope height in the model is always 0.5 m).
The model channel width w is 0.006 and 0.026 m, which for n
equal to 1, 100, and 1000, in the prototypal narrower channel
correspond to 0.006, 0.6, and 6 m, respectively, and in the proto-
typal wider channel correspond to 0.026, 2.6, and 26 m, respec-
tively. The cubic clasts in the numerical models have edges (i.e.,
grain size) equal to 0.0005, 0.001, and 0.002 m, which with n = 100
correspond to prototypal grain sizes equal to 0.05, 0.1, and 0.2 m,
respectively, and with n = 1000 correspond to prototypal grain
sizes equal to 0.5, 1, and 2 m, respectively.
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All fifteen simulations illustrated in Table 1 (named with letters
from A to Q) have been carried out, once, with large values of the
coefficients of static and rolling friction between clasts and sub-
surface (μScs = 0.9 and μRcs = 0.07, respectively) and, once, with
small values of these quantities (μScs = 0.45 and μRcs = 0.035, re-
spectively). The large values are twice as much the small values
and their simulations are hereafter referred to as those on rough
and smooth subsurface, respectively. Thus, this paper presents the
results of thirty numerical simulations. In Table 1, for each n value:
1) the simulations of the first three columns are those of flows
which differ in grain size, 2) the simulations of the third and fifth
columns are those of flows which differ in volume, and 3) the
simulation of the fourth column is that of a flow in a wider
channel.

Tables 2 and 3 list the values of Poisson’s ratios, shear moduli,
densities, coefficients of restitution, and coefficients of static and
rolling friction in clast-clast interactions. These quantities are
those mentioned before to have the same values in all simulations.
The values of the properties in Tables 2 and 3 indicate that these
simulations refer to flows of rock fragments traveling on a moun-
tain slope (Peng 2000).

Initial collapses
No gate has been used to release the granular material from rest at
the top of the slope. This is so to free the system of the unnecessary
frictional forces between clasts and gate. The granular masses
instead collapse under the influence of gravity. Before this col-
lapse, the clasts are in contact with one another and in random
positions inside numerical spaces representing rock cliffs or vol-
canic domes. One of them is shown in red at the top of the channel
in Fig. 2. The volumes of these polyhedral spaces are proportional
to the granular masses so that the same compaction and bulk
density of the granular material before collapse is ensured consid-
ering that different degrees of this initial compaction would cause
different flow mobility (Cagnoli and Piersanti 2015).

Final deposits
The deposited granular material consists always of two portions: a
more proximal heap that is much more elongated than thick (the
deposit of the flow proper) and a more distal distribution of
isolated clasts. The distal distribution is formed by clasts that are
not part of the flow proper because, at least to some extent, they
travelled singly with reduced interactions among them. Figure 3
shows some of these clasts travelling separately in front of a flow.
In previous publications, μA was computed by considering the
centre of mass of only the deposit of the flow proper (Cagnoli
and Romano 2010, 2012a; Cagnoli and Piersanti 2015, 2017). In this
paper instead, μA is computed by considering the overall centre of
mass of deposit of flow proper plus distal distribution together.
There are two reasons to do so: 1) with a small number of large
clasts, it can be difficult to locate the dividing line between deposit
of flow proper and distal distribution and 2) the clasts of the distal
distribution pose a threat that has to be considered when assessing
natural hazards.

The position of the overall center of mass is thus the result of
different travel mechanisms: that of the flow proper and that of the
clasts of the distal distribution. But this second component has a
little effect on the position of the overall center of mass when the
granular flow consists of a large number of fine clasts because the

mass of the distal distribution is, in relative terms, too small. Here,
this is the case with all flows that have grain sizes in their models
equal to 0.0005 and 0.001 m. Only in the three flows (one for each
n value) that have a grain size in their models equal to 0.002 m, the
overall center of mass is significantly more mobile than that of
only the deposit of the flow proper.

Results: granular flow speeds and basal forces
Under the influence of gravity, the granular masses collapse and
accelerate downslope so that they reach a maximum speed before
decelerating and forming a final deposit (examples on rough and
smooth subsurface are in Figs. 4 and 5, respectively). Table 4 shows
these maximum speeds averaged over the five simulations with the
same n for both rough and smooth subsurface. Speeds (identical in
numerical model and corresponding natural prototype) are larger
on the smooth than on the rough subsurface and they increase as
the scale of the prototype (i.e., n) increases (Table 4).

