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Abstract. We present, through weak KAM theory, an investigation of
the stationary Hartree equation in the periodic setting. More in details,
we study the Mean Field asymptotics of quantum many body opera-
tors thanks to various integral identities providing the energy of the
ground state and the minimum value of the Hartree functional. Finally,
the ground state of the multiple-well case is studied in the semiclassical
asymptotics thanks to the Agmon metric.
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1. Introduction

1.1. Motivations

Let T
n be the flat torus, we consider the many body operator ̂H for N ≥ 2

interacting particles

̂H := −ε2

2
Δx+

∑

1≤i≤N

Vext(xi)+
1

N − 1

∑

1≤i<j≤N

Vint(xi−xj) = −ε2

2
Δx+W (x)

(1.1)
with x ∈ T

n, x = (x1, x2, . . . , xN ), xi ∈ T
d, n := N ·d, Vext, Vint ∈ C∞(Td;R+)

and such that Vint has real and nonnegative toroidal Fourier components
〈ek, Vint〉L2 ≥ 0 ∀k ∈ Z

d. In this setting, ̂H can be regarded as a periodic
Schrödinger operator with potential W ∈ C∞(Tn;R+). The eigenvalue equa-
tion for the ground state, namely for the lowest eigenvalue E0 of ̂H with the
unique positive eigenfunction ψ0 = eS/ε,

̂H ψ0 = E0 ψ0, (1.2)
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is directly related the following viscous Hamilton–Jacobi equation for S,
1
2
|∇xS(x)|2 − W (x) +

ε

2
ΔS(x) = c(ε), x ∈ T

n. (1.3)

The viscosity solutions theory for this Hamilton–Jacobi equation ensures a
unique real value c(ε), the Mañé critical value, such that (1.3) admits a unique
C2(Tn)—solution (see [2,17] and references therein). Thus, E0 is related to
c(ε) and the eigenvalue Eq. (1.2) for the ground state is equivalent to (1.3) by
the relations

ψ0 = eS/ε, E0 = −c(ε). (1.4)

This link between the many body operator ̂H in (1.1) and the Hamilton–
Jacobi equation (1.3) suggests us to apply some results of weak KAM theory
and viscosity solutions theory (see for example [5,7,10–15,38] and references
therein) in order to investigate around Mean Field limits as N → +∞ for
̂H, here in the periodic setting and inside the stationary case. Indeed, in the
present paper we show that Weak KAM theory provides additional tools for
investigation of the Mean Field regime in the quantum many body theory
and related Hartree equation. We recall that the original idea to apply these
techniques of PDE’s into the framework of quantum mechanics goes back to
L.C. Evans in the papers [11,12] aimed to the study of certain semiclassical
approximation problems of Schrödinger eigenfunctions as ε → 0.

We will discuss about the role of the semiclassical parameter ε > 0, the
number of particles N and their link within the main results of the paper,
summarized by Theorems 1.1, 1.2, 1.3 and 3.2.

1.2. Outline of the results

First, we notice that thanks to the toroidal setting and in view of the C2—
regularity of S solving (1.3) it follows the integral equality

1
(2π)n

∫

Tn

( |∇xS(x)|2
2

− W (x)
)

dx = c(ε), x ∈ T
n, n = N · d, (1.5)

where W is given in (1.1). Thus, the asymptotics for N → +∞ furnishes an
integral with increasing dimension, with normalization factor 1/(2π)n.

Second, we introduce the stationary Hartree equation related to many
body operator (1.1), (see for example [18,24–31,39,40] and references
therein) here for L2 - normalized ϕ ∈ C∞(Td;C), i.e. ‖ϕ‖L2(Td) = 1,

− ε2

2
Δxϕ + Vextϕ +

(

Vint � |ϕ|2
)

ϕ = λϕ, (1.6)

where � denotes convolution. Here we are interested in any solution ϕ0 ∈
C∞(Td;R+) realizing the minimum value of the Hartree energy functional

E(ϕ) :=
∫

Td

ε2

2
|∇ϕ|2+Vext(θ)|ϕ(θ)|2dθ+

1
2

∫

T2d
|ϕ(θ)|2Vint(θ−α)|ϕ(α)|2dαdθ.

(1.7)
In this setting and without additional assumptions on the potentials, the min-
imum point ϕ0 is not necessarily unique but it can be taken to be real positive
function (see Sect. 2).
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A standard result of Mean Field many body theory is the limit of the
ground state energy: more precisely, the energy value E0 = E0(N) fulfills (in
the next we underline the dependence from N)

lim
N→+∞

E0(N)
N

= E(ϕ0).

In our work we propose (when ε > 0 is fixed) a proof of this result directly
in the toroidal setting adapting some well known techniques of many body
theory working on R

n. More in details, we prove (see Proposition 4.2)

E(ϕ0) − ‖Vint‖∞
2(N − 1)

≤ E0(N)
N

≤ E(ϕ0), ∀N ≥ 2. (1.8)

We underline that both E(ϕ0) and E0(N) are depending from ε > 0.
The next step is to rewrite the Hartree equation (1.6) at λ = E(ϕ0) by

using the form of a minimum ϕ0(θ) = eσ(θ)/ε, where σ ∈ C∞(Td;R), so that
(see Sect. 2.2)

− ε

2
Δσ(θ) − 1

2
|∇σ(θ)|2 + Vext(θ) +

(

Vint � |eσ(θ)/ε|2
)

(θ) = E(ϕ0), θ ∈ T
d.

