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Abstract. General nonlinear high odd-order differential equations with
Lidstone–Euler boundary conditions of second type are treated both
theoretically and computationally. First, the associated interpolation
problem is considered. Then, a theorem of existence and uniqueness of
the solution to the Lidstone–Euler second-type boundary value problem
is given. Finally, for a numerical solution, two different approaches are
illustrated and some numerical examples are included to demonstrate
the validity and applicability of the proposed algorithms.
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1. Introduction

Boundary value problems (BVPs) with higher order differential equations
play an important role in a variety of different branches of applied math-
ematics, engineering, and many other fields of advanced physical sciences.
For examples, third-order BVPs arise in several physical problems, such as
the deflection of a curved beam, the motion of rockets, thin-film flows, elec-
tromagnetic waves, or gravity-driven flows (see [3,4] and references therein).
Fifth-order differential equations are used in mathematical modelling of vis-
coelastic flows [17]. Seventh-order BVPs arise in modelling induction motor
with two rotor circuits [26]. Nineth-order BVPs are known to arise in hydro-
dynamic, hydromagnetic stability, and mathematical modelling of AFTI-F16
fighters [2,23]. For more details on accuracy of high-order BVPs, see [6,13–
15,19,20,22,33,34, and references therein].
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In this paper, we will consider the boundary value problem

⎧
⎨

⎩

y(2r+1)(x) = f
(
x, y(x), y′(x), . . . , y(q)(x)

)

y(2i+1)(0) = αi, i = 0, . . . , r − 1,
y(2i)(1) = βi, i = 0, . . . , r,

(1.1)

with 0 ≤ q ≤ 2r fixed; αi, i = 0, . . . , r − 1, and βi, i = 0, . . . , r, finite real
constants. The function f is defined and continuous in [0, 1]×D, D ⊂ IRq+1.

The existence and uniqueness of solution of high-order BVPs are dis-
cussed in [1], but there numerical methods and examples are only mentioned.
Problem (1.1) does not appear in [1], for the particularity of the boundary
conditions. The boundary conditions in (1.1) have physical meanings. For
example, for r = 1, they represent the position and acceleration at the end
point and the velocity at the starting point of the system. However, to the
best of authors’ knowledge, there are no concret physical problems at least
in the mathematical literature.

We call the BVP (1.1) Lidstone–Euler second-type boundary value prob-
lem in contrast to Lidstone–Euler (first-type) boundary value problem in
[10].

The interpolatory theory and qualitative as well as quantitative study of
BVPs are directly connected [1,7,10,16]. The boundary conditions in (1.1),
that is

y(2i+1)(0) = αi, i = 0, . . . , r − 1, y(2i)(1) = βi, i = 0, . . . , r,

(1.2)

represent the Birkhoff-type interpolatory problem with the following inci-
dence matrix, in Schoenberg notation: [28]:

(
0 1 0 1 · · ·
1 0 1 0 · · ·

)

. (1.3)

The corresponding interpolation series has been considered in [24,25,
27,28], and in [36] for analogous problems.

Our study on the BVP (1.1) starts from the interpolatory problem (1.2).
The paper is organized as follows: in Sect. 2, we consider the Lidstone–

Euler interpolation problem (1.2) [8,11] using the Lidstone–Euler second-
type (or even) polynomials, and we give some new results concerning the
bounds of error and the convergence. In Sect. 3, we consider the existence
and uniqueness of the solution of problem (1.1). In Sect. 4, we discuss some
computational aspects and we give two algorithms for computing a numerical
solution of the problem. In Sect. 5, we present some numerical examples to
illustrate the applicability of the proposed methods. The results clearly show
that the described procedures are able to produce good results in terms of
accuracy. Finally, some conclusions are given.
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2. Lidstone–Euler Second-Type Polynomials and Related
Interpolation Problem

Lidstone–Euler second-type polynomials Sk(x), also called Lidstone–Euler
even polynomials, have been introduced in [8,11,12]. They satisfy the BVP
of second order

