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Abstract
Inmany cases occurring in the real world and studied in science and engineering, non-homogeneous fractal forms often emerge
with striking characteristics of cyclicity or periodicity. The authors, for example, have repeatedly traced these characteristics
in hydrological basins, hydraulic networks, water demand, and various datasets. But, unfortunately, today we do not yet have
well-developed and at the same time simple-to-use mathematical models that allow, above all scientists and engineers, to
interpret these phenomena. An interesting idea was firstly proposed by Sergeyev in 2007 under the name of “blinking fractals.”
In this paper we investigate from a pure geometric point of view the fractal properties, with their computational aspects, of two
main examples generated by a system of multiple rules and which are enlightening for the theme. Strengthened by them, we
then propose an address for an easy formalization of the concept of blinking fractal and we discuss some possible applications
and future work.

Keywords Fractal geometry · Hausdorff distance · Topological compactness · Convergence of sets · Möbius function ·
Mathematical models · Blinking fractals

1 Introduction

The word “fractal” was coined by B. Mandelbrot in 1975,
but they are known at least from the end of the previous
century (Cantor, von Koch, Sierpiński, Fatou, Hausdorff,
Lévy, etc.). However, it is only in the last few decades that
fractals have known a wide and transversal diffusion and
the interest of the scientific world towards them has seen
an exponential growth. In fact, fractals have been applied
in many fields, from the dynamics of chaos to computer
science, from signal theory to geology and biology, etc.
(see for example Barnsley 1993, 2006; Bertacchini et al.
2018, 2016; Briggs 1992; Falconer 2014; Hastings and Sug-
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ihara 1994; Mandelbrot 1982 and the references therein).
Very interesting further links and applications are also those
between fractals, space-filling curves and number theory
(see, for instance, Caldarola 2018a; Edgar 2008; Falconer
2014; Lapidus and van Frankenhuysen 2000), or fractals
and hydrology/hydraulic engineering as we will recall better
below.

The main characteristic of a fractal, as it is well known, is
the property of self-similarity at different scales, and many
abstract mathematical models have been created by focusing
on this property. In most cases, a fractal is in fact mathemati-
cally described by a generating rule or an iteratedmechanism,
but in the realworld it is not difficult tofind examples inwhich
it clearly emerges that a single simple rule is not enough to
build the fractal. So in recent years, there have been several
attempts and studies, some very successful, to implement tra-
ditional fractal theory. For example, a multifractal system is
a generalization of a classical fractal which uses a continu-
ous spectrum of exponents to describe its dynamics, in the
place of a single exponent, given by the fractal dimension,
in traditional models (see Bernardara et al. 2007; Falconer
2014; Harte 2001). For many natural phenomena, it is in fact
completely insufficient to use a model that provides a single
fractal dimension; multifractal systems have been typically
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applied in contexts with different mass concentrations and in
chaotic dynamics, for instance, to the Sun’s magnetic field,
human heartbeat and brain activity, turbulent dynamics in
fluids, meteorology, geophysics, but also finance, internet
traffic, and others (see Falconer 2014; Harte 2001; Ivanov
et al. 1999; Stanley andMeakin 1988; Veneziano and Essiam
2003 and their references).

Another interesting example is given by the superfrac-
tal formalism introduced in 2002 by Barnsley, Hutchinson
and Stenflo. The class of deterministic fractals is not too
rich to study effectively the real world, because nature often
mixes deterministic aspects and casuality in its patterns.
Then, superfractals are precisely the models that are halfway
between deterministic and completely random fractals, and
present characteristics of both groups (for a comprehensive
introduction to 1- and V -variable superfractals, see Barnsley
2006).

In their experience in hydraulic contexts, the authors have
often found semblances and fractal properties emerging in the
course of various researches, especially in those conducted
by the second author since the 90s. For example, the applica-
tion of fractal models to hydrological basins, natural channel
networks, but also to urban rainfall catchments,marinewaves
actions, shallow waters, and much more, has become a com-
mon topic in the scientific literature (see, e.g., Bernardara
et al. 2007; Rodríguez-Iturbe and Rinaldo 2001; Sivakumar
2017; Veltri et al. 1996; Yang et al. 2014). Recently, more-
over, the theory of fractals and fractal dimension has started
to be applied also to artificial infrastructures such as water
distribution networks, in particular in urban agglomerations,
as in Di Nardo et al. (2017); Diao et al. (2017); Kowalski
et al. (2014); Qi et al. (2014); Wu et al. (2009). The same
authors are conducting some research using tools such as
algebraic graph theory, fractal geometry and a new system
of local indices (see Bonora et al. 2020a, b, c; Caldarola and
Maiolo 2019, 2020a, b) in the study of water networks: in
the second case, the biggest challenge is to find a determin-
istic fractal model, without random components, but which
takes into account some temporal periodicities, for example,
on a daily, weekly, seasonal basis, which characterize urban
water networks. The same challenge arises in the study of the
fractal aspects of water demand, where a superfractal or mul-
tifractal model does not seem to be the most effective or the
most appropriate for the purpose, as well. Furthermore, these
models do not best respond to the request for structural sim-
plicity and ease of use by technicians and engineerswhowork
on real networks and who struggle constantly with important
complications and difficulties from a computational point of
view.

For the reasons exposed above, the authors are very inter-
ested to investigate and develop a fractal model as simple
as possible, but that can easily involve periodic changes as

needed. This could be the case of “blinking fractals” or some-
thing similar to them.