(1.9)
Some simple arguments (see Lemma 4.1) give

1
(2π)d

∫

Td

( |∇σ(θ)|2
2

− Vext(θ) − Vint(θ)
)

dθ = −E(ϕ0). (1.10)

Notice the similarities between (1.10) and (1.5), both Hamilton–Jacobi equa-
tions written in a integral form, with potentials directly related to Vext, Vint.
This connection allows to prove the first result of the paper, given by the
following

Theorem 1.1. Let V := (2π)−d
∫

Td V (θ)dθ, n = N · d, S ∈ C2(Tn) be the
solution of the H–J equation (1.3), and let σ ∈ C∞(Td;R) be a solution of
(1.9). Then, we have the equalities

E0(N) = − 1
(2π)n

∫

Tn

|∇S(x)|2
2

dx + N ·
(

V ext +
V int

2

)

, (1.11)

E(ϕ0) = − 1
(2π)d

∫

Td

|∇σ(θ)|2
2

dθ + V ext + V int. (1.12)

Moreover, for any fixed 0 < ε ≤ 1 the following statements are equivalent:

(i) lim
N→+∞

E0(N)
N

= E(ϕ0),

(ii) lim
n→+∞

1
n(2π)n

∫

Tn

|∇S(x)|2
2

dx =
1

d(2π)d

∫

Td

( |∇σ(θ)|2
2

− V int

2

)

dθ.

We stress that the equality (ii) in Thm. 1.1 is a bridge between a family of
integrals on T

n, with increasing dimension, and the integral on T
d with fixed

dimension where the Hartree equation does hold. The above equivalence result,
together with the inequalities in (1.8), ensure the limit (ii).
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In the non-interacting case, namely for Vint = 0, since ψ0(x) =
∏N

i=1 ϕ0(xi)
it is clear that the above limits (i) - (ii) become identities

E0(N)
N

= E(ϕ0),

1
n(2π)n

∫

Tn

|∇S(x)|2
2

dx =
1

d(2π)d

∫

Td

|∇σ(θ)|2
2

dθ.

We now focus our attention to the direct application of weak KAM theory
to stationary Hartree equation and Mean Field asymptotics.

Let u ∈ C0,1(Tn;R) be a viscosity solution (see [7,12,15,32] and ref-
erences therein) of the Hamilton–Jacobi equation with potential W given in
(1.1),

1
2
|∇u(x)|2 − W (x) = max

y∈Tn
−W (y) =: c(0), x ∈ T

n. (1.13)

Here c(0) is the Mañé critical value, which turns out in the classical mechanical
case to be the maximum of the potential energy (−W , in the above formula).
It is the unique value such that there exists some global viscosity solution
for the equation (1.13), c(0) = maxx∈Tn −W (y) = −miny∈Tn W (y). We also
remind the C1,1

loc—regularity on an open dense subset of Tn for all the viscosity
solutions, see [38]. Among all the possible solutions of (1.13), one can pick up
the so-called ‘physical’ viscosity solution ensuring that (see Lemma 2 in [2])

lim
εj→0+

‖S − u‖C0(Tn) = 0 (1.14)

along some subsequence εj → 0+. Such a solution u becomes unique under
some further assumptions on the Aubry set (see [2]). However (when n is
fixed) we always have the limit

lim
ε→0+

c(ε) = c(0). (1.15)

Since E0(N) = −c(ε) and c(0) = −miny∈Tn W (y), this is equivalent to

lim
ε→0+

E0(N) = min
y∈Tn

W (y) (1.16)

restoring the well known semiclassical asymptotics, as ε → 0+, of the ground
state energy to the minimum of the classical energy min(x,p)

1
2 |p|2 + W (x) =

miny W (y). Thus, for every fixed n ∈ N and ν > 0, there exists δ = δ(n, ν) > 0
such that

|c(ε) − c(0)| < ν, ∀ 0 < ε < δ(n, ν). (1.17)
The target to get more informations on δ(n, ν) is a nontrivial spectral problem
since one need to exhibit the dependence of first eigenvalue E0 both from
ε than from the dimension n = N · d. For example, select the most simple
case where d = 1, Vint = 0 and minθ∈T Vext(θ) = 0 with nondegenerate local
minima, i.e. V ′′

ext > 0 on these points. Then, c(0) = 0 and c(ε) � N · ε
so that δ(n, ν) � ν/n. This can be proved through the application of the
Weyl law which gives the asymptotics of the number of eigenvalues on a fixed
interval for operators on manifolds (like T

n), see [20] and references therein.
A general study requires less restrictive assumptions on Vext, Vint and more
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refined arguments of spectral theory in the periodic setting, which is not the
target of the present paper. We stress however that the difference c(ε) − c(0)
and the function δ(n, ν) both play a crucial role in the next two results.

