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Abstract
This paper studies the properties of an inconsistency index of a pairwise comparison
matrix under the assumption that the index is defined as a norm-induced distance from
the nearest consistent matrix. Under additive representation of preferences, it is proved
that an inconsistency index defined in this way is a seminorm in the linear space of
skew-symmetric matrices and several relevant properties hold. In particular, this linear
space can be partitioned into equivalence classes,where each class is an affine subspace
and all the matrices in the same class share a common value of the inconsistency
index. The paper extends in a more general framework some results due, respectively,
to Crawford and to Barzilai. It is also proved that norm-based inconsistency indices
satisfy a set of six characterizing properties previously introduced, as well as an upper
bound property for group preference aggregation.
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1 Introduction

Pairwise comparison over a set of alternatives X = {x1, . . . , xn} is a well known
and powerful method for preference elicitation in a decision problem. An important
characteristic of this method is the capability of dealing with the imprecision of the
collected data due to the unavoidable inconsistency of human judgements. Each entry
ai j of a pairwise comparison matrix, PCM in the following, A = (ai j )n×n quantifies
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the degree of preference of alternative xi over alternative x j . Two widely used rep-
resentations of preferences are the so-called multiplicative and additive ones. In the
multiplicative approach (Saaty 1977), ai j is the relative preference of alternative xi
over alternative x j , and therefore, it estimates the ratio between theweightwi of xi and
the weight w j of x j , ai j ≈ wi

w j
Conversely, in the additive approach, ai j estimates the

difference between the weights of xi and x j , respectively, ai j ≈ wi − w j . Therefore,
different assumptions in preference quantification correspond to different meaning
of the entries ai j . It has been proved that the multiplicative and the additive repre-
sentations are isomorphic and, therefore, equivalent. In fact, a multiplicative PCM
(ai j )n×n can be easily transformed into a corresponding additive PCM by compo-
nentwise applying the logarithmic function, thus obtaining (ln(ai j ))n×n . Details on
this isomorphism can be found in (Barzilai 1998; Cavallo and D’Apuzzo 2009). In the
multiplicative approach, a pairwise comparison matrix PCM is a positive real-valued
matrix A = (ai j )n×n with aii = 1 ∀i and ai j a ji = 1 ∀i, j . Multiplicative reciprocity
ai j a ji = 1 derives from wi

w j

w j
wi

= 1, and this property is always required. A PCM is
said consistent if and only if

ai j a jk = aik, i, j, k = 1, . . . , n. (1)

Consistency condition (1) corresponds to the ideal situation where the decision maker
is perfectly coherent in her/his judgements and it is in general not required, since it is
well known that in making paired comparisons people do not have the intrinsic logical
ability to always be consistent (Saaty 1994). Despite a violation of (1) to some extent
is necessarily accepted, consistency has always been regarded as a desirable property,
since coherent judgements are clearly considered more preferable than contradictory
ones. Therefore, a correct inconsistency evaluation is regarded as a crucial task and
several indices have been proposed in order to quantify the deviation from the condition
of full consistency (1).