The idea of blinking fractal was introduced byY. Sergeyev
in 2007 (see Sergeyev 2007) to describe fractals that assume
different shapes or configurations during their development,
with a cyclical order. As far as the knowledge of the authors,
they were successively applied only in Sergeyev (2011) up
until now, to model a process of growth in biological systems
(like the growing of trees through the different seasons of the
year).1 We also inform the reader that in Sergeyev (2007) and
(Sergeyev 2011) blinking fractals are studiedwith the support
of a new computational methodology developed by Sergeyev
himself in the early 2000s towrite and to performcalculations
with infinite and infinitesimal numbers in a handy and very
easy way as in the ordinary sets of natural or rational num-
bers N and Q (see Sect. 5 for some more information and the
referencesAmodio et al. 2017;Antoniotti et al. 2020a, b; Cal-
darola 2018b; Caldarola et al. 2020b; Sergeyev 2013, 2008,
2009, 2010, 2016, 2017). More precisely, a blinking frac-
tal is specified in Sergeyev (2007) as an “object constructed
using the principle of self-similarity with a cyclic application
of several fractal rules.”

The main purpose of this paper is to make a topological-
geometric contribution for the development and a concrete
future use of fractal models which present periodic changes
or alterations, as in the case of blinking fractals. In particular,
after some preliminary material recalled in Sect. 2, we exam-
ine in Sect. 3 the second example (and the first geometrically
constructed) given in the introduction of the article (Sergeyev
2007), the one where the name blinking fractal is used for the
first time. We deeply investigate Sergeyev’s sequence

{
Sn
}
n

as described in Sergeyev (2007), firstly by considering sep-
arately the two subsequences

{
An
}
n and

{
Bn
}
n made up by

theodd and even indexed element, respectively.The sequence{
Bn
}
n clearly converges to a fractal S equal to the intersec-

tion of all Bn , instead, such a property does not hold for{
An
}
n . Hence we begin a series of computations that allow

to find the precise Hausdorff distance between any two ele-
ments of

{
An
}
n (Proposition 2) and

{
Bn
}
n (Proposition 3),

to get successively a general formula that gives the distance
for any two elements of

{
Sn
}
n (Theorem 1). As elementary

consequence, the sequence
{
Sn
}
n itself converges toS which

has Hausdorff dimension 3/2.
In Sect. 4 we use a three-rules system to define a sequence

of plane shapes
{
Xn
}
n that has two subsequences

{
Yn
}
n and{

Cn
}
n that converge to two different fractals,Y andC respec-

tively. Proposition 4 computes their exact distance.
Section 5 addresses conclusions and, from the point of

viewof traditionalmathematics, proposes to define a blinking
fractal of order m simply as a m-tuple of traditional fractals

1 The reader can also see the book (Kaandorp 1994) for a rich com-
pendium of fractal models applied to growth processes in biology.
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(i.e., of blinking fractals of order 1). If we adopt this defini-
tion, Sergeyev’s sequence

{
Sn
}
n generates a blinking fractal

of order 1 and
{
Xn
}
n a blinking fractal of order 2.

2 Preliminary definitions and results

This section collects and explains some necessary notations
and definitions together with some fundamental, well-known
properties of the recalled objects.

First of all, the symbols Z, N and N
+ denote, as usual,

the sets of integers, of nonnegative integers and positive inte-
gers, respectively. The standard symbol R stays for the set of
real numbers and R

+
0 for the set of nonnegative real ones.

Given two integers n ≤ m, the writing [n . . m] is the
most common notation for discrete intervals, i.e., we set
[n . . m] := [n,m] ∩ Z where [n,m] stands for the real
interval as usual. A sequence will be indicated as

{
an
}
n∈N,{

an
}
n , or sometimes simply as an .

We now continue by briefly recalling and explaining
some basic notations in fractal geometry that will be fre-
quently used in the next sections. For the benefit of the
non-mathematical reader interested in blinking fractals, we
will use, both here and in the next sections, a language as
simple and elementary as possible, also providing from time
to time enough details to facilitate reading.

For any N ∈ N
+, we indicate by d the standard Euclidean

metric on R
N . For x ∈ R

N and r ∈ R
+
0 , Br [x] denotes

the closed ball in R
N with radius r and center x , while, if

r > 0, Br (x) denotes the correspondent open one. If ε is a
nonnegative real number and A is any subset of R

N , let A{ε}
be the ε-hull of A, that is,

A{ε} :=
{
x ∈ R

N : d(x, a) ≤ ε for some a ∈ A
}

=
⋃

a∈A

Bε[a] .

Remark 1 In literature A{ε} has many names as, for instance,
the ε-fattening, the ε-parallel body, ε-dilatation, or also the
ε-neighborhood of A. The last name is more common but it
is preferable for the set Nε(A) := {

x ∈ R
N : d(x, a) <

ε for some a ∈ A
}
, because we cannot speak of open and

closed ε-neighborhoods. InR
2, for example,N1

(
B1
(
(0, 0)

))

and
(
B1
(
(0, 0)

))
{1} are both open sets, equal to B2

(
(0, 0)

)
,

instead N1
(
B1[(0, 0)]

) = B2
(
(0, 0)

) �= (
B1[(0, 0)]

)
{1} =

B2[(0, 0)].
It is important also notice for the reader that, for our pur-

poses, it will be quite more convenient to work with enlarged
sets of the kind A{ε} rather thanNε(A), hence in (1) we give
the definition of Hausdorff distance accordingly, among the
many possible ones.

If A and B are two nonempty subsets of R
N we define

their Hausdorff distance dH (A, B) by

dH (A, B) := inf
{
ε ≥ 0 : A ⊆ B{ε} and B ⊆ A{ε}

}
. (1)

It is simple to observe that, equivalently, we can also define
dH (A, B) as

dH (A, B) = max

{
sup
a∈A

inf
b∈B d(a, b), sup

b∈B
inf
a∈A

d(a, b)

}
.

The function dH is not a metric in general, but it becomes so
if we consider the restriction of dH to the family

H
(
R

N ) :=
{
K ⊂ R

N : K compact and K �= ∅
}

.