In view of the above observations, we now focus again our attention to
integral identities, for which we have a nice control on dependence from the
parameters ε and n. This will be the content of the second result of the paper,
where we do not need to apply a selection for the viscosity u solving (1.13).

Theorem 1.2. Let u be any viscosity solution of (1.13), let S and c(ε) given in
(1.4). Let σ be as in (1.9). Then, ∀ 0 < ε ≤ 1

1
(2π)n

∫

Tn

1
2
|∇u(x)|2 dx =

1
(2π)n

∫

Tn

1
2
|∇S(x)|2 dx + c(0) − c(ε). (1.18)

Moreover, for 0 < ε < δ(n, ν) with δ as in (1.17) we have

(iii)
∣

∣

∣

1
n(2π)n

∫

Tn

|∇u(x)|2
2

dx − 1
d(2π)d

∫

Td

( |∇σ(θ)|2
2

− V int

2

)

dθ
∣

∣

∣

≤ ν

n
+

‖Vint‖∞
2d(N − 1)

.

By the assumption 0 < ε < δ(n, ν) we make a link between the semi-
classical parameter ε and n = N · d where N is the number of particles. This
kind of link can also be found (for other targets) in the literature of Mean
Field regime for certain quantum systems, see for example [16] and references
therein.

A direct consequence of Theorems 1.1 and 1.2 is that any viscosity solu-
tion u of the Hamilton–Jacobi equation (1.13) can be used to approximate the
minimum value of the Hartree functional [and also E0(N)/N thanks to (1.8)].
Indeed, a direct consequence is the quantitative estimate
∣

∣

∣E(ϕ0)−
(

V ext+
V int

2
− d

n
· 1
(2π)n

∫

Tn

|∇u(x)|2 dx
)∣

∣

∣ ≤ ‖Vint‖∞
2(N − 1)

+
d ν

n
. (1.19)

In order to improve the statement (iii), we now consider the operator

̂Hα := −ε2

2
Δx +

∑

1≤i≤N

Vext(xi) +
1

(N − 1)α

∑

1≤i<j≤N

Vint(xi − xj) (1.20)

with the exponent α ≥ 1. In the case α > 1 now the interaction part of the
potential works as a ‘perturbative’ term in the framework of the above Mean
Field limit as N → +∞. Indeed, this is equivalent to take ̂H as in (1.1) with
the rescaled function Vint/(N − 1)α−1.

The third result of the paper provides a Mean Field asymptotics linked
to a simplified setting with respect to Hartree equation.

Theorem 1.3. Let u be any viscosity solution of (1.13). Then, for ̂Hα as in
(1.20) with α > 1, any fixed ν > 0 and 0 < ε < δ(n, ν) we have

(iv)
∣

∣

∣

1
n

· 1
(2π)n

∫

Tn

|∇u(x)|2
2

dx − 1
d

· 1
(2π)d

∫

Td

|∇σ0(θ)|2
2

dθ
∣

∣

∣
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≤ ν

n
+

5‖Vint‖∞
2d(N − 1)α−1

where σ0 ∈ C∞(Td;R+) is the unique (up to constants) solution of

− ε2

2
Δσ0(θ) − 1

2
|∇σ0(θ)|2 + Vext(θ) = λ0, θ ∈ T

d, (1.21)

and λ0 := inf‖ϕ‖=1

∫

Td
1
2ε2|∇ϕ|2 + Vext(θ)|ϕ(θ)|2dθ.

The above result shows that, in the asymptotics of large N , the Hartree
energy is reduced to the functional without the interaction potential, and the
Hartree equation is reduced to the ε-viscous Hamilton–Jacobi equation written
on T

d. Notice that for d = 1 one can recover informations about the solution
of (1.21), since eσ/ε is now the eigenfunction of the lowest eigenvalue of the
one dimensional Schrödinger operator − 1

2ε2 d2

dθ2 + Vext(θ), see [37]. However,
despite the simplified setting of Theorem 1.3 where α > 1 and Vint does not
play a role in the equation for σ0, we have that for d ≥ 2 the equation (1.21) is
(in general) nontrivial since cannot be reduced to the sum of one-dimensional
problems. See Sect. 3 for the link with the Agmon distance and multiple-well
case.

To conclude, we recall that the application of KAM theory or weak KAM
theory into the semiclassical Analysis of Schrödinger operators can be given
for various problems: like the study of WKB quasimodes, Wigner measures or
the asymptotics of the spectrum (see [3,4,6,8,21,23,34–36,43] and references
therein). For the use of Fourier Integral Operators and solutions of Hamilton–
Jacobi equation to represent the unitary operator solving the quantum dy-
namics we address to [19,22] and references therein.