{
S ′′

k (x) = 2k(2k − 1)Sk−1(x), k ≥ 1,
Sk(1) = 0, k ≥ 1, S ′

k(0) = 0, k ≥ 0.
(2.1)

Polynomials Sk(x) are connected to Euler polynomials by the identity

Sk(x) = 22kE2k

(
x + 1

2

)

, k = 0, 1, . . . , (2.2)

where Ek(x) is the classic Euler polynomial of degree k [8]. Moreover, Sk(x)
satisfies

Sk(x) =
ε′
k(x)

2k + 1
,

εk(x) being the Lidstone–Euler first-type polynomial [8,10,11].
The first polynomials Sk(x) are

S0(x) = 1,

S1(x) = −1 + x2,

S2(x) = 5 − 6x2 + x4,

S3(x) = −61 + 75x2 − 15x4 + x6,

S4(x) = 1385 − 1708x2 + 350x4 − 28x6 + x8.

Relations (2.1) and (2.2) justify the name Lidstone–Euler type given to
the sequence {Sk}k. This sequence is important, because it acts as a funda-
mental polynomial sequence for the Birkhoff interpolation problem given by
the incidence matrix (1.3).

Theorem 1. For the Lidstone–Euler second-type polynomials, the following
identity holds:

Sk(x) = (2k)!
∫ 1

0

gk(x, t) dt, k ≥ 1, (2.3)

where

g1(x, t) =
{

x − 1 t ≤ x
t − 1 t > x,

(2.4)

gk(x, t) =
∫ 1

0

g1(x, s)gk−1(s, t) ds, k ≥ 2. (2.5)

Proof. The proof follows by induction. For k = 1, the thesis is trivial. For k ≥
2, we observe that the polynomial Sk+1(x) is the solution of the boundary
value problem

{
S ′′

k+1(x) = (2k + 2)(2k + 1)Sk(x)
Sk+1(1) = S ′

k+1(0) = 0.
(2.6)
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From the inductive hypothesis, we have
⎧
⎨

⎩

S ′′
k+1(x) = (2k + 2)!

∫ 1

0

gk(x, t) dt

Sk+1(1) = S ′
k+1(0) = 0.

(2.7)

From the theory of differential equations, the solution of (2.7) is

Sk+1(x) =
∫ 1

0

g1(x, s)
[

(2k + 2)!
∫ 1

0

gk(s, t) dt

]

ds

= (2k + 2)!
∫ 1

0

[∫ 1

0

g1(x, s)gk(s, t) ds

]

dt

= (2k + 2)!
∫ 1

0

gk+1(x, t) dt.

Thus, the thesis follows.

Remark 1. From (2.4), g1(x, t) ≤ 0, 0 ≤ x, t ≤ 1. Thus, from (2.5),

0 ≤ (−1)kgk(x, t) =
∣
∣
∣gk(x, t)

∣
∣
∣, 0 ≤ x, t ≤ 1.

Hence, in view of (2.3), we get (−1)kSk(x) ≥ 0, 0 ≤ x ≤ 1.

Theorem 2. The Lidstone–Euler second-type polynomials can be written as

Sk(x) = (2k)!
∫ 1

0

tGk−1(x, t) dt, k ≥ 1, (2.8)

where

G0(x, t) =
{

0 t ≤ x
−1 t > x,

(2.9)

Gk(x, t) =
∫ 1

0

g1(x, s)Gk−1(s, t) ds, k ≥ 1, (2.10)

with g1 defined as in (2.4).

Proof. Relation (2.8) can be proved by induction. For k = 1, it is trivially
true. For k > 1, from (2.8) and the inductive hypothesis, the boundary value
problem (2.6) can be written as

⎧
⎨

⎩

S ′′
k+1(x) = (2k + 2)!

∫ 1

0

tGk−1(x, t) dt

Sk+1(1) = S ′
k+1(0) = 0.