H
(
R

N
)
is usually referred to as the hyperspace of nonempty

compact subsets of R
N , and it is not difficult to see that,

similarly to
(
R

N , d
)
, the pair

(
H
(
R

N
)
, dH

)
is a complete

metric space. Moreover, if A, B ∈ H
(
R

N
)
, then it is easy to

show that

dH (A, B) ∈ {ε ≥ 0 : A ⊆ B{ε} and B ⊆ A{ε}
}
, (2)

i.e., the infimum in (1) is actually a minimum.
Lastly, we need to recall here a basic result from algebraic

combinatorics on words, because when we will draw conclu-
sions in Sect. 5wewill have too few space. Classic references
in the field are the first two Lothaire’s books (Lothaire 1983)
and (Lothaire 2002).

Let A be an alphabet, i.e., a set of some distinct symbols
called letters; awordw over A is a finite sequence of elements
written

w = a1a2 . . . an

with n ∈ N
+ and ai ∈ A. We also say that w has length n,

and we write |w| = n. The set A+ of all words over A, i.e.

A+ := {w = a1a2 . . . an : n ∈ N
+ and ai ∈ A

}
,

is a semigroup with the operation of concatenation, and if
1 denotes the empty word then A∗ := A+ ∪ {1} is a free
monoid (called the free monoid over A) because 1 acts as
neutral element. A word w ∈ A∗ is said to be primitive if
it is not power of another word, i.e., if w �= 1 and w = un

for some u ∈ A∗ and n ∈ N implies u = w and n = 1.
The following result is a consequence of the so-called defect
theorem (see in particular Lothaire 1983, Proposition 1.3.1)
or can be also viewed as an immediate corollary of Fine
and Wilf’s theorem (see Lothaire 1983, Proposition 1.3.5 or
Lothaire 2002, Proposition 1.2.1).
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Proposition 1 If xn = ym for some x, y ∈ A∗ and n,m ∈ N,
then x and y are both powers of some z ∈ A∗.

In particular, for each word x ∈ A+ there exists a unique
primitive word w ∈ A+ such that x is a power of w.

Let us make a few comments on the last claim in the previ-
ous proposition. If x is a nonempty word, it is rather obvious
that there exists a primitive word w ∈ A+ such that x is
a power of w (use, for example, a trivial induction argu-
ment on the length of x). Instead it is less obvious that if
x = wn = vm , with w and v primitive words, then w = v:
It follows from the first part of the same proposition.

3 Example: a deeper study on a “two-rule
fractal”

As first example, we want to consider a sequence presented
in the initiator paper (Sergeyev 2007) to blinking fractals:
Here we will deepen its analysis from a geometrical point of
view also making various computations that allow to prove
some sharp results.

From now on, we will often use the symbol I to denote
the closed interval [0, 1] ⊂ R. We go to define a sequence
of compact subsets

{
Sn
}
n∈N contained in R

2 and, to have a
clearer view of the constructive process, it is convenient to
imagine the elements Sn with an even index n colored in blue
and those with an odd index in red. The initial element S0
is the square I × I ⊂ R

2, colored hence in blue, and the
element S1 is given by

S1 :=
{
(x, y) ∈ R

2 : |x − 1/2| + |y − 1/2| ≥ 1/2
}

∩ I 2,

that is, the red area consisting of the four isosceles right
triangles with side 1/2 positioned in the four corners of I 2, as
shown in Fig. 1b. To describe S1 by words, we could also say
that it has a vague shape of a square-rhomboid frame (square
externally and rhombus internally). Note, finally, that in the
passage from the blue S0 to the red shape S1 we lose half of
the area.

Consider now S2: It consists of 8 small squares of side
1/4 out of a total of 16 in which I 2 is divided, as illustrated
in Fig. 1c. In particular, there are four squares in the center
and one in each corner. Note that in the passage from S1 to
S2 we have no loss of area: All the red area of S1 is in fact
transformed in the equivalent blue area of S2.

The process to obtain recursively the subsequent elements
of
{
Sn
}
n should be clear from Fig. 1. At the step 2t , t ∈ N,

the unitary square I 2 is divided into 42t small squares of side
(1/4)t each one; 23t of them are blue and form S2t . Then, to
obtain S2t+1, we only have to replace each blue square with a
small red frame as in the transition from S0 to S1. And to get

(a) S0 (b) S1

(c) S2 (d) S3

(e) S4 (f) S5

(g) S6 (h) S7

Fig. 1 The first eight elements of the sequence
{
Sn
}
n , starting from S0,

the square of side 1. In the left column, the elements of even index, that
is blue, and in the right column those of odd index, red

S2t+2, just replace each of the 23t small red frames that make
up S2t+1 with a blue shape like S2, but 4t times smaller.

To consider in future more complex model, we want to
remark as our sequence

{
Sn
}
n can also be viewed as the result

of the successive application of two rules: R1 transforms a
blue square of side l into a red frame like S1 with the same
external side l, and R2 transforms a red frame F of side l into
a blue shape like S2, with the same area and diameter of F
(see Fig. 2).

For convenience in our presentation and to consider sepa-
rately the subsequences of

{
Sn
}
n with odd and even indices,

we set, for every n ∈ N,

An := S2n+1 and Bn := S2n . (3)
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(a)

(b)

Fig. 2 The transformation rules R1 and R2. Using them, S2t+1 is
obtained from the application of the rule R1 for each of the 42t blue
squares of side 4−t constituting S2t , and S2t+2 is given by applying the
rule R2 at each of the 42t red frames that make up S2t+1

The sequences
{
An
}
n and

{
Bn
}
n have different or common

characteristics on dependence of the point of view, as we will
see in the following. The simpler one is the second: It is in
fact a nested sequence of closed subsets of I 2, that is,

B0 ⊃ B1 ⊃ B2 ⊃ . . . ⊃ Bn ⊃ Bn+1 ⊃ . . . (4)

Since each Bn is nonempty, the family
{
Bn : n ∈ N

}
has

the finite intersection property (FIP) and, as well-known in
general topology, the intersection of all its elements

⋂
n∈N Bn

is nonempty as well and belongs to H
(
R
2
)
. In this case, it is

moreover obvious that the sequence
{
Bn
}
n itself converges

to the mentioned intersection which will be denoted by S; in
symbols

lim
n→∞ Bn =

⋂

n∈N
Bn =: S . (5)

It is very easy to visualize Sergeyev’s fractal S through the
decreasing sequence (4): S has a shape that presents some
vague similarities with the well-known Vicsek cross fractal
and the Sierpiński carpet.