The problem of inconsistency evaluation has been addressed by means of many
different proposals. We briefly cite some of them. Saaty (1977) proposed, in his sem-
inal paper, the first and still most popular inconsistency index. Koczkodaj (1993)
and Duszak and Koczkodaj (1994) introduced an inconsistency index which became
very popular too. Bozóki and Rapcsák (2008) summarized the relationship between
some weighting methods and the corresponding inconsistency indices. Then, the
authors compared Saaty’s and Koczkodaj’s inconsistency indices. Recently, Brunelli
and Fedrizzi (2019) proposed a general formulation for inconsistency indices that
includes many among the known indices. Cavallo (2020) studied the functional rela-
tions between some important consistency indices, mainly focusing on the case n = 3.
Nevertheless, the detailed description of all the relevant contributions on the consis-
tency evaluation is beyond the scope of this paper. For a comprehensive survey, see
(Brunelli 2018). Most of these studies assume the multiplicative representation of the
preferences, i.e., they deal with multiplicative PCMs. Some papers take into account
both the multiplicative and the additive representations (Fichtner 1984; Chu 1998).
Brunelli et al. (2013) compared ten known indices numerically, while Brunelli (2017),
Brunelli and Fedrizzi (2015a) and Csató (2018, 2019) proposed a more theoretical
approachby studying someaxioms for inconsistency indices. InCavallo andD’Apuzzo
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(2009) and in some following papers by the same authors, a general framework for
inconsistency evaluation is proposed, based on the algebraic structure of group. Ramík
and Korviny (2010) proposed a distance-based evaluation of the inconsistency in the
framework of fuzzy sets. Other interesting distance-based approaches to the study of
inconsistency have been proposed more recently by Brunelli and Cavallo (2020) and
Mazurek and Ramík (2019).

This paper proposes a geometric-oriented unifying point of view for inconsistency
evaluation based on norm-induced metrics in matrix spaces. Our proposal can be con-
sidered as a generalization of the approach by Crawford and Williams (1985), where
the logarithmic least square method (LLSM) is applied. In fact, their method corre-
sponds to the Euclidean normminimization after passing to the additive representation
of preferences. This justifies, in our view, the numerous good properties of the LLSM
and the related geometric mean solution.

The rest of the document is organized as follows.After somepreliminaries in Sect. 2,
we assume the additive representation of preferences, and in Sect. 3, we introduce an
inconsistency index for a PCM defined as a norm-induced distance from the nearest
consistentPCM.More precisely, in Sect. 3.1we partition the subspace ofPCMs (skew-
symmetric matrices) into equivalence classes, so that each class will correspond to a
single inconsistency value. In Sect. 3.2, we define our index and we prove that it is
a seminorm in the vector space of PCMs. We prove, respectively, in Sect. 3.3 and
in Sect. 3.4, that our index satisfies a set of six axioms previously introduced and an
upper bound property for group preference aggregation. Finally, in Sect. 4, we discuss
some conclusions and future work.

2 Preliminaries

For a fixed n > 2, letRn×n be the vector space of n-order real matrices. LetA ⊂ R
n×n

be the set of multiplicative PCMs of order n,

A = {A = (ai j )n×n|ai j > 0, ai j a ji = 1 ∀i, j}.

Similarly, the set of consistent multiplicative PCMs A∗ ⊂ A is defined as

A∗ = {A = (ai j )n×n|A ∈ A, aik = ai j a jk ∀i, j, k}.

An inconsistency index is a function which associates a real number to each PCM
A ∈ A,

I : A → R

The number I (A) quantifies the inconsistency of A.
A PCM A = (ai j )n×n can be viewed as a point in the vector spaceRn×n . Closeness

to consistency condition (1) can therefore be interpreted as closeness ofA to a consis-
tent matrixAC in the same space. It is interesting to observe that choosing the ‘closest’
consistent matrix AC exactly corresponds to compute the weight vector w from A. In
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fact,AC is consistent if and only if there exists a weight vectorw = (w1, . . . , wn) such
that AC = (

wi
w j

). Every method for deriving a weight vector w = (w1, . . . , wn) from

an inconsistent PCM A identifies a consistent matrix AC = (
wi
w j

) which is considered

the ‘closest’ one to A according to a certain metric in R
n×n . Then, deriving a weight

vector and measuring inconsistency can be integrated into one process by minimizing
an appropriate objective function such that its minimum point is the weight vector,
while the optimal value of the objective function gives the inconsistency of the pair-
wise comparison matrix. These observations suggest to characterize an inconsistency
index by means of the notion of distance. Nevertheless, it is convenient to first shift to
the additive representation of preferences. This can be done by a simple component-
wise logarithmic transformation and allows working with the powerful tools of linear
algebra. Note that the multiplicative and the additive representation of preferences
are isomorphic, as described in detail by Barzilai (1998) and Cavallo and D’Apuzzo
(2009).