2. Settings and preliminaries

2.1. The class of potentials

The class of potentials are nonnegative and satisfy the regularity Vext, Vint ∈
C∞(Td;R+). In addition, we require that Vint has real and nonnegative Fourier
components 〈ek, Vint〉L2 := (2π)−d

∫

Td e−ik·θ Vint(θ) dθ ≥ 0 ∀k ∈ Z
d, and this

assumption will be used in the proof of Proposition 4.2. We thus have

Vint(θ) =
∑

k∈Zd

ck cos (k · θ)

where ck ∈ Z
d, ck ≥ 0. In order to recover the C∞—regularity one can assume

for example that ck ∼ e−|k| as |k| → +∞. Moreover, thanks to the additional
condition on the Fourier components c0 ≥ −∑

|k|>0 ck it follows Vint ≥ 0.
About the external potential, we also require (only to prove Theorem

3.2) the additional condition to have a finite number of minimum points at
Vext = 0. This is realized for example by defining

Vext(θ) :=
∑

|k|≤R

bk cos (k · θ), for some R > 1,
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and where we can choose the Fourier components bk ∈ R (in this case can be
negative) in such a way that Vext ≥ 0 and min Vext = 0.

2.2. Some remarks on periodic Hartree equation

Under the above assumption Vext, Vint ∈ C∞(Td;R+) we have that Hartree
functional ϕ �→ E(ϕ) given in (1.7) is weakly lower semicontinuous. Moreover,
this Hartree functional is also coercive on H1(Td;C) since E(ϕ) ≥ 1

2ε2‖∇ϕ‖2L2

and Poincaré inequality on T
d reads ‖ϕ‖L2 ≤ C‖∇ϕ‖L2 , hence ‖ϕ‖H1 →

+∞ implies E(ϕ) → +∞. Thus, it follows the existence of minimizers ϕ0 ∈
H1(Td;C). The related Euler–Lagrange equation (tought in the distributional
sense) at the value λ0 := E(ϕ0) reads

− ε2

2
Δϕ0 + Vextϕ0 + (Vint � |ϕ0|2)ϕ0 = λ0ϕ0. (2.1)

Moreover, since Vint ∈ C∞(Td;R+) then Vint � |ϕ0|2 belongs to C∞(Td;R+).
Hence, we can regard the equation (2.1) as a linear Schrödinger equation writ-
ten with the potential Φ := Vext +Vint � |ϕ0|2 ∈ C∞(Td;R+). Furthermore, we
remind that all the operators of type − 1

2ε2Δ+Φ on T
d with smooth potentials

have finite dimensional eigenspaces with smooth eigenfunctions, and thus we
deduce the inclusion ϕ0 ∈ C∞(Td;C). We also remark that ϕ0 can be taken
to be a real positive function, indeed by denoting ϕ0 = ρ eiφ, with ρ ∈ R+

and φ ∈ R we can write |ϕ0|2 = ρ2 and |∇ϕ0|2 = |∇ρ|2 + ρ2|∇φ|2 so that
E(ϕ0) ≥ E(ρ). We conclude that minimizers can take the form ϕ0 = eσ with
σ ∈ C∞(Td;R) which allows to write equation (1.9).

3. Ground state of multiple-well problem

In this section we arrange the semiclassical study of the ground state for op-
erators ̂H := − 1

2ε2Δ + W with a potential energy W (x) ≥ 0 assuming zero
only in a finite number of wells, W (aα) = 0, α = 1, .., k. For example, refer-
ring to (1.1), this is occurring in the non-interacting case for Vint = 0 where
W (x) =

∑

1≤i≤N Vext(xi) or in the framework of Theorem 1.3 to study equa-
tion (1.21). With respect to this target, the results shown by Simon [41,42] for
the double-well case represent an important starting point.
The wave function of the ground state ψ0 has the following form together the
energy level E0 (see 1.4): ψ0 = eS/ε, E0 = −c(ε), where (see 1.3)

1
2
|∇xS(x)|2 − W (x) +

ε

2
ΔS(x) = c(ε), x ∈ T

n.

By considering the same arguments around the formulae (1.13) and (1.14),
i.e. the ‘physical solutions’ by Gomes, we underline that the uniform limit of
S(x) = Sε(x), along some subsequence εj → 0+, is running to a viscosity
solution u, limεj→0+ ‖S − u‖C0(Tn) = 0, of the Hamilton-Jacobi equation

1
2
|∇u(x)|2 − W (x) = c(0), (3.1)

with c(0) = 0, which is the maximum of the instanton potential energy −W .
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Before proceeding, it is necessary to recall an essential theorem that one can
derive from the seminal paper [33] and here displayed in a form presented in
[15].

Theorem 3.1. The function u is a viscosity solution of the Hamilton–Jacobi
equation H(x,∇u(x)) = c if and only if it solves the following fixed point
problem: for all x ∈ T

n and for all t ≥ 0,

u(x) = T−
t u(x) + ct = inf

γ

{

u(γ(0)) +
∫ t

0

L(γ(s), γ̇(s))ds
}

+ ct,

where the infimum is over all piecewise C1 curves γ : [0, t] → T
n such that

γ(t) = x and c = c(0) is the Mañé critical value.