The former sequence
{
An
}
n∈N is even more interesting

than
{
Bn
}
n∈N both because it seems unnoticed in the litera-

ture, and it is less evident that it yields a fractal; for instance,
on the contrary of what observed in (4), this time there are
no inclusion relations in the sense that

Ai ⊆ A j for somei, j ∈ N ⇒ i = j , (6)

and the intersection
⋂

n∈N
An has little to do with the limit of

the sequence
{
An
}
n∈N, if it exists (see, for example, Fig. 3).

Recalling the definition ofHausdorff distance given in (1),
we can state the following

(a) (b)

Fig. 3 The second and third element of the sequence
{⋂n

i=0 Ai
}
n∈N

for an immediate comparison with
{
An
}
n∈N

Proposition 2 For all integers n,m with m > n ≥ 0 we have

dH
(
An, Am

) =
√
2

4n+1 . (7)

Proof Consider first the case n = 0, and let m ≥ 1 be any
fixed integer. Since Am ⊂ I 2 ⊆ (A0

)
{√

2/4
} and

(
1

2
,
1

2

)
∈ Am − (A0

)
{ε} for all ε ∈

[
0,

√
2

4

[
,

then

{
ε ≥ 0 : Am ⊆ (A0

)
{ε}
}

=
[√

2

4
,+∞

[
. (8)

Let now Q be the subset of I 2 formed by the 12 points as
below

Q =
{(

1

4
, 0

)
,

(
3

4
, 0

)
,

(
0,

1

4

)
,

(
1

2
,
1

4

)
,

(
1,

1

4

)
,

(
1

4
,
1

2

)
,

(
3

4
,
1

2

)
,

(
0,

3

4

)
,

(
1

2
,
3

4

)
,

(
1,

3

4

)
,

(
1

4
, 1

)
,

(
3

4
, 1

)}
;

(9)

since A0 ⊂ I 2 ⊂ Q{1/4} and Q ⊂ Am , then A0 ⊂
Q{1/4} ⊂ (

Am
)
{1/4}, but note that we also have (1/2, 0) ∈

A0 − (Am
)
{ε} for all ε ∈ [0, 1/4[. Therefore this means

{
ε ≥ 0 : A0 ⊆ (Am

)
{ε}
}

=
[
1

4
,+∞

[
(10)
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and, recalling (1) and (8), we conclude that

dH
(
A0, Am

) = inf

([√
2

4
,+∞

[
∩
[
1

4
,+∞

[)

=
√
2

4
,

(11)

for every m ∈ N
+.

Now consider the complementary case of n = 0 just
examined: let m > n ≥ 1 be fixed integers and recall that
An = S2n+1 is made up by 23n red frames of (external) side
length 4−n . If Fi , i ∈ [

1 . . 23n
]
, is one of these frames

then, in the transition from An to Am , Fi is replaced by a red
shape Gi equal to Am−n but 4n times smaller. From the case
n = 0 discussed above, and in particular from (8) and (10),
we immediately obtain

{
ε ≥ 0 : Gi ⊆ (Fi

)
{ε}
}

= 1

4n
·
[√

2

4
,+∞

[

=
[ √

2

4n+1 ,+∞
[

and

{
ε ≥ 0 : Fi ⊆ (Gi

)
{ε}
}

= 1

4n
·
[
1

4
,+∞

[

=
[

1

4n+1 ,+∞
[
.

Since the ε-hull of a union of subsets is equal to the union of
the ε-hulls, then

Am =
23n⋃

i=1

Gi ⊆
23n⋃

i=1

(
Fi
)
{√

2/4n+1
}

=
⎛

⎝
23n⋃

i=1

Fi

⎞

⎠
{√

2/4n+1
}

= (
An
)
{√

2/4n+1
}

(12)

and similarly

An =
23n⋃

i=1

Fi ⊆
23n⋃

i=1

(
Gi
)
{1/4n+1}

=
⎛

⎝
23n⋃

i=1

Gi

⎞

⎠

{1/4n+1}
= (

Am
)
{1/4n+1} .

(13)

Now, considering the frame, say F1, inside the square[
0, 1/4n

]× [0, 1/4n], note that its central point
(

1

2 · 4n ,
1

2 · 4n
)

∈ Am − (An
)
{ε}

whenever ε <
√
2
/
4n+1. This yields Am �

(
An
)
{ε} for

all ε <
√
2
/
4n+1, and recalling (12) and (13) we finally

conclude that dH
(
An, Am

) = √
2
/
4n+1 for all m > n ≥ 1.

��
Aconsequenceof theprevious proposition is that

{
An
}
n∈N

is a Cauchy’s sequence in the complete hyperspace H
(
R
2
)
,

and hence, it converges to some S ′ ∈ H
(
R
2
)
. The use of

Proposition 2 is not the shortest way to show that
{
An
}
n

converges, but it has several advantages such as that of pro-
viding the readerwith an effective and easy tool to investigate
the dynamics of other fractal processes. Moreover, Proposi-
tion 2 allows to treat the sequence

{
An
}
n independently from{

Bn
}
n and will be a piece of the proof of Theorem 1 just as

the next proposition will constitute another. As regards the
fractal S ′, it is actually equal to S and it is quick to prove
directly. We instead prefer to wait and to see it as corollary
of Theorem 1.