By componentwise applying a logarithmic function to a PCM A = (ai j ),

ln(ai j ) = ri j , (2)

a skew-symmetric matrix R = (ri j ) is obtained, since multiplicative reciprocity
ai j a ji = 1 is transformed into additive reciprocity

ri j + r ji = 0, i, j = 1, . . . , n. (3)

Being (3) a homogenous linear system, the image set of A through the logarithmic
function is the linear subspace of Rn×n of the skew-symmetric matrices, say L =
{ln(A);A ∈ A} = ln(A). The dimension of L is n(n − 1)/2, i.e., the number of the
upper-diagonal entries.

A consistent matrix A = (ai j ) ∈ A∗ is transformed into a skew-symmetric matrix
R = ln(A) = (ln(ai j )) = (ri j ) satisfying

ri j + r jk = rik , i, j, k = 1, . . . , n . (4)

Property (4) clearly follows from (1) and proves that the image set of A∗ through
the logarithmic function is a linear subspace of L, and therefore a linear subspace of
R
n×n , say L∗ = {ln(A);A ∈ A∗} = ln(A∗) (Kocakodaj 1997). The dimension of L∗

is n − 1 since it is known that n − 1 entries are necessary and sufficient to completely
identify a consistent n-order matrix, provided that they are adequately chosen (Chu
1998; Fedrizzi et al. 2019).

SinceA is isomorphic toL and linear spaces are simple structures where it is possi-
ble working with tools of linear algebra, then, from now on, we will study preference
inconsistency in the subspace L. Therefore, we will use the usual notation A also to
denote a skew-symmetric matrix in L. An inconsistency index will be a function

I : L → R, (5)

and we will call ‘additive PCM’ a matrix in L.
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3 Distances and norms

As remarked above, an inconsistency index measures to which extent a preference
matrix is far from consistency. Since distance is the most suitable mathematical tool
to evaluate how much two objects are different, it is quite natural to define an incon-
sistency index I (A) of a matrix A ∈ L as the distance of A from the linear subspace
L∗ of consistent matrices,

Id(A) = d(A,L∗). (6)

Nevertheless, the notion of distance is too general to conveniently characterize incon-
sistency, and definition (6) can lead to unsatisfactory inconsistency indices (Fichtner
1986).

In the following, we will prove that the problem can be overcome by restricting
metrics to those defined bynorms. The resulting inconsistency indices satisfy a relevant
set of good properties. Before proceeding, let us recall the basic notions of distance,
norm and seminorm.

Definition 1 (Distance) A distance, or metric, on a given set Z is a function d :
Z × Z → R that satisfies the following three conditions,

1. d(x, y) ≥ 0 ∀x, y ∈ Z and d(x, y) = 0 ⇔ x = y.
2. d(x, y) = d(y, x) ∀x, y ∈ Z (symmetry).
3. d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈ Z (triangle inequality).

Definition 2 (Norm) A norm on a vector space V is a function ||·|| : V → R that
satisfies the following conditions,

1. ||x|| ≥ 0 ∀x ∈ V (nonnegativity).
2. ||λx|| = |λ| ||x|| ∀x ∈ V , ∀λ ∈ R (homogeneity).
3. ||x + y|| ≤ ||x|| + ||y|| ∀x, y ∈ V (triangle inequality).
4. ||x|| = 0 ⇔ x = 0 (strict positivity)

A seminorm on V is a function s : V → R that satisfies the first three conditions
above. In other words, a seminorm has the same properties as a norm, except that it
may have a zero value for some nonzero vectors.

3.1 A partition ofL into equivalence classes

The vector space structure of L and L∗ naturally induces a partition of L into equiv-
alence classes. Since L∗ is a subspace of L, it is possible to consider the quotient
space L/L∗. More formally, the quotient space L/L∗ is defined as follows, using the
corresponding equivalence relation.