The granular flows on a rough subsurface and those on a
smooth subsurface have radically different vertical profiles of
speed. On a rough subsurface, clast speed shows a significant
increase in value from the base to the top of the flow (Fig. 6). On
a smooth subsurface, the speed of the clasts is virtually the same at
different heights within the flow whose clasts move thus en masse
(Fig. 7).

Figure 8 illustrates an example of flow history from initial
collapse to after the final deposition (Figs. 4 and 5) in terms of
the force exerted by the flow on the subsurface. When force

Z

Y

X

Fig. 2 3D view of one of the channels used in the numerical simulations. The inset
shows the clast cubic shape with the inscribed spheres
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magnitudes Fi (introduced in the paragraph of Eq. (18)) are plotted
versus time, they always exhibit two local maxima (shown by
arrows in Fig. 8). The first one occurs during the initial deforma-
tion of the granular mass that follows its initial collapse. The
second one occurs in the time window when the granular flow
reaches its maximum speed and has acquired its fully developed
shape of travel. In all simulations, agitation D (Eq. (18)) is com-
puted in this second time window whose data points have always a
concave down distribution with an inflection point toward the end
and are thus fitted by two partially overlapping second order
polynomials (Fig. 8).

Results: granular flow mobility on a rough subsurface

Functional relationships
For the rough subsurface, the reciprocal of mobility μA of the same
fifteen granular flows is plotted once versus parameter χ in Fig. 9a
and once versus parameter ψ in Fig. 9b. In both panels, data points
are best fitted by least squares straight lines and second-order
polynomials. Specifically, the relationship between μA and χ (Fig.
9a) and the relationship between μA and ψ (Fig. 9b) is linear as
long as the mass of the distal distribution of clasts is relatively
small. For each geometric factor n, this is the case for the four data
points with smaller χ (Fig. 9a) and smaller ψ (Fig. 9b). When, on
the other hand, the mass of the distal distribution is relatively
important in relation to that of the deposit of the flow proper, the
overall center of mass becomes more mobile since the clasts of the
distal distributions travel singly (at least in part) and acquire a
larger mobility with respect to that of the linear relationship
because of their smaller number of solid-solid interactions per
unit of time. This larger mobility is not due to the value of either
the grain size or χ or ψ, but it occurs when the clasts that form the
flow are both small in number and relatively coarse in grain size
(granular flows with the same coarse grain size but a sufficiently
larger number of clasts are expected to plot along the fitting
straight lines). In Fig. 9, the flows with a too small number of
coarse clasts are those that, one for each n value, have the largest χ
and the largest ψ. It is for this reason that the three sets of five data
points with the same n can be fitted by a second-order polynomial
and not by a straight line. If the distal distribution of clasts is
removed from the calculation of the final position of the centre of
mass, the data points with largest χ and largest ψ will move toward

their own linear relationship that is the place the deposit of the
flow proper belongs to (Cagnoli and Romano 2010, 2012a; Cagnoli
and Piersanti 2015, 2017).

The corresponding linear relationships of the two panels in Fig.
9 are however mutually exclusive because, as flow volume in-
creases, in Fig. 9a flow mobility decreases, whereas in Fig. 9b flow
mobility increases. To understand when μA is a function of χ and
when it is a function of ψ, it is necessary to compare, for each n

Table 2 Material properties

Clasts Channels

Poisson’s Ratio 0.19 0.35

Shear Modulus (Pa) 2.38×1010 6.85×109

Density (kg/m3) 2700 2580

Table 3 Properties governing interactions

Clast-Channel Clast-Clast

Coefficient of Restitution 0.3 0.49

Coefficient of Static Fiction 0.45 / 0.9 0.45

Coefficient of Rolling Friction 0.035 / 0.07 0.035

Z

Y

Fig. 3 Frontal view of a granular flow on a rough subsurface. Geometric factor n is
1, grain size δ is 2 mm, and the channel width w is 6 mm