In our case L = 1
2 |ẋ|2+W (x) is the instanton Lagrangian function related

to the Hamiltonian H = 1
2 |ẋ|2−W (x) and c = 0. To gain the physical viscosity

solution u(x) of the stationary equation (3.1), we are leaded to the fixed point
problem:

u(x) = inf
γ

(

u(γ(0)) +
∫ t

0

|γ̇(s)|2
2

+ W (γ(s))ds

)

∀t ≥ 0 (3.2)

In what follows we will give an innovative interpretation to the fixed point
Eq. (3.2). By Proposition 2 of Carmona and Simon’s paper [9], one can achieve
that

ρ̂(x, y) = inf
γ,t≥0

{∫ t

0

1
2
|γ̇(s)|2ds + W (γ(s))ds | γ(0) = x, γ(t) = y

}

represents an alternative definition of the Agmon metric ρ (see [1]), ρ̂(x, y) =
ρ(x, y),

ρ(x, y) := inf
γ

∫ 1

0

√

2W (γ(τ))|γ̇(τ)| dτ, (3.3)

with γ : [0, 1] → T
n and γ(0) = x, γ(1) = y. Notice that under the integral

(3.3) we see a positively 1-homogeneous function in the variable γ̇, so it comes
out invariant under reparametrization of the time:

[0, t] −→ [0, 1], s �−→ τ(s) = s/t . (3.4)

If in the points x or y the potential energy W vanishes, separating curves γ
between x and y at the level E = c = 0 cannot be anymore reparametrized
with a finite interval time [0, t], so that an opportune standard limit procedure
is needed, see details at Section 1.3, after the proof of Prop. 2 of [9]. For the
convenience of the reader we propose a version adapted to our aim of those
calculations. From 0 ≤ (|γ̇(s)| − √

2W (γ(s)))2 we have
√

2W (γ(s))|γ̇(s)| ≤ |γ̇(s)|2
2

+ W (γ(s)).

By considering the integral for any u(x), we obtain:

u(γ(0))+
∫ t

0

√

2W (γ(s))|γ̇(s)|ds ≤ u(γ(0))+
∫ t

0

|γ̇(s)|2
2

+W (γ(s))ds . (3.5)
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The inequality is preserved passing to the infimum and the equality is achieved
at the minimum energy level E = 0. Indeed, in this case we have:

|γ̇(s)|2
2

− W (γ(s)) = 0, or |γ̇(s)| =
√

2W (γ(s)) .

All these last considerations, are leading to rewrite the fixed point problem
(3.2) in the following form:

u(x) = inf
γ

(

u(γ(0)) +
∫ 1

0

√

2W (γ(τ))|γ̇(τ)|dτ

)

, (3.6)

where the infimum is over all curves γ : [0, 1] → T
n such that γ(1) = x at

E = 0. We now give the following characterization for the multiple-well case,
namely under the assumptions that there exists only a finite number of points
of the torus T

n in which the potential function W vanishes.

Theorem 3.2. Let aα ∈ T
n, α = 1, . . . , k, W (aα) = 0 and W (x) > 0,∀x ∈

T
n \ {aα}α=1,...,k. Let u be a viscosity solution of (3.1) satistying u(aα) = 0

for all α = 1, . . . , k. Then u is given by

u(x) = min {ρ(a1, x), ρ(a2, x), . . . , ρ(ak, x)} , (3.7)

where ρ is the Agmon metric (3.3), solving the fixed point Eq. (3.6).

Proof. We suppose that in correspondence of a generic point x, the minimum
of Eq. (3.7) is reached relatively to the well aα. From the definition of the
Agmon metric (3.3), we have that

ρ(aα, x) = inf
γ

∫ 1

0

√

2W (γ(τ))|γ̇(τ)|dτ (3.8)

with γ(0) = aα and γ(1) = x. To conclude the proof, we observe that u(x) =
ρ(aα, x) solves equation (3.6), with u(γ(0)) = u(aα) = 0. �

Under the further assumption that W has non degenerate Hessian at the
minimum points aα, we know (by [2]) that the Aubry set consists in a finite
number of hyperbolic periodic orbits of the Euler–Lagrange flow. This ensures
that the physical Hamilton–Jacobi solution u(x) is unique. As a consequence,
thanks to Theorem 3.2 and limit (1.14) we have thus proved that the function
given in (3.7) is linked to the ground state ψ0 = eS/ε of the operator ̂H :=
− 1

2ε2Δ+W by the following limit (upon passing by a converging subsequence,
in C0—norm)

lim
εj→0

εj ln ψ0 = u. (3.9)

This is the multiple-well version (on T
n) of Theorem 2 shown by Simon [41]

that works for the double well case on R
n and makes use of large deviations

methods. On the other hand, we also stress that Simon’s result does not need
to consider a suitable subsequence, namely the limit (3.9) works for ε → 0.
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4. Proof of the results

We can now devote our attention to the proof of the results outlined in the
Introduction.