(2.11)

The solution of (2.11) is

Sk+1(x) =
∫ 1

0

g1(x, s)
[

(2k + 2)!
∫ 1

0

t Gk−1(s, t) dt

]

ds

= (2k + 2)!
∫ 1

0

[∫ 1

0

g1(x, s)Gk−1(s, t) ds

]

t dt

= (2k + 2)!
∫ 1

0

t Gk(x, t) dt,

and this completes the proof.
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Remark 2. Since g1(x, t) ≤ 0, from (2.10) it holds (−1)k+1Gk(x, t) ≥ 0.

Proposition 1. Let Gk(x, t) be the function defined in (2.9)–(2.10). Then
(i) Gk(1, t) = 0, k ≥ 1;

(ii)
∂

∂x
Gk(x, t)

∣
∣
∣
∣
x=0

= 0, k ≥ 0;

(iii)
∂2s

∂x2s
Gk(x, t) = Gk−s(x, t), s = 0, . . . , k − 1, k ≥ 1;

(iv)
∂2s+1

∂x2s+1
Gk(x, t) =

∂

∂x
Gk−s(x, t), s = 0, . . . , k − 1, k ≥ 1.

Proof. The first two identities follow from the definition of Gk (x, t) and the
boundary conditions in (2.1). Property (iii) is obtained from the first of (2.1)
and Theorem 2. Relation (iv) follows from (iii).

Proposition 2. For the function Gk(x, t), the following inequalities hold:
∫ 1

0

∣
∣
∣Gk(x, t)

∣
∣
∣dt ≤ 1

2k
, k ≥ 0; (2.12)

∫ 1

0

∣
∣
∣
∣

∂

∂x
Gk(x, t)

∣
∣
∣
∣ dt ≤ 1

2k−1
, k ≥ 1. (2.13)

Proof. The proof of (2.12) follows by induction. For k = 0, the thesis is trivial.
For k ≥ 1, from (2.4), (2.10), and the inductive hypothesis, we get

∫ 1

0

|Gk+1(x, t)|dt =
∫ 1

0

∣
∣
∣
∣

∫ 1

0

g1(x, s)Gk(s, t)ds

∣
∣
∣
∣ dt

≤
∫ 1

0

|g1(x, s)|
(∫ 1

0

|Gk(s, t)| dt

)

ds

≤ 1
2k

∫ 1

0

|g1(x, s)| ds ≤ 1
2k+1

.

To prove property (2.13), observe that

Gk(x, t) =
∫ 1

0

g1(x, s)Gk−1(s, t) ds

=
∫ x

0

(x − 1)Gk−1(s, t)ds +
∫ 1

x

(s − 1)Gk−1(s, t)ds.

By differentiating, we obtain
∂

∂x
Gk(x, t) =

∫ x

0

Gk−1(s, t)ds.

Hence
∫ 1

0

∣
∣
∣
∣

∂

∂x
Gk(x, t)

∣
∣
∣
∣ dt ≤

∫ 1

0

(∫ x

0

|Gk−1(s, t)|ds

)

dt =

∫ x

0

(∫ 1

0

|Gk−1(s, t)| dt

)

ds.

From (2.12), it follows:
∫ 1

0

∣
∣
∣
∣

∂

∂x
Gk(x, t)

∣
∣
∣
∣ dt ≤ 1

2k−1

∫ 1

0

dt ≤ 1
2k−1

.

The following two results have been proved in [11].
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Theorem 3. The polynomial Q� defined by

Q�(x) =
�∑

i=0

β̃i

(2i)!
Si(x) +

�−1∑

i=0

α̃i

(2i + 2)!
S ′

i+1(1 − x) (2.14)

is the unique polynomial of degree 2� that satisfies the interpolatory condi-
tions

Q
(2i+1)
� (0) = α̃i, i = 0, . . . , � − 1, Q

(2i)
� (1) = β̃i, i = 0, . . . , �,

(2.15)

with α̃i, i = 0, . . . , � − 1 and β̃i, i = 0, . . . , �, given real numbers.

