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Abstract
Observed vertical sediment accumulation rates (n = 1031) were gathered from ~ 55 years of peer reviewed literature. Original
methods of rate calculation include long-term isotope geochronology (14C, 210Pb, and 137Cs), pollen analysis, horizon markers, and
box coring. These observations are used to create a database of global, contemporary vertical sediment accumulation rates. Rates
were converted to cm year−1, paired with the observation’s longitude and latitude, and placed into a machine learning–based Global
Predictive Seabed Model (GPSM). GPSM finds correlations between the data and established global “predictors” (quantities
known or estimable everywhere, e.g., distance from coastline and river mouths). The result, using a k-nearest neighbor (k-NN)
algorithm, is a 5-arc-minute global map of predicted benthic vertical sediment accumulation rates. The map generated provides a
global reference for vertical sedimentation from coastal to abyssal depths. Areas of highest sedimentation, ~ 3–8 cm year−1, are
generally river mouth proximal coastal zones draining relatively large areas with high maximum elevations and with wide, shallow
continental shelves (e.g., the Gulf of Mexico and the Amazon Delta), with rates falling exponentially towards the deepest parts of
the oceans. The exception is Oceania, which displays significant vertical sedimentation over a large area without draining the large
drainage basins seen in other regions. Coastal zones with relatively small drainage basins and steep shelves display vertical
sedimentation of ~ 1 cm year−1, which is limited to the near shore when compared with shallow, wide margins (e.g., the western
coasts of North and South America). Abyssal depth rates are functionally zero at the time scale examined (~ 10−4 cm year−1) and
increase one order of magnitude near the Mid-Atlantic Ridge and at the Galapagos Triple Junction.

Introduction

The properties and distribution of seafloor sediment are con-
trolled primarily by coastal processes that are dynamic, chang-
ing in response to both anthropogenic and natural stimuli.
These properties, which influence a large swath of the benthic
environment including faunal habitat, carbon sequestration,
and seafloor stability, vary with water depth and proximity to
sediment sources, primarily river mouths. The inherent
dynamicity of coastal regions, especially those proximal to a
river outlet, makes prediction of subaqueous sediment proper-
ties complex. While several coastlines are well studied with
substantial efforts underway to describe hazards, sediment

behavior, and characteristics (e.g., the Gulf Coast of the USA
and the Norwegian Coast), regional studies are, by definition,
geographically narrow in scope. Researchers must also imple-
ment a suite of physical tests to analyze sediment characteristics
and behavior, including coring, radioisotope-based sedimenta-
tion rate calculations, grain size analysis, loss-on-ignition tests,
and density analysis (e.g., Nittrouer and Sternberg 1981;
Richardson et al. 2002; Keller et al. 2017; Restreppo et al.
2019). These tests require in situ sample collection, intensive
subsampling, and prolonged laboratory analysis to assemble a
usable data set. Spreading across tens or hundreds of cores, this
work could require months to years of labor, as well as special
permitting to acquire samples in sensitive areas. Therefore, a
less regionally focused, more expedient method is needed for
global scale sediment characterization.

By collecting coastal and oceanic sediment accumulation
rates from 89 peer reviewed sources spanning the past ~ 55
years and pairing the data with the US Naval Research
Laboratory’s Global Predictive Seabed Model (GPSM), a 5-
arc-minute global map of vertical sedimentation rates is gen-
erated, spanning from the coastal zone to the abyssal plain
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across all oceans. Of special interest are areas in which sedi-
mentation patterns have been understudied or where complete
gaps in data exist. Vertical accumulation, when predicted at
the global scale, provides a window into where sediment of all
types is aggrading onto the seafloor. A precise model of ver-
tical sediment accumulation enables researchers to link ongo-
ing research, whether pertaining to geology, biology, engi-
neering, etc., to sediment input into a given region.