The next proposition establishes a twin formula of (7) for
the nested sequence

{
Bn
}
n . The proof uses the same pattern

and is easier than that of Proposition 2; in any case, we will
give some details for completeness.

Proposition 3 For all n,m ∈ N, n < m, we have

dH
(
Bn, Bm

) = 1

4n+1 . (14)

Proof Let first n = 0 andm ≥ 1 be fixed. If Q ⊂ I 2 is the set
defined in (9), we have Q ⊂ Bm and, consequently, B0 =
I 2 ⊂ Q{1/4} ⊂ (Bm

)
{1/4}. But (1/2, 0) ∈ B0 − (Bm

)
{ε} for

all ε ∈ [0, 1/4[, then we conclude that

dH
(
B0, Bm

) = 1

4
.

Let now m > n ≥ 1 be fixed. Recall that Bn = S2n is
constituted by 23n squares of side length 1/4n and, if Di , i ∈[
1 . . 23n

]
, is one of them, then it is replaced, in the transition

from Bn to Bm , by a blue shape Ei similar to Bm−n with
ratio 1/4n . Since Di ⊂ (

Ei
)
{1/4n+1}, as in (13) we obtain

Bn ⊂ (Bm
)
{1/4n+1}, but observing that

(
1

2 · 4n , 0

)
∈ Bm − (Bn

)
{ε}

for every ε < 1/4n+1, we finally get dH
(
Bn, Bm

) = 1/4n+1

for all m > n ≥ 1. ��
A general formula for the distance of two elements of the

original Sergeyev’s sequence
{
Sn
}
n∈N is given by the follow-

ing theorem. During its proof, we will see as (15) reduces,
when n ≡ m ≡ 1 (mod 2) and n ≡ m ≡ 0 (mod 2) respec-
tively, to Formulas (7) and (14) stated for

{
An
}
n and

{
Bn
}
n ,

resp.
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Theorem 1 For all integers m > n ≥ 0 we have

dH
(
Sn, Sm

) =
(√

2
)n−6�n/2�−4+max{0, 1+�n/2�−�m/2�}

. (15)

Proof Let n = 2t(n)+ r(n) and m = 2t(m)+ r(m), where
t(n), t(m) ∈ N and r(n), r(m) ∈ {0, 1}. First we distinguish
four cases on dependence of r(n) and r(m), and then draw
conclusions.

Case 1 If r(n) = r(m) = 0 then n = 2t(n) and m =
2t(m), and by Proposition 3 we have

dH
(
S2t(n), S2t(m)

) = dH
(
Bt(n), Bt(m)

)

= 1

4t(n)+1
.

(16)

Case 2 If r(n) = r(m) = 1, i.e., n = 2t(n) + 1 and
m = 2t(m) + 1, by Proposition 2 we get

dH
(
S2t(n)+1, S2t(m)+1

) = dH
(
At(n), At(m)

)

=
√
2

4t(n)+1
.

(17)

Case 3 Let r(n) = 0 and r(m) = 1, i.e., n = 2t(n)

and m = 2t(m) + 1. Since S2t(n) ⊃ S2t(m)+1, we only have
to find the minimum ε such that S2t(n) ⊆ (

S2t(m)+1
)
{ε}. For

this purpose, we have to enlarge S2t(m)+1 in two directions:
inward until the rhomboid holes of the 23t(m) red frames
constituting S2t(m)+1 are closed, and outwards until S2t(n) is
covered. The former minimum enlargement is given by

dH
(
S2t(m)+1, S2t(m)

) = 1

4t(m)
·
√
2

4
=

√
2

4t(m)+1

and the second by

dH
(
S2t(m), S2t(n)

) = 1

4t(n)+1

(recall Proposition 3). Hence

dH
(
S2t(n), S2t(m)+1

) = max

{ √
2

4t(m)+1
,

1

4t(n)+1

}

=

⎧
⎪⎪⎨

⎪⎪⎩

√
2

4t(n)+1
if t(n) = t(m)

1

4t(n)+1
if t(n) < t(m).

(18)

Case 4 Let r(n) = 1 and r(m) = 0, i.e., n = 2t(n) + 1
and m = 2t(m). The minimum ε such that S1 ⊆ (S2t(m)

)
{ε}

is 1/4
(
use, for example, the set Q defined in (9) to obtain

S1 ⊂ I 2 ⊂ Q{1/4} ⊂ (
S2t(m)

)
{1/4} and note that ε = 1/4

is minimal
)
, then the minimum ε which realizes S2t(n)+1 ⊆

(
S2t(m)

)
{ε} is

(
1
/
4t(n)

)·1/4 = 1
/
4t(n)+1. On the other hand,

the minimum ε to get S2t(m) ⊆ (
S2t(n)+1

)
{ε} is

(
1
/
4t(n)

) ·√
2
/
4 = √

2
/
4t(n)+1, hence

dH
(
S2t(n)+1, S2t(m)

) = max

{
1

4t(n)+1
,

√
2

4t(n)+1

}

=
√
2

4t(n)+1
.

(19)

Conclusions. Now we just have to summarize the Formu-
las (16)–(19), arising from the four different cases, in a new
one, and it can be made as follows

dH
(
Sn, Sm

) = dH
(
S2t(n)+r(n), S2t(m)+r(m)

)

=
(√

2
)r(n) +max{0, 1+ t(n) − t(m)}

4t(n)+1

=
(√

2
)n−2�n/2�+max{0, 1+�n/2�−�m/2�}

4�n/2�+1

=
(√

2
)n−6�n/2�−4+max{0, 1+�n/2�−�m/2�}

,

where �x� denotes the floor of a real number x . ��
From Eq. (15), it follows immediately

dH
(
Sn, Sm

) ≤
(√

2
)n − 6�n/2� − 4+ 1

≤
(√

2
)n − 6(n − 1)/2− 3 = 2−n,

hence
{
Sn
}
n∈N is a Cauchy sequence and converges to S

defined in (5) because the subsequence
{
S2n
}
n∈N converges

to S.
Lastly, let us now calculate the Hausdorff dimension of

Sergeyev’s fractal S. Many well-known techniques can be
used to this purpose; for example,S can be very easily viewed
as theattractor, or invariant set, of an iterated function system
(IFS) consisting of 8 similarities all with ratio 1/4. Since
it satisfies Moran’s open set condition, then the Hausdorff
dimension dimH , the box-counting dimension dimB , and the
similarity dimension s are all equal and can be immediately
computed as follows2

dimH (S) = dimB(S) = s(S) = ln 8

− ln(1/4)
= 3

2
.