Definition 3 (Quotient space) Consider the equivalence relation in L

A ∼ B ⇔ B − A ∈ L∗ A,B ∈ L. (7)
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Fig. 1 Example of an equivalence class [A] for n = 3

The quotient set L/L∗ is defined as

L/L∗ = L/∼ (8)

and it is a vector space with the operations naturally induced by the operations in L .

The elements of L/L∗ are the equivalence classes [A] obtained by adding to A ∈ L
an arbitrary matrix in L∗,

[A] = {A + C, C ∈ L∗}. (9)

Every equivalence class [A] is an affine subspace of L and can also be represented as
[A] = A + L∗. Figure 1 illustrates an example of [A] in the case n = 3.

We assume that every inconsistency index (5) assigns the same value, say 0 for
simplicity, to every consistent matrix, see axiom 1 in (Brunelli and Fedrizzi 2015a)
and Sect. 3.3.1. Fromwhat precedes, it is natural to assume that an inconsistency index
assigns the same value to every matrix in a fixed equivalence class,

A,B ∈ [A] ⇒ I (B) = I (A). (10)

Now, in order to assign an inconsistency value I (·) to each equivalence class coherently
with the assumption (6), the following must hold. For all [A] ∈ L/L∗, every matrix
A ∈ [A] must have the same distance from L∗. Corollary 1 will prove that this result
can be achieved assuming, as in the following, that distance (6) is induced by a norm.
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3.2 Inconsistency index as a seminorm

Let ||A|| be a norm in R
n×n and let

d(A,B) = ||A − B|| (11)

be the corresponding distance between matrices A and B.
It is now possible to give our main definition.

Definition 4 Given a skew-symmetric matrix A ∈ L and a norm ||·|| in R
n×n , the

inconsistency index of A based on distance (11) is

Id(A) = d(A,L∗) = min
B∈L∗ d(A,B) = min

B∈L∗ ||A − B|| = ∣
∣
∣
∣A − A∗∣∣∣∣ , (12)

where A∗ ∈ L∗ is a solution of the minimization problem in (12).

Note that, by choosing the 1-norm ||·||1, the optimization problem (12) is equivalent
to the optimization problem (24) in (Brunelli and Cavallo 2020), and the same holds
for the inconsistency index proposed there, except for a numerical constant. Most of
the results in this paper are based on the following theorem.

Theorem 1 An inconsistency index Id(A) defined as a norm-based distance (12) is a
seminorm in L.
Proof It must be proved that

1. Id(kA) = |k|Id(A) ∀A ∈ L, ∀k ∈ R

2. Id(A + A′) ≤ Id(A) + Id(A′) ∀A,A′ ∈ L .

Let A∗ ∈ L∗ be a d-nearest consistent matrix to A ∈ L, as in (12). Then, it is possible
to prove that kA∗ is a d-nearest consistent matrix to kA. Equality 1. is obviously true
for k = 0. Then, let us assume k �= 0. It is

∣
∣
∣
∣kA − kA∗∣∣∣∣ = |k| ∣∣∣∣A − A∗∣∣∣∣ ≤ |k| ||A − B|| ∀B ∈ L∗.

Since

|k| ||A − B|| = ||kA − kB|| ,

then it is

∣
∣
∣
∣kA − kA∗∣∣∣∣ ≤ ||kA − kB|| ∀B ∈ L∗. (13)

It follows, from (13), that

∣
∣
∣
∣kA − kA∗∣∣∣∣ = min

kB∈L∗ ||kA − kB|| = Id(kA). (14)
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The last equality follows from the fact that, for a fixed k �= 0, every matrix of L∗ can
be expressed as kB with B ∈ L∗. Then,

Id(kA) = d(kA,L∗) = |k|d(A,L∗) = |k|Id(A) ∀k ∈ R , (15)

so that the first property is proved. The second property can be proved as follows,