Predictive machine learning
in the geosciences

Predictive machine learning has been used to estimate un-
known quantities using a set of known quantities from “previ-
ously solved cases,” for quite some time (Friedman 2006). In
the geosciences, these “previously solved cases” include quan-
tifiable real-world observations, such as rates of sedimentation,
grain size and content, and isotopic ratios. The application of
predictive machine learning to the geosciences is a somewhat
recent trend, focusing on topics such as hazard prediction, min-
eral prospecting, seafloor sediment porosity, behavioral char-
acterization of rock masses, and remote sensing (Goetz et al.
2015; Martin et al. 2015; Rodiguez-Galiano et al. 2015; Lary
et al. 2016). Efforts are already underway to predict deltaic
changes in response to anthropogenic impacts (damming, water
withdrawal, etc.) that decrease river discharge (Nienhuis et al.
2018). Additionally, research has been done to predict the in-
fluence of waves on sediment dispersal along coastline adjacent
to a river outlet (Nienhuis et al. 2015). These studies, however,
are focused principally on channel morphology and near river
outlet sediment transport; studies on predictive benthic
sediment characterization are limited. Modeling of seabed
parameters has been attempted by Huang et al. (2011) and Li
et al. (2012). Both studies endeavor to quantify the composition
of benthic sediment in Australia, providing valid insight into
regional sedimentary behavior and related problems. However,
there exists no synthesized map at the global scale.

Studies that pair real world observations with machine
learning techniques (k-nearest neighbor and random forest)
have been used to successfully predict total organic carbon
on the seafloor, as well as seafloor porosity in areas with gaps
in data, on a global scale (Martin et al. 2015; Lee et al. 2019).
In both cases, resolution of 5 × 5 arc-minutes was achieved.

Methods

Vertical sediment accumulation rates from peer-reviewed lit-
erature from the year 1965 to the present were gathered for use
in GPSM (n = 1031; Table 1). These rates span coastal envi-
ronments from the near shore and river-mouth proximal sub-
aqueous deltas to the Mid-Atlantic Ridge and abyssal plain of

the Pacific (Fig. 1). It should be noted these rates do not
differentiate between terrigenous and biogenic sedimentation.
Carbon rich, biologically derived sediment is only a small
percentage of total sediment settling on the ocean floor, ~
160 Mt year−1 (Hedges and Keil 1995; Smith et al. 2015)
comparedwith ~ 13,500–19,100Mt year−1 of fluvial sediment
flux to the oceans calculated by Milliman and Meade (1983)
and Milliman and Farnsworth (2011). As such, we treat sed-
imentation as being generally terrigenous in origin. Rates
were subsequently converted to cm year−1 and were also
transformed logarithmically to emphasize deep sea sedimen-
tation, as this is not apparent outside of logarithmic space.

The k-nearest neighbor (k-NN) algorithm used in this study
has been detailed in great technical depth in Lee et al. (2019).
To briefly summarize, k-NN uses parametrically, not
geospatially, nearest observed data points to calculate proba-
ble values in an area with no data. The parametric distance is
calculated using predictor grids which are known or estimated
properties about the water column and seafloor (i.e., water
depth, distance from a river mouth, etc.) that are known glob-
ally. Predictor grids are generated from previously published
research and open databases, for instance the 1/12° global
HYCOM+NCODA Ocean Reanalysis (https://hycom.org/
publications/acknowledgements/ocean-reanalysis-data) and
NASA’sMODIS Aquamission (https://modis.gsfc.nasa.gov).

To select the most relevant predictors, tenfold validation is
used. Tenfold validation withholds a random 10% of all ob-
servations, with the remaining 90% used to predict. This is
repeated until all points have been withheld and used in pre-
diction. During feature selection, the prediction evaluates each
predictor grid individually and then cross validates to define
the predictive skill of each individual grid. This is then com-
pared with uniform random noise grids. Only the best predic-
tors are used to define the final prediction and error; grids with
errors higher than random noise grids are discarded.

The k-NNmethod is simpler than other available predictive
methods (random forest, for example), as the only
hyperparameter to manipulate within the algorithm is the
number of nearest neighbors used in the prediction of each
point (k). Generally, with fewer neighbors selected, individual
data points begin to overinfluence the predictions; if the k
value is too high, oversmoothing occurs, wherein predictions
begin to reflect the mean of all observed data (Zhang 2016).
As follows, several predictions must be run to establish a
reasonable k value that minimizes standard deviation and error
while maximizing the validation R2 value. For this prediction,
five nearest neighbors (k = 5) were used.