Proof of Theorem 1.1. We begin by
1

(2π)n

∫

Tn

(1
2
|∇xS(x)|2 − W (x)

)

dx = c(ε), (4.1)

where c(ε) = −E0 and n := N · d. In particular,
∫

Tn

W (x)dx =
∫

Tn

(
∑

1≤i≤N

Vext(xi) +
1

N − 1

∑

1≤i<j≤N

Vint(xi − xj)
)

dx

which reads
∫

Tn

W (x) dx =
∑

1≤i≤N

∫

Tn

Vext(xi) dx +
1

N − 1

∑

1≤i<j≤N

∫

Tn

Vint(xi − xj) dx.

Recall the setting V := (2π)−d
∫

Td V (θ)dθ, so that integrating the first term
∫

Tn

W (x) dx = N(2π)N ·d V ext +
1

N − 1

∑

1≤i<j≤N

∫

Tn

Vint(xi − xj) dx.

Integrating the second term, we first observe that
∫

Tn f(x−y)dx =
∫

Tn f(x)dx
for all fixed y ∈ T

n. We deduce
∫

Tn

W (x) dx = N(2π)N ·d V ext +
1

N − 1
N(N − 1)

2
(2π)N ·d V int,

and this implies
1

(2π)n

∫

Tn

W (x) dx = N V ext +
1
2
N V int.

Thus, Eq. (4.1) can be rewritten as

E0(N) = − 1
(2π)n

∫

Tn

1
2
|∇S(x)|2 dx + N ·

(

V ext +
1
2
V int

)

(4.2)

The second statement of the Theorem,

E(ϕ0) = − 1
(2π)d

∫

Td

1
2
|∇σ(θ)|2dθ + V ext + V int, (4.3)

follows directly from Lemma 4.1.
To conclude, in view of (4.2)–(4.3) and recalling that N = n/d we get that the
difference

Δ := E(ϕ0) − E0(N)
N

(4.4)

equals

Δ =
d

n
· 1
(2π)n

∫

Tn

|∇S(x)|2
2

dx − 1
(2π)d

∫

Td

( |∇σ(θ)|2
2

− V int

2

)

dθ.

Hence
Δ
d

=
1
n

· 1
(2π)n

∫

Tn

|∇S(x)|2
2

dx − 1
d

· 1
(2π)d

∫

Td

( |∇σ(θ)|2
2

− V int

2

)

dθ. (4.5)
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This gives the equivalence between (i) and (ii) in the statement. �
Lemma 4.1. Let σ be the solution of (1.9), then

1
(2π)d

∫

Td

( |∇σ(θ)|2
2

− Vext(θ) − Vint(θ)
)

dθ = −E(ϕ0).

Proof. Pick the equation

−ε

2
Δσ(θ) − 1

2
|∇σ(θ)|2 + Vext(θ) +

(

Vint � |eσ(θ)/ε|2
)

(θ) = E(ϕ0)

and integrate over T
d so that

∫

Td

−1
2
|∇σ(θ)|2 + Vext(θ)dθ +

∫

Td

(

Vint � |eσ(θ)/ε|2
)

(θ) dθ = (2π)d E(ϕ0).

The lefthand side reads
∫

Td

−1
2
|∇σ(θ)|2 + Vext(θ)dθ +

∫

Td

∫

Td

Vint(θ − α)|eσ(θ)/ε|2dαdθ,

namely, since
∫

Tn f(x − y)dx =
∫

Tn f(x)dx for all fixed y ∈ T
n, we have

∫

Td

−1
2
|∇σ(θ)|2 + Vext(θ)dθ + (2π)d V int

∫

Td

|eσ(θ)/ε|2dθ.

Since ϕ0(θ) := eσ(θ)/ε is L2 - normalized we obtain the equality
∫

Td

−1
2
|∇σ(θ)|2 + Vext(θ) + Vint(θ) dθ = (2π)d E(ϕ0).

�
Proof of Theorem 1.2. The equality

1
(2π)n

∫

Tn

1
2
|∇u(x)|2 dx =

1
(2π)n

∫

Tn

1
2
|∇S(x)|2 dx + c(0) − c(ε)

follows directly from the difference between (1.5) and the integral over T
n of

(1.13). As a consequence,
1
n

· 1
(2π)n

∫

Tn

1
2
|∇u(x)|2 dx =

1
n

· 1
(2π)n

∫

Tn

1
2
|∇S(x)|2 dx +

c(0) − c(ε)
n

.

Moreover, recalling (4.4)–(4.5) together with Proposition 4.2 below, we have
∣

∣

∣

1
n

· 1
(2π)n

∫

Tn

|∇S(x)|2
2

dx − 1
d

· 1
(2π)d

∫

Td

( |∇σ(θ)|2
2

− V int

2

)

dθ
∣

∣

∣

≤ ‖Vint‖∞
2d(N − 1)

.

Since |c(ε) − c(0)| < ν provided 0 < ε < δ(n, ν), we conclude
∣

∣

∣

1
n

· 1
(2π)n

∫

Tn

|∇u(x)|2
2

dx − 1
d

· 1
(2π)d

∫

Td

( |∇σ(θ)|2
2

− V int

2

)

dθ
∣

∣

∣

≤ ν

n
+

‖Vint‖∞
2d(N − 1)

.