Id(A + A′) = min
B∈L∗

∣
∣
∣
∣(A + A′) − B

∣
∣
∣
∣ =

= min
C,C′∈L∗

∣
∣
∣
∣(A + A′) − (C + C′)

∣
∣
∣
∣

= min
C,C′∈L∗

∣
∣
∣
∣(A − C) + (A′ − C′)

∣
∣
∣
∣

≤ min
C∈L∗ ||(A − C)|| + min

C′∈L∗
∣
∣
∣
∣(A′ − C′)

∣
∣
∣
∣

= Id(A) + Id(A′) (16)

where B = C+C′ and the arbitrariness of C and C′ in L∗ follows from the one of B.
��
Clearly, an inconsistency index Id(A) is not a norm in L, since Id(A) = 0 ∀A ∈ L∗.

Theorem 2 If A ∈ L,
1. Every inconsistency index Id(A) given by (12) is invariant with respect to addition

of a consistent skew-symmetric matrix,

Id(A) = Id(A + B) ∀B ∈ L∗ . (17)

2. If A∗ ∈ L∗ is a d-nearest consistent matrix to A and B ∈ L∗ , then A∗ + B is a
d-nearest consistent matrix to A + B

Proof For all A ∈ L and B ∈ L∗ , it is Id(B) = 0 and therefore

Id(A + B) ≤ Id(A) + Id(B) = Id(A) , (18)

but also

Id(A) = Id((A + B) − B) ≤ Id(A + B) + Id(−B) = Id(A + B), (19)

since B ∈ L∗ ⇒ −B ∈ L∗. Equality (17) follows from (18) and (19).
To prove the second statement, let us fix B ∈ L∗ and evaluate

||(A + B) − (A∗ + B)||,
∣
∣
∣
∣(A + B) − (A∗ + B)

∣
∣
∣
∣ = ∣

∣
∣
∣A − A∗∣∣∣∣ (20)

≤ ||A − C|| ∀C ∈ L∗. (21)
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Fig. 2 Representation of Theorem 2 in the case n = 3

Since

||A − C|| = ||(A + B) − (C + B)|| ,

then it is

∣
∣
∣
∣(A + B) − (A∗ + B)

∣
∣
∣
∣ ≤ ||(A + B) − (C + B)|| ∀C ∈ L∗

��
Figure 2 illustrates Theorem 2 in the case n = 3.

Crawford (1987) introduced the so-called Geometric Consistency Index,GC I , and
proved a theorem (Theorem 2 in the cited paper) which states, for his index, the same
result as in Theorem 2 of this paper. He used the multiplicative representation of
preferences, so that he proved the invariance with respect to the Hadamard product
A ·B = (ai j bi j )n×n instead of invariance with respect to the sum as in (17). Theorem 2
can therefore be viewed as an extension of Crawford’s theorem to the general case
of norm-based consistency indices in the additive representation of preferences. The
semantic of Theorem 2 is as follows. The inconsistency degree Id(A) of a PCM A
remains unchanged by adding consistent preferences.

From Theorem 2, the following corollary can be stated.

Corollary 1 If matrices A,B ∈ L are in the same equivalence class, then they have
the same inconsistency index (12),

A ∼ B ⇒ Id(A) = Id(B), (22)

where ∼ is defined in (7).

The proof of (22) directly follows from (17) and (9).
Since L∗ is the subspace of Lwhere the seminorm Id(·) is null, then this seminorm

induces a norm in L/L∗. The result is described in the following corollary.
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Corollary 2 The function Id : L/L∗ → R, defined as follows

Id([A]) = Id(A), A ∈ [A], (23)

is a norm on L/L∗ .

Note that, for sake of simplicity, we use the same notation Id(·) for the inconsistency
index defined in L, where Id is a seminorm, and the one defined in L/L∗,where Id is
a norm.