Hence, we call Q�(x) the Lidstone–Euler type interpolant polynomial of
second kind and the conditions (2.15) the Lidstone–Euler type interpolation
conditions of second kind.

Corollary 1. Let f be a 2�-differentiable function in [0, 1]. The polynomial

Q�[f ](x) =
�∑

i=0

f (2i)(1)
(2i)!

Si(x) +
�−1∑

i=0

f (2i+1)(0)
(2i + 2)!

S ′
i+1(1 − x) (2.16)

is the unique polynomial of degree 2�, such that

Q
(2i+1)
r [f ] (0) = f (2i+1)(0), i = 0, . . . , � − 1, Q

(2i)
r [f ] (1) = f (2i)(1), i = 0, . . . , �.

(2.17)

The polynomial Q�[f ](x) is called the Lidstone–Euler interpolant poly-
nomial of second kind for the function f .

Proposition 3. For the derivatives of the Lidstone–Euler type interpolant poly-
nomial of second kind, there exist constants C2s and C2s+1, such that
∣
∣
∣Q

(2s)
� [f ] (x)

∣
∣
∣ ≤ C2s,

∣
∣
∣Q

(2s+1)
� [f ] (x)

∣
∣
∣ ≤ C2s+1, 0 ≤ x ≤ 1, s = 0, . . . , � − 1,

with

C2s =
π2s+2

3 · 22s

⎡

⎣
�∑

i=2s−2

∣
∣
∣f (2i)(1)

∣
∣
∣

(2i − 2s)!

(
2

π

)2i+1

+

�−1∑

i=2s−2

∣
∣
∣f (2i+1)(0)

∣
∣
∣

(2i − 2s + 1)!

(
2

π

)2i+2

⎤

⎦

(2.18)

and

C2s+1 =
π2s

3 · 22s

⎡

⎣
�∑

i=2s−2

∣
∣
∣f (2i)(1)

∣
∣
∣

(2i − 2s − 1)!

(
2

π

)2i

+ 4

�−1∑

i=2s−2

∣
∣
∣f (2i+1)(0)

∣
∣
∣

(2i − 2s)!

(
2

π

)2i−1

⎤

⎦ .

(2.19)

Proof. The proof follows after easy calculations tacking into account the in-
equality

∣
∣
∣En(x)

∣
∣
∣ ≤ 2

3πn−1 [21, p. 303]. �
For any x ∈ [0, 1], we can define the remainder as

T�[f ](x) = f(x) − Q�[f ](x), r ≥ 1. (2.20)
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Theorem 4. If f ∈ C2�+1[0, 1], the following identity holds:

T�[f ](x) =
∫ 1

0

f (2�+1)(t)G�(x, t) dt (2.21)

with G�(x, t) defined in (2.10).

Proof. From definition, T
(2�+1)
� [f ](x) = f (2�+1)(x). By integrating in [x, 1],

we get

T
(2�)
� [f ](x) = f (2�)(x) − f (2�)(1) = −

∫ 1

x

f (2�+1)(t) dt =

∫ 1

0

G0(x, t)f (2�+1)(t) dt,

with G0(x, t) defined as in (2.9).
For the second derivative of T

(2�−2)
� [f ](x), we have

(
T

(2�−2)
�

)′′
[f ](x) = T

(2�)
� [f ](x) =

∫ 1

0

G0(x, t)f (2�+1)(t) dt.

Moreover, from (2.17) and (2.20),

T
(2�−2)
� [f ](1) =

[(
T

(2�−2)
�

)′
[f ](x)
]

x=0

= 0;

hence

T
(2�−2)
� [f ](x) =

∫ 1

0

g1 (x, s)

∫ 1

0

G0(s, t)f
(2�+1)(t) dt ds

=

∫ 1

0

(∫ 1

0

g1 (x, s)G0(s, t) ds

)

f (2�+1)(t) dt =

∫ 1

0

G1(x, t) f (2�+1)(t) dt.