0.73 s

0.23 s

Deposit

0.57 s

0.00 s

Z

X Y

Fig. 4 Longitudinal cross-sections of a granular flow on a rough subsurface.
Geometric factor n is 1, grain size δ is 0.5 mm, and the channel width w is 6
mm. Time tM since the initial collapse is shown
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value, the mobility of the two granular flows distinguishable only
by different volumes since all their other features are identical. In
Fig. 9, their data points are pierced by arrows (the larger the
arrowhead, the larger the volume) and, in Table 1, they are named
C and E with n = 1, H and L with n = 100 and O and Q with n =
1000. Their data points in Fig. 9 shows that flow mobility decreases
as flow volume increases when n is equal to 1 and 100, whereas
flow mobility increases as flow volume increases when n is equal to
1000. These mobility differentials are significant because they are
the results of numerical models and are not affected by field or
laboratory measurement errors. The distance along the slope be-
tween the centres of mass of the two prototypal volumes with n =
1000 is large enough to be clearly measurable in the field where it
is ~15 m. The difference between the μA values of the two different
volumes decreases from n = 1 to n = 100 and it switches sign
somewhere between n = 100 and n = 1000 with a change from a
low stress regime to a high stress regime whose flow volume effects
are the opposite of one another.

This switch is illustrated by the values of the coefficient of
determination R2 that represents the proportion of the variation
of μA that can be explained by a fitting curve (Devore 2000). In Fig
9a, R2 decreases significantly as n increases across the switch for
both the straight lines (where with n equal to 1, 100, and 1000, R2 is
0.9812, 0.9955, and 0.952, respectively) and the second-order poly-
nomials (where with n equal to 1, 100, and 1000, R2 is 0.9974,
0.9877, and 0.9205, respectively). Conversely in Fig 9b, R2 increases
significantly as n increases across the switch for both the straight
lines (where with n equal to 1, 100, and 1000, R2 is 0.8881, 0.9457,
and 0.9935, respectively) and the second-order polynomials (where

with n equal to 1, 100, and 1000, R2 is 0.8889, 0.9485, and 0.9976,
respectively). Values of R2 > 0.99 indicate perfect fitting because
they mean that virtually 100% of the variation of μA is explained by
the curve. On the contrary, values of R2 ≤ 0.952 occurs when the
functional relationship is false because it does not predict the
correct flow volume effect. Therefore, μA is a function of χ for n
equal to 1 and 100 (Fig. 9a), whereas μA is a function of ψ for n
equal to 1000 (Fig. 9b). In Fig. 9, the functional relationships that
are false are shown in grey and those that are true are shown in
blue, orange and red.

Figure 9 illustrates that the only quantity which (by being
missing in χ or ψ) prevents all data points of each regime from
collapsing on to one single curve is the stress level (represented by
n that enters model g). This is so because: 1) all curves are virtually
parallel, 2) the curves are distinguished only by different n values
and 3) parallel curves distinguished only by different n are expect-
ed also with n > 1000. Thus, a functional relationship of μAwith χ
or ψ needs also (to explain the variation of μA in each regime) an
independent scaling parameter for the stress level such as the
Froude number Fr that contains g. Indeed, the very good fitting
(R2 = 0.98) of the straight line in Fig. 10 confirms that μA is also a
function of Fr. Fig. 10 is the plot of mean μA versus mean Fr where
these mean values are over the simulations with the same n.

0.23 s

0.30 s

0.52 s

0.75 s

Deposit

Z

X Y

0.00 s

Fig. 5 Longitudinal cross-sections of a granular flow on a smooth subsurface.
Geometric factor n is 1, grain size δ is 0.5 mm, and the channel width w is 6 mm.
Time tM since the initial collapse is shown

Table 4 Maximum speed (m/s) of granular flows

n = 1 n = 100 n = 1000

Rough subsurface 0.942±0.018 9.491±0.199 30.226±0.591

Smooth subsurface 1.431±0.007 14.313±0.073 45.281±0.226

0.57 s

Z

X Y

1.67

0.14

0.90

(m/s)
Speed

Fig. 6 Vertical profile of speed in a longitudinal cross-section of a flow on a rough
subsurface. Geometric factor n is 1, grain size δ is 0.5 mm, and the channel width
w is 6 mm. Time tM since the initial collapse is shown
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Figure 10 is able to reveal this good fitting because by averaging
the same number of simulations with differences in the same
variables, the data scatter that besets Fr is reduced. In Fig. 10,
although the differences between the Fr values seem small, they
correspond in the field to differences in flow speed (Table 4) and
flow length (proportional to n) that are larger than any possible
error of measurement. Concerning basal friction, since it has an
obvious effect on flow mobility, the dimensionless parameters μScs
and μRcs also need to be added to the functional relationships of
μA.