Results

The highest sedimentation rates (~ 3–8 cm year−1) occur prox-
imal to river outlets that drain large basins with high
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mountainous areas that are paired with wide, shallow conti-
nental shelves, e.g., the Amazon Delta, the Huang He Delta,
and the Mississippi River Delta (Fig. 2; DOI: https://doi.org/
10.26022/IEDA/329769). The exception to this pattern is
Southeast Asia and nearby islands, collectively referred to
herein as Oceania, which displays the highest intensity of
sedimentation over the largest area without the large

drainage basins mentioned previously. Generally, shelf
zones around all continents and islands display vertical
sedimentation between approximately 0.1 and 1 cm year−1

(Fig. 2).
Rates in the deep ocean steadily decline by orders of mag-

nitude towards deeper basins and away from subaerial land
masses. The Pacific and Indian oceans contain the lowest

Table 1 Coastal and oceanic regions with vertical sedimentation rate observations, with sources

Region Sources

Arctic Baskaran and Naidu 1995; Hulse and Bentley 2012; Ku and Broecker 1965; Macko and Aksu 1986;
Szczucinski et al. (2009b); Zaborska et al. 2008.

Antarctic Boldt et al. 2013; Isla et al. 2002; Masqué et al. 2002.

Asia (India to Japan) Goodbred and Kuehl 1998; Hong et al. 1997; Hsu et al. 2006; Kato et al. 2003; Kuehl et al. 1993; Kumar et al.
2016; Li et al. 2006; McKee et al. 1983; Pandarinath et al. 2004; Somayajulu et al. 1999; Srisuksawad et al.
1997; Szczucinski et al. (2009a); van den Bergh et al. 2007; Zhou et al. 2016.

Atlantic (includes eastern North
and South America; west Africa;
Europe)

Benoit et al. 1979; Brush et al. 1982; Buffoni et al. 1992; Canfield 1989; de Haas and vanWeering 1997; Ingall
and Cappellen 1990; Kershaw 1985; Krishnaswami et al. 1984; Krom and Bennett 1985; Kuehl et al. 1986;
Mattila et al. 2006; Mouret et al. 2009; Müller and Suess 1979; Nozaki et al. 1977; Palinkas and Koch 2012;
Patchineelam and Smoak 1999; Schmidt et al. 2009; Van Weering et al. 1987; Wilken et al. 1986.

Gulf of Mexico Allison et al. 2007; Allison et al. 2000; Canfield 1989; Corbett et al. 2006; Filipek and Owen 1980; Ingall and
Cappellen 1990; Keller et al. 2017; Yeager et al. 2004.

Mediterranean and Adriatic Sea Frignani et al. 2005; Palinkas and Nittrouer 2007; Sanchez-Cabeza et al. 1999; Zuo et al. 1997.

Pacific Islands and New Zealand Alexander et al. 2010; Kniskern et al. 2010; Maria et al. 2009; Schmitz et al. 1986.

Pacific (includes western North and
South America)

Alexander and Lee 2009; Alexander and Venherm 2003; Berger and Killingley 1982; Botwe et al. 2017;
Cochran and Krishnaswami 1980; Hartmann et al. 1976; Ingall and Cappellen 1990; Koide et al. 1972; Lao
et al. 1992; McMurtry 1981; Mitchell 1998; Müller and Suess 1979; Nittrouer et al. 1984; Stevenson and
Cheng 1972; Thorbjarnarson et al. 1986; Wheatcroft and Sommerfield 2005.
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Fig. 1 Global elevation and bathymetry map with observations in red. Bathymetry taken from the GEBCOOneMinute Grid (2008; https://www.gebco.
net/data_and_products/historical_data_sets)
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values, functionally zero at the yearly time scale (~
10−5 cm year−1). Rates increase slightly along the Mid-
Atlantic Ridge and at the conjunction of the Cocos, Nazca,
and Pacific tectonic plates, but remain functionally zero (~
10−4 cm year−1). The authors theorize the increase is a result
of both localized sedimentation resulting from tectonic pro-
cesses and associated elevated bathymetry, but may also be
artifacts from the prediction process.

Coefficient of determination for the validation portion of
the model is high (R2 = 0.89; Fig. 3). Standard deviation of the
prediction is lowest in the deep oceans and along most coast-
lines; deviation increases along portions of the islands of
Southeast Asia, a section of the northernmost Atlantic
Ocean, and across the Arctic Ocean (Fig. 4). The highest cor-
related predictor grids include river mouth total suspended
solids (TSS), dissolved organic carbon, wave direction, mean
decadal sea salinity, and megafauna biomass, of which river
mouth TSS was ranked highest (Table 2).