By repeating s times the same procedure, we get (2.21). �

Theorem 5. (Cauchy representation) If f ∈ C2�+1[0, 1], there exists ξ ∈
(0, 1), such that

T�[f ](x) = f (2�+1)(ξ)
∫ 1

0

G�(x, t) dt.

Proof. The result follows from the mean value theorem for integrals, since
f ∈ C2�+1[0, 1], and Remark 2. �

We can derive a different representation of the remainder.

Theorem 6. (Peano’s representation of the remainder) [11] If f ∈ C2�+1[0, 1],
the following identity holds

T�[f ](x) =
∫ 1

0

K�(x, t)f (2�+1)(t) dt, (2.22)

where

K�(x, t) =
1

(2�)!
[
(x − t)2�

+ − Q�[(x − t)2�
+ ](x)
]

(·)+ being the known truncated power function [18].
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Corollary 2. [11] For the Peano kernel K�(x, t), we get

K�(x, t) =
(x − t)2�

+

(2�)!
−

�∑

i=0

(1 − t)2(�−i)

(2(� − i))!(2i)!
Si(x), r ≥ 1; (2.23)

that is

K�(x, t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−
�−1∑

i=0

t2(�−i)−1

(2(� − i) − 1)!(2i + 2)!
S ′

i+1(1 − x), t ≤ x

−
�∑

i=0

(1 − t)2(�−i)

(2(� − i))!(2i)!
Si(x), t > x.

(2.24)

Proposition 4. For any � ≥ 1, we get

G�(x, t) = K�(x, t).

Proof. The thesis follows from (2.21), (2.22) and the uniqueness of Peano’s
kernel. �

If we set

M� = max
0≤t≤1

∣
∣
∣f (2�+1)(t)

∣
∣
∣ ,

the following theorems provide bounds for the remainder and its derivatives.

Theorem 7. With the previous hypotheses and notations, the following bound
holds:

|T�[f ](x)| ≤ M�

∫ 1

0

|G� (x, t)| dt ≤ 1
2�

M�.

Proof. The thesis follows from Cauchy representation and Proposition 2. �

Theorem 8. With the previous hypothesys and notations, the following bounds
hold:

∣
∣
∣T

(2i)
� [f ](x)

∣
∣
∣ ≤ γ�,2i M�, i = 0, . . . , �,

∣
∣
∣T

(2i+1)
� [f ](x)

∣
∣
∣ ≤ γ�,2i+1 M�, i = 0, . . . , � − 1,

where γ�,2i =
1

2�−i
, γ�,2i+1 =

1
2�−i+1

. It also holds
∣
∣
∣T

(k)
� [f ](x)

∣
∣
∣ ≤ M�γ�,k, k = 0, . . . , 2� (2.25)

with

γ�,k =
1

2�−ζ
, ζ =

⌊k + 1
2

⌋
. (2.26)

Proof. From Proposition 1 and Theorem 4, for i = 0, . . . , �

∣
∣
∣T

(2i)
� [f ](x)

∣
∣
∣ =
∣
∣
∣
∣

∫ 1

0

G�−i(x, t)f (2�+1)(t) dt

∣
∣
∣
∣ ≤ M�

∫ 1

0

∣
∣G�−i(x, t)

∣
∣ dt,
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and for i = 0, . . . , � − 1
∣
∣
∣T

(2i+1)
� [f ](x)

∣
∣
∣ =
∣
∣
∣
∣

∫ 1

0

∂

∂x
G�−i(x, t)f (2�+1)(t) dt

∣
∣
∣
∣ ≤ M�

∫ 1

0

∣
∣
∣
∣

∂

∂x
G�−i(x, t)

∣
∣
∣
∣ dt.

From the last two inequalities and Proposition 2, we have
∣
∣
∣T

(2i)
� [f ](x)

∣
∣
∣ ≤ M�

1
2�−i

, i = 0, . . . , �, (2.27)
∣
∣
∣T

(2i+1)
� [f ](x)

∣
∣
∣ ≤ M�

1
2�−i+1

, i = 0, . . . , � − 1. (2.28)

Relations (2.27) and (2.28) can be written as (2.25). �

Remark 3. We explicitly note that γ�,0 = 1
2� , γ�,1 = γ�,2 = 1

2�−1 .