All things considered, Figs. 9a and 10 demonstrate that on a
rough subsurface at low stress level (here for n equal to 1 and 100)
the following functional relationship is true:

μA ¼ F 3
V 1=3 δ
L w

;
uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L g cosα
p ; μScs; μRcs

� �
: ð20Þ

Moreover, Figs. 9b and 10 demonstrate that on a rough subsurface
at high stress level (here for n equal to 1000) the following func-
tional relationship is true:

μA ¼ F 4
δ2

V 1=3 w
;

uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L g cosα

p ; μScs; μRcs

� �
: ð21Þ

Thus, flow mobility on a rough subsurface is affected by the
stress level, but it is not governed by the Froude number alone. It
is governed also by grain size δ, flow volume V, channel width w
and basal friction (i.e., μScs and μRcs combined). These are the five
quantities whose effects are examined below because they are
those whose values can be directly assigned by the experimenter
in the laboratory or the modeller in the numerical simulations as
an initial condition, whereas flow length L, flow speed u and slope
α cannot.

Grain size
On a rough subsurface at both low and high stress level, according
to the linear relationships in Fig. 9, the finer the grain size, the
more mobile the center of mass of the granular flow. The increase
of mobility as grain size decreases was explained by the fact that
the finer the grain size (all other quantities constant), the larger the
number of clasts per unit of flow mass so that the agitation due to
the interaction with the rough subsurface penetrates relatively less
inside the flows and the smaller this agitation, the smaller the
energy dissipated by the granular flow per unit of travel distance
(Cagnoli and Romano 2010, 2012a, b; Cagnoli and Piersanti 2015,
2017, 2018). Clast agitation affects energy dissipation through fric-
tional and collisional interactions and by diverting energy into
directions different from the downslope one. A finer grain size
flow is thus like a car whose engine consumes less fuel per unit
distance. The difference between the low (Fig. 9a) and the high
(Fig. 9b) stress level regimes is that, in the first case μA is propor-
tional to the grain size (Eq. (20)), whereas in the second case it is
proportional to the grain size squared (Eq. (21)). This contrasts
with the linear relationship between agitation D and ψ, where D is
directly proportional to the grain size squared at both low and
high stress level (Fig. 11). The attenuation at low stress level of the
increase of mobility due to a finer grain size is caused by a
counteracting action such as that of the flow volume effect ex-
plained next.

Flow volume
On a rough subsurface at low stress level (here for n equal to 1 and
100), according to the linear relationships in Fig. 9a that are true,
the larger the flow volume (all other quantities constant), the less
mobile the center of mass of the granular flows (Eq. (20)). This
flow volume effect was explained by the fact that a deposit accretes
backward when forming on a slope whose inclination changes
since the flow front reaches the less steep part of the curved slope
and stop before the rear (Cagnoli and Romano 2012a; Cagnoli and

37.06

57.24

47.15

0.0133 s

Z

X Y

(m/s)
Speed

Fig. 7 Vertical profile of speed in a longitudinal cross-section of a flow on a
smooth subsurface. Geometric factor n is 1000, grain size δ is 0.5 mm, and the
channel width w is 6 mm. Time tM since the initial collapse is shown

0.01 0.02 0.03 0.04 0.05 0.06
tM (s)

600
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400
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0
0
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)

0.07

Fig. 8 Force FM exerted by a granular flow on the subsurface versus time tM.
Geometric factor n is 1000, grain size δ is 1 mm, channel width w is 26 mm, the
subsurface is rough. The two local maxima are shown by arrows. Parameter D is
computed in the time window with blue data points (fitted by two partially
overlapping second-order polynomials that are shown by different colors)
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Piersanti 2015, 2017). In this case, the larger the volume, the larger
the quantity of granular material that accumulates at the back and
the more proximal becomes the final position of the centre of
mass. This is a geometric effect that is able to counteract that of
the decrease of clast agitation D in Fig. 11 (and related energy
dissipation) as flow volume increases (Cagnoli and Romano
2012b; Cagnoli and Piersanti 2018).