2 For the names, the theory and the mentioned results, the reader can
see any book of fractal geometry. Comprehensible references are, for
instance, (Falconer 2014, Chap. 9), (Barnsley 1993, Chap. V) or (Edgar
2008, Chap. 6).

123



F. Caldarola, M. Maiolo

(a)

(b)

Fig. 4 The transformation rules SC and SM . Both transform a square
of area l2 to a shape, of different form, but with the same area equal to
4l2/9

4 A “three-rule fractal”

Now we describe a fractal based on the cyclic application of
three rules, SC , SM and P , acting on a sequence

{
Xn
}
n∈N of

geometric shapes in the real plane. The rules act as follows.

(i) Consider any square Σ of side l in the plane. SC and
SM subdivide it in 9 smaller squares of side l/3, then SC
select the four of them in the corners of Σ , instead SM
takes the middle square for each side of Σ , as shown in
Fig. 4a, b, respectively.

(ii) To get P we need to define a family of actions {Pi : i ∈
N

+} as follows. Consider the unit square I 2 as consist-
ing of 9 smaller squares Σ1

1 ,Σ1
2 , . . . , Σ1

9 of side 1/3
and disposed anticlockwise starting from Σ1

1 with cen-
ter in (1/6, 1/6), Σ1

2 centered in (1/2, 1/6), and so on
until Σ1

8 with center in (1/6, 1/2), and lastly the central
square Σ1

9 (see Fig. 5a). P1 acts on the Σ1
i as the cycle

γ = (1, 2, 3, 4, 5, 6, 7, 8) belonging to the symmetric
group Sym(9) acts on [1 . . 9]. In other words,

P1
(
Σ1

i

)
:= Σ1

γ (i) =

⎧
⎪⎨

⎪⎩

Σ1
i+1 if i ∈ [1 . . 7],

Σ1
1 if i = 8,

Σ1
9 if i = 9.

(20)

Therefore, if A is a subcollection of
{
Σ1

i : i ∈ [1 . . 9]},
the meaning of P1(A) is clear.
For any i ∈ [1 . . 9] consider now the square Σ1

i as
consisting of 9 smaller squares Σ2

i,1,Σ
2
i,2, . . . , Σ

2
i,9 of

side 1/32; P2 acts on the Σ2
i, j as P1 acts on the Σ1

i , i.e.,
through the permutation γ ; more precisely we set

P2
(
Σ2

i, j

)
:= Σ2

i,γ ( j) (21)

for all i, j ∈ [1 . . 9]. For any t ∈ N
+, we continue in

this way to introduce inductively the notationΣ t
i1,i2,...,it

,
where the superscript t means that they are square of
side length 1/3t and the subscripts i1, i2, . . . , it (or the
t-tuple (i1, i2, . . . , it ) if one prefers) are the “coordi-
nates” for the position of the square.3 Pt hence acts in
the obvious way as seen in (20) and (21) for the special
cases t = 1 and t = 2, respectively; we in fact define

Pt
(
Σ t

i1,i2,...,it

) := Σ t
i1,i2,...,γ (it )

for all t ∈ N
+ and i1, i2, . . . , it ∈ [1 . . 9].

Weare nowready todescribe P which acts on the squares
Σ t

i1,i2,...,it
at different levels likewise a “composition” of

the Pi . Formally, for all t ∈ N
+ and i1, i2, . . . , it ∈ [1 . .

9], we set

P
(
Σ t

i1,i2,...,it

) := Σ t
γ (i1),γ (i2),...,γ (it )

. (22)

We now define the sequence
{
Xn
}
n∈N by using alterna-

tively the rules defined in (i) and (ii), organized in a “4-cycle”
as follows

SC , P, SM , P, SC , P, SM , P, etc. (23)

We start by setting X0 := I 2, and then we continue recur-
sively by using the sequence (23) as below

X1 := SC (X0),

X2 := P(X1) = (P ◦ SC )(X0),

X3 := SM (X2) = (SM ◦ P ◦ SC )(X0),

X4 := P(X3) = (P ◦ SM ◦ P ◦ SC )(X0),

X5 := SC (X4) = (SC ◦ P ◦ SM ◦ P ◦ SC )(X0),

etc.

(24)

The first few elements of the sequence
{
Xn
}
n are shown in

Figs. 6, 7 and 8.
Let
{
Cn
}
n∈N and

{
Yn
}
n∈N be the subsequences of

{
Xn
}
n∈N

obtained by setting

Cn := Xn+2�n/2� and Yn := Xn+2�n/2�+2 (25)

for all n ∈ N. Note that the sets
{
Cn : n ∈ N

}
and

{
Yn : n ∈

N
}
are disjoint and their union is the whole family

{
Xn : n ∈

3 The attentive reader will think of using a pair of coordinates in base
3: This has the obvious advantage of easily positioning the square in
question, but the permutations Pi would act in a less simple way to
write. Since our aim is to explain in as clear and elementary a way as
possible the dynamics of the permutations Pi which play an essential
role in this section (as opposed to the exact position of the squares),
then we have consequently chosen a convenient notation system.
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(a) (b)

(c)

Fig. 5 In a it is shown as the unit square I 2 is subdivided into 9 squares
Σ1

i , i ∈ [1 . . 9], of side length 1/3. In b, the arrows represent the
action of P1. In Subfigure c, it is schematically illustrated the action of
P2