From the previous inequalities, the following theorem can be proved.

Theorem 9. Let be f ∈ C∞ [0, 1]. Then, for a fixed k

lim
�→∞

Q
(k)
� [f ](x) = f (k)(x)

absolutely and uniformly in [0, 1], providing that there exists a positive con-
stant λ, with |λ| < 2, and an integer m, such that f (2�+1) = O

(
λ�−ζ+1

)
, for

all � ≥ m and ζ as in (2.26).

Remark 4. We observe that the functions sinx and cos x satisfy Theorem 9.

3. The Second-Type Lidstone–Euler Boundary Value Problem

In this section, we will investigate the existence and uniqueness of the solu-
tion of the second-type Lidstone–Euler BVP (1.1). As we said, to the best of
the authors’ knowledge, the existence and uniqueness of the solution of (1.1)
have not previously been investigated. Similar BVPs with different bound-
ary conditions have been much studied (see, for example, [1] and references
therein).

If f ≡ 0, problem (1.1) has a unique solution y (x) = Qr (x), where
Qr (x) is defined in (2.14).

The following theorem provides sufficient conditions for the existence
and uniqueness of the solution of problem (1.1).

Theorem 10. Suppose that
(i) ks > 0, 0 ≤ s ≤ q, are real given numbers and let M be the maximum

of
∣
∣
∣f (x, y0, . . . , yq)

∣
∣
∣ on the compact set [0, 1] × Ω, where

Ω =
{

(y0, . . . , yq)
∣
∣
∣ |ys| ≤ 2ks, s = 0, . . . , q

}
;

(ii) C2s < k2s, C2s+1 < k2s+1, where C2s and C2s+1 are defined in (2.18)
and (2.19), respectively;

(iii)
M

2r−s
< k2s, s = 0, . . . ,

⌊q

2

⌋
;

M

2r−s−1
< k2s+1, s = 0, . . . ,

⌊q − 1
2

⌋
;
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(iv) the function f satisfies a uniform Lipschitz condition in (y(x), y′(x), . . . ,
y(q)(x)

)
, that is, there exists a nonnegative constant L, such that the in-

equality

∣
∣f (x, y0, . . . , yq) − f

(
x, y0, . . . , yq

)∣
∣ ≤ L

q∑

k=0

∣
∣yk − yk

∣
∣

holds whenever (y0, . . . , yq) and
(
y0, . . . , yq

)
belong to Ω;

(v) (q + 1)DL < 1, where D = max
0≤s≤q

{

max
0≤x,t≤1

∣
∣
∣
∣

∂s

∂xs
Kr(x, t)

∣
∣
∣
∣

}

.

Then, the boundary value problem (1.1) has a unique solution on Ω.

Proof. It is known [16] that problem (1.1) is equivalent to the Fredholm
integral equation

y(x) = Qr[y](x) +
∫ 1

0

Kr(x, t)y(2r+1) (t) dt

= Qr[y](x) +
∫ 1

0

Kr(x, t)f
(
t, y(t), . . . , y(q) (t)

)
, (3.1)

where Qr[y] (x) is the polynomial defined in (2.16) and Kr(x, t) is the Peano
kernel as in (2.24).

We define the operator T : Cq[0, 1] → C2r+1[0, 1] as follows:

T [y](x) := Qr[y](x) +
∫ 1

0

Kr(x, t)f
(
t, y(t), . . . , y(q) (t)

)
dt.

Obviously, any fixed point of T is a solution of the boundary value problem
(1.1).

For all y ∈ Cq[0, 1], we introduce the norm ‖y‖ = max
0≤s≤q

{

max
0≤t≤1

∣
∣
∣y(s)(t)

∣
∣
∣

}

,

so that Cq[0, 1] becomes a Banach space. Moreover, we consider the set

B =
{

y(t) ∈ Cq[0, 1]
∣
∣
∣ max

0≤t≤1

∣
∣
∣y(s)(t)

∣
∣
∣ ≤ 2ks, s = 0, . . . , q

}

.