On a rough subsurface at high stress level (here for n equal to
1000), according to the linear relationship in Fig. 9b that is true,
the larger the flow volume (all other quantities constant), the more
mobile the center of mass of the granular flows (Eq. (21)). In this
regime, both reciprocal of mobility μA (Fig. 9b) and clast agitation
D (Fig. 11) are a function of ψ, where flow volume is in the
denominator. Thus, in this case, there is no geometric effect that
is able to counteract that of the decrease of clast agitation D in Fig.
11 (and related energy dissipation) as flow volume increases.
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R2=0.8889
R2=0.9485
R2=0.9976

R2=0.9935
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R2=0.9974
R2=0.9877
R2=0.9205
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R2=0.9520
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b

A

Fig. 9 Reciprocal of mobility μA of the fifteen flows on a rough subsurface plotted once versusχ (a) and once versusψ (b). Blue, orange, and red refer to a geometric scaling factor n
equal to 1, 100, and 1000, respectively. In both panels and for each n, least squares straight lines best fit the first four data points with smaller abscissa, whereas least squares second-
order polynomials best fit all five data points. Data points of flows distinguishable only by different volumes are pierced by arrows (the larger the arrowhead, the larger the volume).
The curves of the false functional relationships are in grey. The curves of the true functional relationships are in blue, orange and red
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Fig. 10 Mean reciprocal of mobility μA versus mean Froude number Fr for flows
on a rough subsurface where each mean is over the values with the same n. The
error bars are computed as error of the mean. Blue, orange, and red refer to a
geometric scaling factor n equal to 1, 100, and 1000, respectively. A least squares
straight line best fits the data points
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Channel width
On a rough subsurface at both low and high stress level, according
to the linear relationships in Fig. 9, the narrower the channel (all
other quantities constant), the less mobile the center of mass of the
granular flows (Eqs. (20) and (21)). Two explanations were pro-
vided (Cagnoli and Piersanti 2017). First, as a geometric effect at
low stress level, since the deposit propagates backward, the
narrower the channel, the longer this backward propagation. Sec-
ond, in a narrower channel at both high and low stress level, the
retarding effect of the sidewalls is expected to be larger. Indeed,
Fig. 11 shows that D and w are inversely proportional so that the
narrower the channel, the larger the clast agitation and the related
energy dissipation per unit of flow mass. This is so since particle
agitation is generated also in contact with the two sidewalls and
the smaller their distance, the larger the proportion of more
agitated clasts in the flow (Cagnoli and Piersanti 2018).

Stress level
On a rough subsurface, according to Fig. 9, the larger the stress
level (i.e., the larger n), the larger the mobility of the centre of mass
(i.e., the smaller μA). This phenomenon can again be explained in
terms of particle agitation that dissipates energy, because clast
agitation D becomes smaller as the stress level (i.e., factor n)
becomes larger (Fig. 11). This stress level effect pertains to flow

dynamics. Indeed, an increase of the geometric factor n causes an
increase of the Froude number (Fig. 10).

Results: granular flow mobility on a smooth subsurface

Functional relationship
On a smooth subsurface, to explain the variation of the reciprocal
of mobility μA, it is necessary to use a new scaling parameter. This
is obtained when the first and the reciprocal of the third indepen-
dent variables of Eq. (11) are multiplied together and raised to the
3rd power:

ζ ¼ V
w3 : ð22Þ

In Fig. 12, the variation of μA of all fifteen data points is
explained so thoroughly by a straight line (whose R2 is 0.9984),
that grain size and stress level (both missing in ζ) cannot have
any effect on flow mobility over a smooth subsurface. Indeed in
Fig. 12, μA is indistinguishable in flows with only different grain
size or only different stress level (all other features the same).

The excellent fitting of the straight line in Fig. 12 demonstrates
that on a smooth subsurface it is true that

μA ¼ F 5
V
w3

; μScs; μRcs

� �
; ð23Þ

where basal friction (i.e., μScs and μRcs) is added because with an
obvious effect on mobility that is larger on a smooth (Fig. 12) than
on a rough subsurface (Fig. 9). Thus, μA on a smooth subsurface is
governed only by flow volume V, channel width w and basal
friction.

Flow volume and channel width
The linear relationship in Fig. 12 indicates that the larger the flow
volume, the smaller the mobility of the granular flows, whereas
this mobility increases as the channel becomes wider. This flow
volume effect can again be explained by the backward accretion of
the deposit and this channel width effect by the fact that the

10 20 30 40 500
0.555

0.565

0.575

0.585

0.595

µA

R2=0.9984

Fig. 12 Reciprocal of flow mobility μA versus parameter ζ for flows on a smooth
subsurface. All fifteen data points with different n value are plotted. A least squares
straight line best fits all of them
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ψ

Fig. 13 Clast agitation D versus parameter ψ for flows on a smooth subsurface.
Blue, orange, and red refer to a geometric scaling factor n equal to 1, 100, and
1000, respectively. Least squares straight lines best fit the data points with the
same n
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Fig. 11 Clast agitation D versus parameter ψ for flows on a rough subsurface.
Blue, orange, and red refer to a geometric scaling factor n equal to 1, 100, and
1000, respectively. Least squares straight lines best fit the data points with the
same n
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narrower the channel, the longer the backward propagation. Both
effects are geometric in character.