(a) (b)

(c) (d)

Fig. 6 The first four elements of the sequence
{
Xn
}
n∈N starting from

X0 = I 2

N
}
. As way of example, their first few elements are

C0 = X0, C1 = X1, C2 = X4, C3 = X5,

C4 = X8, C5 = X9, C6 = X12, C7 = X13, etc.,

(a) (b)

(c) (d)

(e) (f)

Fig. 7 Continuing Fig. 6, here are represented the successive six ele-
ments of the sequence

{
Xn
}
n∈N, that is, from X4 to X9

(a) (b)

(c) (d)

Fig. 8 The element X9 is rather difficult to visualize in Fig. 7f, and
it is increasingly difficult for the subsequent elements in the sequence{
Xn
}
n∈N. Being X9 made up by four copies of X8 placed in the corners

of I 2, the reader may find it helpful to represent X9 as in (a). Similarly,
X10, X11 and X12 can be visualized through four copies of X7, X10 and
X9 arranged as in (b)–(d), respectively, and so on from X13 onwards

and

Y0 = X2, Y1 = X3, Y2 = X6, Y3 = X7,

Y4 = X10, Y5 = X11, Y6 = X14, Y7 = X15, etc.,

respectively.

Remark 2 It is immediate to recognize that the sequence{
Cn
}
n is the standard one to construct the 2-dimensional
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Cantor dust C which is the plane, i.e., 2-dimensional version
of the best known Cantor set contained in the interval [0, 1].
The subsequence

{
Yn
}
n , instead, converges to a fractal Y that

has a “dust form” like C but is different and, actually, very
far from it as the following proposition specifies.

Proposition 4 We have dH (C,Y ) = √
5
/
6.

Proof Considering the set

Q′ =
{(

1

3
,
1

6

)
,

(
2

3
,
1

6

)
,

(
1

3
,
5

6

)
,

(
2

3
,
5

6

)}
⊂ Y

we easily get C ⊂ (Q′)
{√5/6} ⊂ (Y ){√5/6}. But if we define

W :=
{
(x, y) ∈ R

2 : y ≥ 1

2
− x ∧

(
x ≥ 1

3
∨ y ≥ 1

3

)}

we also have Y ⊂ W and, consequently, d
(
(0, 0),Y

) ≥
d
(
(0, 0),W

) = d
(
(0, 0), (1/3, 1/6)

) = √
5
/
6 (where the

distanced(a, B) is defined as usual to be inf{d(a, b) : b ∈ B}
for all a ∈ R

2 and B ⊆ R
2). Therefore (0, 0) ∈ C − W{ε} ⊂

C − Y{ε} for all ε <
√
5
/
6, and we obtain inf

{
ε > 0 : C ⊂

{Y }{ε}
} = √

5
/
6.

On the other hand, for example, Y ⊂ C{1/3} is trivial, then
we conclude that dH (C,Y ) = √

5
/
6 as we wanted. ��

As regards the Hausdorff dimension it is trivial that
dimH C = dimH Y = ln 4/ ln 3 ≈ 1.26.

Example 1 Multi-rule fractals are very interesting to investi-
gate in less elementary or easy cases than the previous one.
It is important to observe that the greater number of rules
does not correspond to a more complex fractal in general:
the reader, for example, can study the sequence

{
Zn
}
n∈N,

produced by the previous system by using only the first two
of the three rules SC , P and SM , i.e., starting from Z0 = I 2

and applying successively SC , P, SC , P, SC , P , and so
on.

5 Conclusions and future work

The sequences
{
Sn
}
n∈N and

{
Xn
}
n∈N, studied respectively

in Sects. 3 and 4, could both be called “blinking sequences”
because they exhibit two alternating geometric shapes. To
make a really skinny simplification, they behave similarly to
the following two real sequences

sn = (−1)n
1

1 + n
, n ∈ N, (26)

and

xn = (−1)�n/2�
(
2 − 1

1 + n

)
, n ∈ N;

both
{
sn
}
n∈N and

{
xn
}
n∈N present alternatively positive and

negative terms, but while the former converges to a limit
s = 0 likewise

{
Sn
}
n∈N converges to S, the second has two

main subsequences convergent respectively to 2 and−2 like-
wise

{
Xn
}
n∈N has two subsequences

{
Cn
}
n∈N and

{
Yn
}
n∈N

convergent to C and Y , respectively.
From the examples and all the discussion made from the

previous sections until now, we therefore propose the follow-
ing definition.4

Definition 1 A blinking fractal B of order m ∈ N
+ is simply

an m-tuple of (not necessarily distinct) traditional fractals

B = (B1,B2, . . . ,Bm) ∈
(
H

(
R

N
))m

(27)

such that the word B1B2 . . .Bm is primitive (recall the last
part of Sect. 2).

A traditional fractal can be viewed as a blinking fractal of
order 1, called also a simple fractal. For example, Sergeyev’s
fractal S, analyzed in Sect. 3, is a blinking fractal of order 1,
while the one presented in Sect. 4 is a blinking fractal B of
order 2 that can be written B = (C,Y ).

It is important to note that in virtue of the unicity stated
in Proposition 1, the order m of a blinking fractal is well
defined.

Example 2 Consider the set of fractals {C,Y } ⊂ H
(
R
2
)

defined in the previous section. We can obviously form

– 2 blinking fractals of order 1 as well as 2 blinking fractals
of order 2

(B = (C,Y ) is in fact distinct from B′ =
(Y ,C)

)
;

– 24 − 4 = 12 blinking fractals of order 4
(
in fact the

writings (C,C,C,C), (Y ,Y ,Y ,Y ), (C,Y ,C,Y ) and
(Y ,C,Y ,C) do not represent a blinking fractal

)
;

– 23 − 2 = 6 blinking fractals of order 3, 25 − 2 = 30
blinking fractals of order 5, etc.