If the norm in (11) arises from an inner product, ||A|| = √〈A,A〉, then it is possible
to define the orthogonal complement (L∗)⊥ of L∗, where (L∗)⊥ = {A ∈ L|A ⊥ L∗}.
Therefore, quotient space L/L∗ is isomorphic to (L∗)⊥ and L can be obtained as
direct sum of L∗ and (L∗)⊥,

L = L∗ ⊕ (L∗)⊥
. (24)

Property (24) extends the result of Barzilai (1998), where he proposed the orthogonal
decomposition of a matrix A ∈ L into its ‘consistent’ and ‘totally inconsistent’ com-
ponents, A = C + E, and orthogonality C ⊥ E refers to the standard dot product on
R
n×n corresponding to the Euclidean norm. Note that the decomposition proposed by

Barzilai has been further investigated and generalized by Cavallo (2019).

3.3 Axioms satisfaction

Brunelli and Fedrizzi (2015a) proposed five characterizing properties, or axioms, for
an inconsistency index. Then, Brunelli (2017) completed the set of axioms with a
sixth one. The axioms can be formulated both in the additive and in the multiplicative
representation of preferences. We clearly refer to the former. In this section, we prove
that an inconsistency index Id(A), given by (12), satisfies all the six axioms, provided
that (11) is a permutation-invariant normonRn×n , that is a norm invariant with respect
to permutations on the coordinates.

3.3.1 Axiom (A1): Existence of a unique element representing consistency

The first characterizing property (A1) requires that an inconsistency index must be
associated to a unique real number which represents perfectly consistent preferences.
More formally, it is demanded that

∃!ν ∈ R such that I (A) = ν ⇔ A ∈ L∗.

An inconsistency index (12) satisfies axiom (A1) with ν = 0, since d(A,L∗) = 0 ⇔
A ∈ L∗.

3.3.2 Axiom (A2): Invariance under permutation of alternatives

Axiom (A2) requires that an inconsistency index must be independent from the order
of the alternatives, i.e., from the order to which the alternatives are associated with the
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rows and columns of A,

I (PAPT ) = I (A) ∀A ∈ L, (25)

for any permutation matrix P.
If the norm in (12) is permutation invariant, then axiom (A2) is satisfied.

3.3.3 Axiom (A3): Monotonicity under reciprocity-preserving mapping

We first briefly summarize axiom (A3). For a more comprehensive description, please
refer toBrunelli andFedrizzi (2015a). The idea underlying axiom (A3) is the following:
if inconsistent preferences are intensified, then a better value of an inconsistency
index cannot be obtained. By ‘preference intensification,’ we mean going farther from
complete indifference ai j = 0 ∀i, j , which is clearly fully consistent. Going farther
from this, uniformity means having stronger judgments and this should not make
their possible inconsistency less evident. It can be proved that the only transformation
ai j → f (ai j ) which can intensify preferences by preserving the necessary additive
reciprocity structure (3) is

f (ai j ) = kai j , k > 1, (26)

or, equivalently,

A → kA, k > 1. (27)

The formalization of Axiom (A3) is as follows.
Axiom (A3) An inconsistency index I (·) satisfies axiom (A3) if and only if

I (kA) ≥ I (A) ∀k > 1 ∀A ∈ L. (28)

Proposition 1 An inconsistency index defined by (12) satisfies axiom (A3).