Discussion

The predictive map of Fig. 2 is very much in line with the work
of Milliman and Farnsworth (2011), which quantifies fluvial
sediment discharge into the oceans from all regions, and
Milliman and Syvitski (1992), which illustrates the relationship
between drainage basin area, maximum elevation, and
sediment flux from rivers to the oceans. Milliman and
Farnsworth (2011) identify the “Austral-Asian Rivers” region,
i.e., Northern Australia, the islands of Southeast Asia, and

Southeast Asia proper, which we refer to as Oceania, as
discharging the most fluvial sediment into the oceans
(12,500 Mt year−1), followed distantly by the Amazon region
(1600 Mt year−1). Milliman and Syvitski (1992) also acknowl-
edge the Oceania region yields the highest sediment loads,
followed by the fluvial systems draining the Himalayas. In
our prediction, the Oceania region is predicted to generate sub-
stantial vertical sedimentation over the largest area. The
Amazon,Mississippi, and Ganges-Brahmaputra Deltas, among
others, generate a similar magnitude of vertical sedimentation;
however, the area of influence is limited compared with
Oceania. Our prediction also highlights the Caribbean and the
Northeastern USA, as locations of high vertical sedimentation.
It should be noted that the Caribbean and Northeastern USA
are not identified as contributing significant fluvial sediment to
the oceans, according to Milliman and Farnsworth (2011); yet
there is evidence of increased fluvial sediment discharge as a
result of the twentieth century deforestation and urban devel-
opment of the Caribbean islands (Alonso-Hernandez et al.
2006). Additionally, there are data indicating significant input
of terrigenous sediment into the Caribbean originating from the
Amazon and Orinoco Rivers of Brazil, especially during pe-
riods of high sea level (Bowles and Fleischer 1985). Thus, this
carbonate rich areamay be aggrading vertically with input from
sediment carried from some distance away. As for the
Northeastern USA, several rivers, including the Potomac and
Hudson, discharge sediment originating from the northeastern
Appalachian Mountains (Thompson 1939).

In Milliman and Farnsworth (2011), the third highest sed-
iment discharging region is the west coast of North America.

Fig. 2 Prediction of vertical sedimentation rate across all coasts and oceans. Note high rates near river outlets and shallow coasts
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In our prediction, this area does not appear to generate signif-
icant vertical sedimentation when compared with areas
with wide, shallow margins, described previously. This
may be attributed to the relatively steep bathymetric
gradient of western North America, as a steep continen-
tal shelf may negate vertical sedimentation potential
from a high TSS fluvial source, such as the Columbia
River. First, it appears that in order for sediment to
considerably accumulate vertically, depth and the
gradient towards deeper bathymetry must be relatively
shallow. Second, the high amount of fresh sediment

settling onto these margins leaves these regions
susceptible to subaqueous landslides, which may retard
overall upslope accumulation; the topic of slope stability
is further addressed in the next section. Finally,
Milliman and Syvitski (1992) remark that the steep gra-
dient and proximity to sediment source of these small
mountainous rivers equates to larger bedload, which is
not usually included in sediment discharge values.

Coastal zones that experience high sedimentation are more
susceptible to develop slope stability issues, as the weight of
the newly added sediment increases shear stress which can
lead to slope failure and trigger powerful downslope flows
in already unstable area even with a very low gradient slope
(Coleman and Garrison 1977; Clare et al. 2016; Maloney et al.
2018, 2020). Additionally, newly deposited sediment lacks
the consolidated cohesive strength of older sediment,
compounding the problem of an already unstable seafloor
(Obelcz et al. 2017). This may account for the lack of predict-
ed sedimentation on the west coast of North and South
America, and the steep gradient along the continental shelf
allows for the formation of turbidity currents which quickly
move sediment from the shelf edge to abyssal depths. We
have not developed any predictors related to turbidity flows,
so the GPSM model cannot account for this process, which
resuspends and transports sediment to deeper waters. With
regard to wider, shallower coastal shelfs, e.g., the Gulf of
Mexico or the Eastern USA, the concern is focused on areas
where dredging occurs, leaving behind steep walls of sedi-
ment with the potential for collapse, for instance in the Gulf
ofMexico (Robichaux et al. 2020). Identification of these high
sedimentation areas is vital in that important underwater infra-
structure can be protected against destructive flows only if the
threat is recognized.