See Proposition 5 below for a general formula that counts the
number of blinking fractals.

The study of multi-rule and blinking fractals seems very
interesting both from a pure mathematical point of view and

4 First note that in this paper, following modern customs, we have
avoided to give a precise definition of (traditional) fractal; see the ubiq-
uitous discussions on the issue present both in fractal monographs, but
also online.
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for applications, and much work can be done in this direction
in our opinion. Just as a small example, the following ques-
tions arise immediately considering the sequence

{
Zn
}
n∈N

defined in Example 2, and many other multi-rule sequences
can be evaluated and investigated.

(i) Does the sequence
{
Zn
}
n∈N generate a blinking fractal?

(ii) If yes, of which order?

Also from an applied point of view, blinking fractals seem
richof applications inmanyfields. Just to stay in the hydraulic
one, rememberwhatwasmentioned in the Introduction about
water demand in urban centers. In our experience, it is easy to
find recurrent fractal-like patterns on different sizes and time
scales, also very small, in the water demands, and we think
that some rather jagged plottings are in part due to the speed
with which modern taps with lever control and ball valve act
within the individual users. Then, in this context, it could be
of great help for the description and interpretation of data and
dynamics of a complex network, a model that uses blinking
fractals of order 24 or more, on a daily basis, or of order a
multiple of 7 (e.g., 168) on a weekly basis, etc. Similarly,
one could think that most of the human activities, within
the alternation between rest and work, could be studied or
approximated bymodels that use blinking fractals with order
some multiples of 24 and 7 as before, on dependence from
the observations.

Finally, some conclusions must be also drawn on the rela-
tionships between our Definition 1 and the paper (Sergeyev
2007) where the idea of cyclicity and periodicity associated
with fractals is originally proposed. First of all, in Sergeyev
(2007) the notion of order of a blinking fractal is not defined
and, indeed, our Definition 1 is completely inapplicable in
that context. This because all this paper and our discussion
is based on classical mathematics which uses heavily the
concept of limit

(
in fact, Sects. 3, 4 and Definition 1 con-

sider and investigate the limit behavior, in the usual sense of
fractal geometry, of a sequence of objects in the hyperspace
H
(
R

N
))
. Instead, on the contrary, in paper (Sergeyev 2007)

the notion of limit does not exist at all because a different
numerical system is used, and the idea of blinking fractal
focuses there on the process that generates a fractal and not
on the limit object such as S, C or Y . In particular, our result
on the convergence of Sergeyev’s sequence

{
Sn
}
n∈N does

not contradict the discussion in Sergeyev (2007) where the
sequence maintains its duplicity at infinity in a similar way
to what happens for the sequence

{
sn
}
n∈N defined in (26),

which, if evaluated at infinity with the methodology used in
Sergeyev (2007) gives rise to two opposite infinitesimals (one

positive and the other negative),5 while in this paper and in
Weierstrass analysis it converges to zero, aswe already noted.

We end the paper by giving an enumerating formula for the
number νk(m) of blinking fractals of orderm obtainable from
a basic set {F1,F2, . . . ,Fk} of k distinct simple fractals.
For this purpose we recall that in number theory theMöbius
function μ : N

+ → {−1, 0, 1} is defined by

μ(n) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if n = 1,

(−1)t if n is the product of t distinct

prime numbers,

0 if n has some multiple prime factor,

or, equivalently, μ(n) can be defined as the sum of the prim-
itive nth roots of unity (cf. the definition of primitive word
in Sect. 2).

Proposition 5 For every k,m ∈ N
+ we have

νk(m) =
∑

d|m
μ(d) · km/d , (28)

where the sum runs over the positive divisors d of m.

Proof The proof is a standard application of Möbius inver-
sion (cf., for example, Lothaire 1983, Section 1.3) and, in
short, it boils down to recognizing that, fixed k belonging
to N

+, the sequence
{
km
}
m≥1 is the Möbius transform of

{
νk(m)

}
m≥1 .

6 To give some details recall that, in virtue of
Definition 1 andProposition 1, anm-tuple builtwith elements
belonging to a set of k distinct simple fractals uniquely iden-
tifies a blinking fractal of order a divisor d of m, hence we
have

km =
∑

d|m
νk(d).

Using Möbius inversion formula (see, for instance, Apostol
1976, Theorem 2.9 or Schroeder 2009, Chap. 21), we then
get (28). ��
5 The discussion of Sergeyev’s methodology for numerical computa-
tions with infinities and infinitesimals goes beyond the aims of this
article, which instead wants to investigate the possibility of using blink-
ing fractals in classical mathematics and the usefulness of applying
them in the scientific and engineering fields. For more information on
Sergeyev’s method and its applications in various areas of mathemat-
ics, computer science and experimental sciences, we hence refer the
reader to Amodio et al. (2017); Antoniotti et al. (2020b, a); Caldarola
(2018b); Caldarola et al. (2020a); Cococcioni et al. (2020); Caldarola
et al. (2020b); Falcone et al. (2020); Iavernaro et al. (2020); Sergeyev
(2013, 2007, 2008, 2009, 2010, 2011, 2016, 2017); Sergeyev and
Garro (2010).
6 The Möbius transform is also called, by some authors, the sum-of-
divisors transform to not confuse it with the Möbius transformation
used in geometry (see, e.g., Weisstein 2002).
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Example 3 Using (28) the reader can trivially recover the val-
ues in Example 2 or can compute, for instance, the number
of blinking fractals of order 12 over the set {F1,F2,F3},
obtaining

ν3(12) =
∑

d|12
μ(d) · 312/d

= μ(1) · 312 + μ(2) · 36 + μ(3) · 34
+μ(4) · 33 + μ(6) · 32 + μ(12) · 31

= 312 − 36 − 34 + 32 = 530 640.
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