Proof Theorem 1 implies that Id(kA) = |k|Id(A) ∀k ∈ R. Then, Id(kA) >

Id(A) ∀k > 1 and axiom (A3) is satisfied. ��

3.3.4 Axiom (A4): Monotonicity on single entries

We briefly summarize axiom (A4). The reader can refer to Brunelli and Fedrizzi
(2015a) for a more comprehensive description. The idea underlying axiom (A4) is that
an inconsistency index is non-decreasingwith respect to an elementarymodification of
a consistent matrix. More formally, given a consistent skew-symmetric matrixA ∈ L∗
and b ∈ R, b �= 0, let Apq(b) ∈ L be the inconsistent skew-symmetric matrix
obtained from A by replacing the single entry apq with apq + b, p, q ∈ {1, . . . , n},
p �= q. Clearly, aqp must be replacedwith aqp−b in order to preserve skew-symmetry.
Axiom (A4) requires that the larger the change of apq from its consistent value, the
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more inconsistent the obtained matrix is. The formalization of Axiom (A4) is as
follows.
Axiom (A4) An inconsistency index I (·) satisfies axiom (A4) if and only if
I (Apq(b)) is a non-decreasing function of b for b > 0 and a non-increasing function
of b for b < 0, ∀A ∈ L∗, ∀ p, q ∈ {1, . . . , n}, p �= q.

Proposition 2 An inconsistency index defined by (12) satisfies axiom (A4).

Proof The proof follows from the homogeneity of seminorms. Given a consistent
skew-symmetric matrixA ∈ L∗ and b ∈ R, b �= 0, letApq(b) ∈ L be the inconsistent
skew-symmetric matrix obtained as described above. Matrix Apq(b) can be obtained
as follows,

Apq(b) = A + bMpq ,

where Mpq is the n × n matrix with all null entries except Mpq(p, q) = 1,
Mpq(q, p) = −1. Theorem 2 implies that all the inconsistency of matrix Apq(b)
is due to matrix bMpq , when inconsistency is evaluated by means of Id(·),

Id(Apq(b)) = Id(A + bMpq) = Id(bMpq).

Theorem 1 implies that Id(bMpq) = |b|Id(Mpq) ∀b ∈ R. Since Id(Mpq) > 0, then
axiom (A4) is satisfied. ��

3.3.5 Axiom (A5): Continuity

Axiom (A5) requires continuity of an inconsistency index. Continuity of (12) directly
follows from the continuity of norms.

3.3.6 Axiom (A6): Invariance under inversion of preferences

Axiom (A6) (Brunelli 2017) requires that an inconsistency index does not change
when preferences expressed in the formof a pairwise comparisonmatrixA are inverted
by taking its transpose AT . The idea underlying axiom (A6) is that by inverting all
the preferences we change their polarity, but leave their structure unchanged. The
formalization of Axiom (A6) is as follows. Axiom (A6) An inconsistency index I (·)
satisfies axiom (A6) if and only if I (A) = I (AT ) ∀A ∈ L.
Proposition 3 An inconsistency index defined by (12) satisfies axiom (A6).

Proof Since A is skew-symmetric, it is AT = −A. Then, an inconsistency index I (·)
satisfies axiom (A6) if and only if I (A) = I (AT ) = I (−A) ∀A ∈ L. By defining
B′ := −B, it is

Id(−A) = min
B∈L∗ d(−A,B) = min

B∈L∗ ||−A − B|| (29)
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= min
B′∈L∗

∣
∣
∣
∣−A + B′∣∣∣∣ = min

B′∈L∗ | − 1| ∣∣∣∣A − B′∣∣∣∣ (30)

= min
B′∈L∗

∣
∣
∣
∣A − B′∣∣∣∣ = Id(A), (31)

Similarly to (14), the proof follows from the fact that every matrix B of L∗ can be
expressed as B = −B′ with B′ ∈ L∗. Then, axiom (A6) is satisfied by (12). ��

3.4 Boundary property for group decisionmaking

In this section, we prove that inconsistency index Id(A) given by (12) satisfies the
upper bound property described by Brunelli and Fedrizzi (2015b).