�
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Proof of Theorem 1.3. Let σ0 ∈ C∞(Td;R+) be the unique (up to constants)
solution of

−ε

2
Δσ0(θ) − 1

2
|∇σ0(θ)|2 + Vext(θ) = λ0, θ ∈ T

d,

where λ0 := inf‖ϕ‖L2=1

∫

Td
1
2ε2|∇ϕ|2 + Vext(θ)|ϕ(θ)|2dθ. Thus,

1
(2π)d

∫

Td

|∇σ0(θ)|2
2

dθ = V ext − λ0. (4.6)

We now use the inequality (iii) shown in Theorem 1.2, by replacing V int by
V int/(N − 1)α−1, α > 1, so that

∣

∣

∣

1
n(2π)n

∫

Tn

|∇u(x)|2
2

dx − 1
d(2π)d

∫

Td

( |∇σ(θ)|2
2

− V int

2(N − 1)α−1

)

dθ
∣

∣

∣

≤ ν

n
+

‖Vint‖∞
2d(N − 1)α

,

and thus
∣

∣

∣

1
n(2π)n

∫

Tn

|∇u(x)|2
2

dx − 1
d(2π)d

∫

Td

|∇σ(θ)|2
2

dθ
∣

∣

∣

≤ ν

n
+

‖Vint‖∞
2d(N − 1)α

+
V int

2d(N − 1)α−1
.

Now Eq. (1.10) is modified with the rescaled Vint,

1
(2π)d

∫

Td

|∇σ(θ)|2
2

dθ = V ext +
V int

(N − 1)α−1
− E(ϕ0). (4.7)

In view of (4.6)–(4.7), we need to get an estimate for D := E(ϕ0) − λ0 ≥ 0

D = inf
ϕ

{

∫

Td

ε2

2
|∇ϕ|2 + Vext(θ)|ϕ(θ)|2dθ

+
1
2

∫

T2d
|ϕ(θ)|2 Vint(θ − α)

(N − 1)α−1
|ϕ(α)|2dαdθ

}

− inf
ϕ

∫

Td

ε2

2
|∇ϕ|2 + Vext(θ)|ϕ(θ)|2dθ.

Notice that for ‖ϕ‖ = 1 we have

1
2

∫

T2d
|ϕ(θ)|2 Vint(θ − α)

(N − 1)α−1
|ϕ(α)|2dαdθ ≤ ‖Vint‖∞

2(N − 1)α−1

and thus we have the following upper bound for D

D ≤ inf
ϕ

∫

Td

ε2

2
|∇ϕ|2 + Vext(θ)|ϕ(θ)|2dθ +

‖Vint‖∞
2(N − 1)α−1

− inf
ϕ

∫

Td

ε2

2
|∇ϕ|2 + Vext(θ)|ϕ(θ)|2dθ =

‖Vint‖∞
2(N − 1)α−1

.

We conclude
∣

∣

∣

1
n(2π)n

∫

Tn

|∇u(x)|2
2

dx − 1
d(2π)d

∫

Td

|∇σ0(θ)|2
2

dθ
∣

∣

∣
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≤ ν

n
+

‖Vint‖∞
2d(N − 1)α

+
V int

2d(N − 1)α−1
+

V int

d(N − 1)α−1
+

‖Vint‖∞
2d(N − 1)α−1

,

but since V int ≤ ‖Vint‖∞ the final upper bound can be written by

≤ ν

n
+

‖Vint‖∞
2d(N − 1)α

+
2‖Vint‖∞

d(N − 1)α−1
≤ ν

n
+

5‖Vint‖∞
2d(N − 1)α−1

.

�

In the next result we mainly follow the same arguments shown in section
3 of [25], here adapted for the toroidal case.

Proposition 4.2. Let E(ϕ0) be the minimum value of the Hartree functional
and let E0 be the lowest eigenvalue of ̂H. Then,

E(ϕ0) − ‖Vint‖∞
2(N − 1)

≤ E0(N)
N

≤ E(ϕ0), ∀N ≥ 2.

Proof. We rewrite the operator ̂H = − 1
2ε2Δx + W (x) as

̂H =
∑

1≤i≤N

̂hi +
1

N − 1

∑

1≤i<j≤N

Vint(xi − xj)

where Vext, Vint ∈ C∞(Td;R+) and ̂hi := − 1
2ε2∂2

xi
+ Vext(xi). Let ϕ0 be a

minimizer of E(ϕ) and define ξ0(x) :=
∏N

i=1 ϕ0(xi), then

〈ξ0, ̂Hξ0〉 = NE(ϕ0).

Hence, the upper bound is directly obtained by

E0 := 〈ψ0, ̂Hψ0〉 = inf
‖ψ‖=1

〈ψ, ̂Hψ〉 ≤ 〈ξ0, ̂Hξ0〉 = NE(ϕ0).