Table 2 The ten highest ranked
feature grids and sources Rank Grid name Source

1 GL_RIVERMOUTH_CO2_TGCYR-1_ORNL.r500km.men. Ludwig et al. (2011)

2 GL_RIVERMOUTH_TSS_TGYR-1_ORNL.r500km.men. Ludwig et al. (2011)

3 SS_PIC_LOG_MOL_M3-1_MODIS_Aqua_MISSION_
MEANx.r500km.men.

MODIS Aqua

4 GL_RIVERMOUTH_TSS_TGYR-1_ORNL.r1000km.aad. Ludwig et al. (2011)

5 GL_RIVERMOUTH_DOC_TGCYR-1_ORNL.r1000km.aad. Ludwig et al. (2011)

6 GL_TOT_SED_THICK_M_CRUST1_NOAA.r1000km.aad. Whittaker et al.
(2013)

7 SS_BIOMASS_MACROFAUNA_LOG10_MGCM2_
WEI2010x.r250km.men.

Wei et al. (2010)

8 SF_SEA_SALINITY_PSU_DECADAL_MEAN_woa13v2x.r250km.men. Boyer et al. (2013)

9 SS_BIOMASS_MEGAFAUNA_LOG10_MGCM2_
WEI2010x.r50km.men.

Wei et al. (2010)

10 SS_WAVE_DIRECTION_DEG_2012_12_
WAVEWATCH3x.r1000km.aad.

HYCOM+NCDOA

All files suffixed 5 m.ggg; SS sea surface, SF sea floor, GL ground level

Fig. 3 Validation for the GPSM prediction
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While the majority of our prediction is substantiated by real
world data and documented patterns of fluvial sediment ex-
port and migration, some elevated vertical sedimentation rates
are predicted in areas with no documented significant sedi-
ment input. For example, southcentral Australia is not consid-
ered to be a significant source of sediment to the oceans
(Milliman and Farnsworth 2011). Yet, St. Vincent Gulf,
Spencer Gulf, and Venus Bay are all highlighted as areas of
significant vertical accumulation. Unfortunately, without field
work and isotope geochronology to confirm the sedimentation
rates in these areas, it remains unknown if the model is correct
or if GPSM is simply projecting high sedimentation values
based on commonalities with other high sediment yield bays
in other parts of the world. Nonetheless, it is partially the
purpose of GPSM to highlight areas of interest that have had
little prior study. Finally, the amount of sediment delivered to
coastal zones via rivers is generally agreed to be declining due
to natural and anthropogenic factors (Fan et al. 2006; Bentley
et al. 2016; Bergillos et al. 2016; Maloney et al. 2018). As
new, more recent sedimentation data is generated, a data driv-
en prediction such as ours will change.

Conclusion

Presented herein is the first map of global sedimentation
rates that provides a well-founded view of global, ben-
thic sedimentation patterns with quantitative uncer-
tainties. However, this is not a final prediction; the
model is ever-evolving as new data on sedimentation

rates is generated or discovered and added to the
dataset. The principle results from this prediction are:

1. East Asia and Oceania are associated with the highest
quantity of vertical sedimentation over the largest
region. These results are in line with the fluvial TSS
flux to the oceans in Milliman and Farnsworth (2011)
and Milliman and Syvitski (1992).

2. The deep oceans aggrade vertically at a rate that is func-
tionally zero at the yearly time scale, increasing one order
of magnitude at the Mid-Atlantic Ridge and at the con-
junction of the Pacific, Cocos, and Nazca tectonic plates.

3. The GPSM prediction confirms that the extent of vertical
sedimentation appears dependent on drainage basin area,
maximum elevation within the basin, and secondarily on
bathymetric gradient and depth (Milliman and Syvitski
1992).

4. Identification of areaswith substantial vertical sedimentation
allows for the recognition of unstable, slope failure prone
regions, as the two are linked. This is of special importance
in areas with sensitive infrastructure on or buried in the sea
floor such as offshore oil platforms and pipelines.

These results are only the first steps towards machine
learning–based predictions of global sediment dynamics and
characteristics. The methods used herein are currently being
applied to several aspects of benthic sediment characterization
in the oceans, including grain size, composition, and mass
accumulation, where there exist available real-world observa-
tions for use in GPSM.

Fig. 4 Standard deviation of the prediction. Note increasing uncertainty in the Arctic region
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