If the preferences of k = 1, . . . ,m decision makers are expressed by means of m
PCMs Ak = (aki j ), it is a relevant problem to study the group PCM AG = (aGi j )
obtained by aggregating the m individual PCMs. Dijkstra (2012) proved that, if the m
PCMs are expressed in the multiplicative representation of preferences, the weighted
geometric mean is the unique aggregation method that guarantees some important
properties of the group PCM to hold. Let us consider

aGi j =
m

∏

k=1

(aki j )
λk , (32)

where (λ1, . . . , λm) is the weight vector of the decision makers such that λk ≥ 0,
∑m

k=1 λk = 1 and Ak = (aki j ) ∈ A. In particular, (32) is the unique consistency-
preserving non-trivial aggregation method. Brunelli and Fedrizzi (2015b) studied how
the inconsistency of AG depends on the inconsistency of Ak , k = 1, . . . . ,m. They
proved, in particular, that some known inconsistency indices satisfy the following
upper-bound property.

Definition 5 (Brunelli and Fedrizzi 2015b) A function I : A → R is upper bounded
w.r.t the geometric mean if:

I (AG) ≤ max{I (A1), . . . , I (Am)}. (33)

The following property is more restrictive than (33), it was also introduced by Brunelli
and Fedrizzi (2015b) and studied for some known inconsistency indices.

Definition 6 (Brunelli and Fedrizzi 2015b) A function I : A → R is strongly upper
bounded w.r.t the geometric mean if:

I (AG) ≤
m

∑

k=1

λk I (Ak), (34)

where (λ1, . . . , λm) is the same weight vector used in (32) to obtain AG .
Let us study the upper-bound properties (33) and (34) from the additive approach

described above, that is, in the vector spaceL of skew-symmetric preference matrices.
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By componentwise applying the logarithmic function (2) as described in Section 2, the
aggregation (32) in A clearly corresponds to a linear combination in L. By using, for
simplicity, the same notation as in (32), the group skew-symmetric preference matrix
is given by

aGi j =
m

∑

k=1

λk(a
k
i j ) i, j = 1, . . . , n (35)

AG =
m

∑

k=1

λkAk, (36)

where Ak = (aki j ) ∈ L . The following result holds.

Theorem 3 An inconsistency index Id(A) defined as a norm-based distance (12) is
strongly upper bounded, i.e., it satisfies the upper boundary property (34).

Proof Theorem 1 implies that

Id(AG) = Id(
m

∑

k=1

λkAk) ≤
m

∑

k=1

Id(λkAk)

=
m

∑

k=1

|λk |Id(Ak) =
m

∑

k=1

λk Id(Ak) (37)

��

4 Conclusions and future work

In this paper, we showed that by defining an inconsistency index Id(A) by means
of a distance induced by a norm, as in (12), it is possible to prove many relevant
properties of this index. Note that the property of homogeneity of a (semi)norm is
a crucial assumption in proving several Theorems and Propositions. Nevertheless, a
norm is, in our view, a sufficiently general notion to satisfy different requirements of
a decision maker. Let us clarify our point with the example of the p-norm of a vector
x = (x1, . . . , xn),

||x||p =
(

n
∑

i=1

|xi |p
) 1

p

, p ≥ 1. (38)

A p-norm is clearly a permutation-invariant norm, so that all the results in Sect. 3 hold
if Id(A) is defined by means of a p-norm (38). Note that the well-known Geometric
Consistency Index GC I introduced by Crawford (1987) corresponds, in the additive
representation of preferences, to the usual Euclidean norm ||·||2. More generally, if a
decisionmaker uses p-norm (38), he/she is providedwith a flexible tool in emphasizing
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inconsistent preferences. More precisely, the larger p, the more emphasis is paid
in order to avoid large differences between the elicited preferences and the closest
consistent ones.

In future research,wewill study the relationship between the ‘natural’ inconsistency
ranking defined by Csató (2019) and the ranking on the set of triads induced by the
norm-based inconsistency indices defined in this paper. More precisely, we will study
how the choice of a norm affects this relationship. A second research topic will be
the possible relationship between our inconsistency index and the index introduced
by Koczkodaj (1993).
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