Results: particle agitation
A comparison between Figs. 11 and 13 shows that particle
agitation D is significantly smaller on a smooth subsurface
than on a rough subsurface. This is so even if, on both rough
and smooth subsurface: 1) parameter D is proportional to
parameter ψ and 2) parameter D decreases as the stress level
(i.e., n) increases.

Discussion

Natural and artificial granular flows
Small-scale granular flows with n = 1 are relevant for industrial
applications (food technology, pharmaceutical production, con-
struction engineering) whereas flows with larger n refers to geo-
physical flows in nature. Indeed, all flows with n > 1 examined here
have maximum speeds (Table 4) as high as those of natural rock
avalanches since both are well >5 m/s (Hungr et al. 2001).

When investigating a phenomenon, it is instructive to take into
consideration the end members of a spectrum of possibilities even
if here this approach generates large values of the apparent coef-
ficient of friction μA (Fig. 9). A plethora of involved theories has
been suggested to explain the high mobility of rock avalanches (as
detailed for example by Hungr (2006)), but with no general agree-
ment on their validity. My dimensional analysis more simply
shows that flow mobility can increase in nature with respect to
that in Fig. 9 by means of (besides a less dissipative subsurface) a
further increase of the stress level due to scale n (plus a further
increase of flow volume V at high stress level) and a further
decrease of the grain size δ. The mobility of the center of mass
also increases in wider channels. In addition, for geometric
reasons, the flow front is always more mobile than the center of
mass.

In terms of computational effort, a numerical simulation of a
1/n scaled-down granular flow where gravity is increased n times is
equivalent to a corresponding simulation whose size and gravity
are those in nature, because both have the same number of clasts
(Table 1). But without a predetermined discriminating factor such
as n, it is difficult to differentiate between the functional relation-
ships existing in Fig. 9, whose data points also belong to parallel
curves that are in too close proximity to be easily identified.
Similarly, experimental and field measurements because of their
unavoidable inaccuracy would be too scattered for the different
functions to be clearly discernible.

Different flow regimes
The thirty numerical simulations analyzed here demonstrate that
flow dynamics on a rough subsurface (Fig. 9) is so different from
that on a smooth subsurface (Fig. 12) that they belong to different
flow regimes. Moreover, because of the opposite effects that flow
volume can have on flow mobility, flow dynamics on a rough
subsurface is better split into two distinct regimes: one at low
(Fig. 9a) and one at high (Fig. 9b) stress level. Hence, three
granular flow regimes are identified: 1) a mobility regime on a
rough subsurface at low stress level, 2) a mobility regime on a
rough subsurface at high stress level, and 3) a mobility regime on a
smooth subsurface that is unaffected by the stress level. Thus,

geophysical flows on a sufficiently smooth subsurface (Fig. 12) do
not need to be modeled in a centrifuge with larger g (at least when
n ≤ 1000). The geophysical granular flows for which the stress level
must be considered when assessing their mobility are those on a
relatively rough subsurface, where the switch between low and
high stress level regimes occurs somewhere between n = 100 and
n = 1000 (Fig. 9). The functional relationships (linear or second-
order polynomials) of flow mobility in the three regimes (Figs. 9,
10, and 12) have coefficients that are expected to depend on the
physical properties of clasts and terrain. In these relationships
(Eqs. (20), (21), and (23)), the effects on flow mobility of basal
friction, stress level, grain size, flow volume, and channel width are
commented as follows.

Basal friction
Basal friction influences flow mobility in all regimes and the
transition between regimes on rough and smooth subsurface is
clearly a function of its value. Here this transition occurs some-
where between the two examined endmembers whose basal fric-
tion is represented by μScs and μRcs combined (Table 3). As
expected, the larger the basal friction, the smaller the mobility
(compare Figs. 9 and 12).