Conversely, we first observe that the ground state ψ0 = ψ0(x1, x2, . . . , xN ) is
symmetric with respect to exchange of variables. Indeed, let us denote ̂Pij as
the exchange (selfadjoint) operator on L2(Tn) that works as

( ̂Pijψ)(x1, . . . , xi, xj , . . . , xN ) := ψ(x1, . . . , xj , xi, . . . , xN )

where xi ∈ T
d and n = N · d. Now easily notice the commutation property

[ ̂H, ̂Pij ] = 0 since [W, ̂Pij ] = 0. We thus have that ̂H and ̂Pij have a com-
mon base of eigenfunctions (symmetric or anti-symmetric). As a consequence,
the strictly positive eigenfunction ψ0 > 0 (associated to the nondegenerate
eigenvalue E0) cannot be an antisymmetric function. We deduce that ψ0 is
symmetric and that we can restrict the variational problem inf‖ψ‖=1〈ψ, ̂Hψ〉
to ψ ∈ L2

s(T
n) here defined as the functions in L2(Tn) such that ̂Pijψ = ̂Pjiψ.

Now we can apply Hoffmann–Ostenhof inequality for L2
s(T

n)
〈

ψ0,
N

∑

i=1

̂hiψ0

〉

≥ N
〈√

ρψ0 ,
̂h
√

ρψ0

〉

(4.8)

where ρψ0(θ) :=
∫

Td

∫

Td . . .
∫

Td |ψ0(θ, x2, x3, . . . , xN )|2 dx2dx3, . . . , dxN . The
proof of (4.8) can be found in Lemma 3.2 of [25] written for symmetric functions
in L2(Rn), but working also on L2

s(T
n).
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As for interaction part, pick an arbitrary η ∈ L1(Td;R) and use the
inequality shown in our Lemma 4.3,

∑

1≤i<j≤N

Vint(xi − xj) ≥
∑

1≤i≤N

(Vint � η)(xi)

−1
2

∫

Td

∫

Td

Vint(α − θ)η(α)η(θ)dαdθ − N

2
‖Vint‖∞ .

Now integrate with the normalized ψ0 and use the lower bound with η :=
Nρψ0 , so that for g0 := √

ρψ0 we have
∫

Tn

ψ0(x)
1

N − 1

∑

1≤i<j≤N

Vint(xi − xj) ψ0(x) dx

≥ N2

2(N − 1)

∫

T2d
|g0(θ)|2Vint(θ − α)|g0(α)|2dαdθ − N‖Vint‖∞

2(N − 1)

≥ N

2

∫

T2d
|g0(θ)|2Vint(θ − α)|g0(α)|2dαdθ − N‖Vint‖∞

2(N − 1)
. (4.9)

In view of (4.8)–(4.9) and recalling that ϕ0 is a minimizer of E(ϕ) we conclude

E(ϕ0) − ‖Vint‖∞
2(N − 1)

≤ E(g0) − ‖Vint‖∞
2(N − 1)

≤ E0(N)
N

.

�

Lemma 4.3. Let Vint ∈ C∞(Td;R+) be as in Sect. 2.1. Then, ∀η ∈ L1(Td;R)
∑

1≤i<j≤N

Vint(xi − xj) ≥
∑

1≤i≤N

(Vint � η)(xi)

−1
2

∫

Td

∫

Td

Vint(α − θ)η(α)η(θ)dαdθ − N

2
‖Vint‖∞.

Proof. Define f(x, α) := η(α) − ∑

1≤i≤N δ(α − xi) and observe that

1
2

∫

Td

∫

Td

Vint(α − θ)f(x, α)f(x, θ)dαdθ

= −
∑

1≤i≤N

(Vint � η)(xi) +
1
2

∫

Td

∫

Td

Vint(α − θ)η(α)η(θ)dαdθ

+
∑

1≤i<j≤N

Vint(xi − xj) +
N

2
Vint(0). (4.10)

Notice in particular that 0 ≤ Vint(0) ≤ ‖Vint‖∞.
By the use of toroidal Fourier transform ̂Vint(k) := (2π)−d

∫

Td

Vint(y)e−ik·ydy (which gives in fact the Fourier components) and related stan-
dard properties as unitary operator from L2(Td) into square integrable func-
tions on Z

d with �2(Zd) scalar product, we get
∫

Td

∫

Td

Vint(α − θ)f(x, α)f(x, θ)dαdθ
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=
∫

Td

∑

k∈Zd

̂Vint(k − θ) ̂f(x, k)f(x, θ)dθ

where ̂f(x, k) = η̂(k) − (2π)−d
∑

1≤i≤N eik·xi and ̂Vint(k − θ) = ̂Vint(k)eik·θ.
Thus,

∫

Td

∫

Td

Vint(α − θ)f(x, α)f(x, θ)dαdθ

=
∑

k∈Zd

̂Vint(k) ̂f(x, k)
∫

Td

eik·θf(x, θ)dθ

= (2π)d
∑

k∈Zd

̂Vint(k) ̂f(x, k) ̂f
(x, k)

= (2π)d
∑

k∈Zd

̂Vint(k)| ̂f(x, k)|2 ≥ 0 (4.11)

where the last inequality is ensured thanks to the assumption ̂Vint(k) ≥ 0. To
conclude, combining (4.11) with (4.10) we get the statement. �
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