The operator T maps B into itself. To show this, let y(x) ∈ B. Then

(
T [y]
)(2s)(x) = Q(2s)

r [y](x) +
∫ 1

0

∂2s

∂x2s

∣
∣
∣Kr(x, t)

∣
∣
∣f
(
t, y(t), . . . , y(q) (t)

)
dt.

From hypotheses (i) and (iii), and Propositions 1, 2, and 4 , we have that
TB ⊆ B. In fact

∣
∣
∣
(
T [y]
)(2s)(x)

∣
∣
∣ ≤ C2s + M

∫ 1

0

∣
∣
∣Kr−s(x, t)

∣
∣
∣dt

≤ k2s +
M

2r−s
< 2k2s, s = 0, . . . ,

⌊q

2

⌋
, (3.2)



MJOM Lidstone–Euler Second-Type Boundary Value Problems Page 11 of 24   180 

and
∣
∣
∣
(
T [y]
)(2s+1)(x)

∣
∣
∣ ≤ C2s+1 + M

∫ 1

0

∣
∣
∣
∣

∂

∂x
Kr−s(x, t)

∣
∣
∣
∣ dt

≤ k2s+1 +
M

2r−s−1
< 2k2s+1, s = 0, . . . ,

⌊q − 1
2

⌋
.

(3.3)

From inequalities (3.2)–(3.3), we get that the sets
{(

T [y]
)(s)(x)

∣
∣
∣y(x) ∈

B} are uniformly bounded and equicontinuous in [0, 1], for all 0 ≤ s ≤ q.
From the Ascoli–Arzela theorem, this implies that TB is compact. Hence,
from the Shauder fixed point theorem, there exists a fixed point of T in Ω.

Now, we will prove the uniqueness. Suppose that there exist two distinct
solutions y(x), z(x) of problem (1.1). It results

y(s) (x) − z(s) (x)

=
∫ 1

0

∂s

∂xs
Kr(x, t)

[
f
(
t, y (t) , y′ (t) , . . . , y(q) (t)

)

−f
(
t, z (t) , z′ (t) , . . . , z(q) (t)

)]
dt,

s = 0, . . . , q. Hence

∣
∣
∣y(s) (x) − z(s) (x)

∣
∣
∣ ≤ max

0≤s≤q

{

max
0≤x,t≤1

∣
∣
∣
∣

∂s

∂xs
Kr(x, t)

∣
∣
∣
∣

}

L

q∑

i=0

∫ 1

0

∣
∣
∣y(i) (t) − z(i) (t)

∣
∣
∣ dt

≤ D L

q∑

i=0

∫ 1

0

max
0≤i≤q

{

max
0≤t≤1

∣
∣
∣y(i) (t) − z(i) (t)

∣
∣
∣

}

dt,

so that

‖y − z‖ ≤ (q + 1)D L ‖y − z‖ .

From hypothesis (v), the uniqueness of the solution follows. �

4. Computational Aspects

For the numerical solution of high odd-order boundary value problems, many
approaches have been proposed such as: spline interpolation [9,30], non-
polynomial spline techniques [29], Galerkin methods [17], variational iterative
techniques [31,33], and modified decomposition method [35]. In the following,
we present two numerical approaches: Bernstein extrapolation and colloca-
tion methods.

4.1. Bernstein Extrapolation Methods

The first numerical approach for the numerical solution of the BVP (1.1) is
based on extrapolated Bernstein polynomials [5].
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We recall that, given a real function g (x) defined in [0, 1], the n − th
Bernstein polynomial for g is given by

Bn [g] (x) =
n∑

k=0

bn,k (x) g

(
k

n

)

, bn,k (x) =
(

k

n

)

xk (1 − x)n−k
.