Flow dynamics is dominated by clast agitation on a rough
subsurface (Fig. 9), whereas it is dominated by the sliding en
masse of all clasts together on a smooth subsurface (Fig. 12).
Indeed, the main difference between these flow dynamics (that
results in different energy dissipations per unit of travel distance)
is that clast agitation D is much higher on a rough (Fig. 11) than on
a smooth subsurface (Fig. 13). Granular agitation is so small on a
smooth subsurface that clast speed does not change significantly
along the flow depth (Fig. 7). This friction regime on a smooth
subsurface however is not quasi-static (Jan and Shen 1997) because
the speed of its flows can reach tens of meters per second
(Table 4). Also, the collision regime on a rough subsurface is not
Bagnoldian (Jan and Shen 1997) because Bagnold’s flows consist of
neutrally buoyant spheres constrained not only laterally but also
vertically inside a container (whereas clasts in geophysical flows
are affected by gravity and their ensemble can dilate vertically
since they travel in open channels) plus Hunt et al. (2002) showed
that Bagnold’s results appear to be dictated by the design of his
experimental facility.

Stress level and grain size
It is precisely because of the different importance of clast agitation
in the two regimes that stress level (i.e., n) and grain size govern
granular flow mobility on a rough subsurface (Fig. 9), whereas
they do not do so on a smooth subsurface (Fig. 12). Indeed, both
stress level and grain size concur to determine the amount of clast
agitation where this agitation is generated (i.e., on a rough
subsurface, Fig. 11), but they cannot do so when clast agitation is
to a large extent suppressed (i.e., on a smooth subsurface, Fig. 13).
On a rough subsurface, flow mobility increases as the stress level
increases (Fig. 9) because an increase of the stress level causes a
decrease of clast agitation and related energy dissipation (Fig. 11).

On a rough subsurface, the decrease of grain size causes an
increase of flow mobility. This is an effect confirmed by other
studies (Cagnoli and Romano 2010; Mollon et al. 2015; Cagnoli
and Piersanti 2017; Lai et al. 2017). There is also field evidence that
in rock avalanches grain size decreases as travel distance increases
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(Davies and McSaveney 2009; Zhang et al. 2016). Importantly, here
the new data set shows that two functional relationships exist on a
rough subsurface: 1) a relationship true at low stress level where
flow mobility is inversely proportional to the grain size (Eq. (20))
and 2) a relationship true at high stress level where flow mobility is
inversely proportional to the grain size squared (Eq. (21)). The
attenuation of the grain size effect at small stress level is caused by
a counteracting effect such as the backward accretion of the
deposit that reduces the increase of mobility as grain size de-
creases. An attenuation mechanism must exist at low stress level
since particle agitation that dissipates energy is proportional to
grain size squared at both high and low stress level (Fig. 11). Thus,
it is only on a rough subsurface at high stress level that both flow
mobility (Fig. 9b) and particle agitation (Fig. 11) are a function of
parameter ψ, where grain size squared occurs in the numerator.
The proportionality between granular temperature (i.e., particle
agitation) and the square of grain size descends also from the
kinetic theory of granular flows (Jenkins and Savage 1983;
Armanini 2013).

Flow volume
Flow volume has a geometric consequence on flow mobility that is
analogous on both the rough subsurface at low stress level (Fig. 9a)
and the smooth subsurface (Fig. 12). In both cases, since the
deposit accretes backward, the larger the flow volume the larger
the backward shift of the final location of the center of mass. This
geometric effect is able to counteract that due to the influence that
flow volume has on clasts agitation (Figs. 11 and 13) and related
energy dissipation. A mobility decrease of the center of mass as
flow volume increases was observed also in the experiments by
Okura et al. (2000). But it remains to be ascertained whether the
sign of a mobility change of a geometric effect depends also on the
slope shape that here is constant. Importantly, on a rough subsur-
face at low stress level, the presence of flow length L in the
denominator of parameter χ (Eq. (13)), where an increase of L
increases flow mobility (Fig. 9a), can be explained considering that
the more proximal sections of a flow exert a downward force on
the more distal ones. Indeed, on a curved slope that is gradually
steeper toward the top, the longer the flow, the larger the differ-
ence between the slope-parallel component of g acting on the most
proximal and most distal sections of the flow so that the more
proximal sections push forward the more distal ones with a greater
force.

It is on the rough subsurface at high stress level that flow
volume has an effect on flow mobility that accords with its effect
on clast agitation and related energy dissipation. In this case, both
flow mobility (Fig. 9b) and particle agitation (Fig. 11) are a function
of ψ, where flow volume is in the denominator. This flow volume
effect (where flow mobility increases as flow volume increases)
agrees with the famous relationship observed in the field between
the Heim’s coefficient and the volume of particularly large rock
avalanches (Heim 1932; Scheidegger 1973; Mitchell et al. 2020).
Here too it occurs only with the larger prototypes (n = 1000) and
it is expected also with n > 1000. Thus, small-scale laboratory flows
with n = 1 do not replicate all features of large-scale flows in nature
(Davies and McSaveney 1999). But, in contrast to μA, the Heim’s
coefficient acquires exceedingly small values since it is the ratio of
the vertical fall to the horizontal distance from the crest of the
scarp to the deposit most distal reach that can be very distal as

result of the long longitudinal spreading of large flows (Davies
1982). Since the planimetric area inundated by a deposit is pro-
portional to a power of its volume (Griswold and Iverson 2008), a
very long spreading is expected in relatively narrow valleys filled
with very large deposits. For example, the Canadian rock ava-
lanches examined by Mitchell et al. (2020) range in volume from
0.1 to 500 million m3. Although here the prototypes of the flows
with n = 1000 range in volume from ~4000 to ~14500 m3, relatively
small flows occur in nature as well. For example, dry granular
flows with volumes smaller than 10000 m3 destroyed roads in
China in 2008 (Jiang and Towhata 2013) and gravity-induced
pyroclastic flows with volumes smaller than 45000 m3 are docu-
mented in Stromboli, Italy (Salvatici et al. 2016).

It is important to understand that quantities such as flow
volume and stress level are not the same in terms of physical
meaning as far as flow mobility is concerned. Indeed, by changing
the value of volume V in Eqs. (20) and (21), the position of the
granular flow in Fig. 9 changes only along one of the curves
because V in the granular scaling parameters is there to express
the number of clasts in the flow as per Eq. (14). For a granular flow
to change curve in Fig. 9, it is the value of the scale n that needs to
change and by doing so also the stress level in the granular flow
changes. A change of the number of particles alone does not
change the curve where the flow is plotted because flows with only
different numbers of particles are not geometrically similar since
flow thickness and flow length change at different rates when flow
volume changes. In particular, since gravity acts downward, flow
thickness does not increase as significantly as the flow length does
when flow volume increases (see for example graph 10 in Lo
(2000)) and a relatively small increase of flow depth is not able
to significantly increase the stress level within the flow.

Channel width
Channel width has a geometric effect on flow mobility, but it also
influences clast agitation. Mobility decreases as the channel nar-
rows because of a geometric consequence of the deposit backward
accretion on both a rough subsurface at low stress level and a
smooth subsurface (Figs. 9a and 12). But since clast agitation and
channel width are inversely proportional on both rough and
smooth subsurface at all examined stress level (Figs. 11 and 13),
clasts agitation per unit of flow mass and its related energy dissi-
pation increase as the channel narrows.

Conclusions
Three new granular flow regimes are identified: 1) a mobility
regime on a rough subsurface at low stress level, 2) a mobility
regime on a rough subsurface at high stress level, and 3) a mobility
regime on a smooth subsurface that is unaffected by the stress
level. An important novel result of this paper is to reveal for each
regime its functional relationship of flow mobility with key quan-
tities such as stress level, flow volume, grain size, channel width,
and basal friction (Eqs. (20), (21), and (23)). These relationships
are linear when the flow proper comprises most of the travelling
granular mass.

The regime on a sufficiently smooth subsurface is characterized
by flows that slide en masse and whose mobility is not affected by
the stress level (Eq. (23)). Thus, sliding geophysical flows in nature
can be modeled in the laboratory with no need to increase the
acceleration of gravity in a centrifuge.

Landslides



The geophysical granular flows whose mobility is affected by
the stress level are those on a relatively rough subsurface (Eqs. (20)
and (21)) where clast agitation determines their dynamics. Indeed,
on a rough subsurface, flow mobility increases as the stress level
increases. Another very important novel result is that, on a rough
subsurface, as the stress level increases, the effect that an increase
of flow volume has on flow mobility switches sign from causing a
decrease of mobility at low stress level (Eq. (20)) to causing an
increase of mobility at high stress level (Eq. (21)). The latter
functional relationship is the first equation that accounts for the
famous Heim’s mobility increase with the increase of the volume
of large rock avalanches. This increase was detected so far only in
the field and for this reason it was considered inexplicable without
resorting to extraordinary mechanisms.
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