Then, it is known the following

Theorem 11. [18] Let g be a bounded real function in I = [0, 1]. Then

lim
n→∞ Bn [g] (x) = g (x) ,

at any point x ∈ I at which g is continuous, and, if we pose Rn [g] (x) =
Bn [g] (x) − g(x),

∣
∣
∣Rn [g] (x)

∣
∣
∣ ≤ 5

4
ω
(
g;n− 1

2

)
,

where ω is the modulus of continuity of g on I. If g ∈ C(I), the convergence
is uniform in I.

Moreover, if g is twice differentiable in I, then

lim
n→∞ n

[
g(x) − Bn [g] (x)

]
=

x(1 − x)
2

g′′(x).

Theorem 12. [5] If g ∈ C2s(I), s ≥ 1, then the Bernestein polynomial for g
has the following asymptotic expansion:

Bn[g](x) = g(x) +
s∑

i=1

hiSi[g] (x) + hs+1Eh[g](x),

where h =
1
n

, the functions Si[g] (x), i = 0, . . . , s, do not depend on h and

Eh[g](x) → 0 for h → 0.

From Theorems 11 and 12, we can prove the following theorem.

Theorem 13. Let y(x) be the solution of problem (1.1). Then

y (x) = Qr [y] (x) +
n∑

k=0

pn,k(x)f
(
xk, y(xk), . . . , y(q)(xk)

)
+ Rn [y] (x) ,

where xk =
k

n

pn,k (x) =
∫ 1

0

Kr(x, t)bn,k (t) dt, k = 0, . . . , n,

∣
∣
∣Rn [y] (x)

∣
∣
∣ ≤ 5

2r+2
ω
(
y(2r+1);n− 1

2

)
. (4.1)

Moreover, if y ∈ C2r+3(I), then
∣
∣
∣Rn [y] (x)

∣
∣
∣ ≤ 1

2r+3 n
max
0≤x≤1

∣
∣
∣y(2r+3) (x)

∣
∣
∣,

and the convergence is uniform.
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Proof. If y(x) is the solution of problem (1.1), we get relation (3.1). The
thesis follows after easy calculations from Theorem 12 if g ≡ y(2r+1). �

The proposed method for the numerical solution of problem (1.1) is
based on the results of the previous theorems.

∀n ∈ IN, let us set

φn (x) = Qr [y] (x) +
n∑

i=0

pn,i(x)f
(
xi, y(xi), . . . , y(q)(xi)

)
, xi =

i

n
.

(4.2)

Corollary 3. For the solution y(x) of problem (1.1), we get

lim
n→∞ φn (x) = y(x),

uniformly in x ∈ I. Moreover
∥
∥y − φn

∥
∥ =
∥
∥Rn[y]

∥
∥ ≤ 5

2r+2
ω
(
y(2r+1);n− 1

2

)
. (4.3)

We call φn (x) the approximating solution of first order, and the error
is bounded by (4.3).

To have approximating functions of higher order, we use the following
asymptotic expansion.

Theorem 14. Let n,m be two positive integers and h =
1
n

. Moreover, let

y(x) ∈ C2(r+m+1)(I) be the solution of problem (1.1). Then

y(x) = φn (x) +
m∑

i=0

hiSi [y] (x) + hm+1Eh [y] (x) , (4.4)

where the functions Si [y] (x) do not depend on h, and Eh [y] (x) → 0 for
h → 0.

Proof. The proof follows after easy calculations by applying Theorem 12 at
relation (3.1). �

The expansion (4.4) in Theorem 14 suggests to apply the extrapolation
procedure [5,32] described in the following Theorem.

Theorem 15. Let y ∈ C2(r+m)[0, 1], with m a fixed positive integer. Let {nk}k

be an increasing sequence of positive integers and hk = n−1
k . We define a

sequence of polynomials of degree ni+k as follows:
⎧
⎪⎨

⎪⎩

T
(i)
0 := T

(i)
0 [y](x) = φni

(x), i = 0, . . . , m,

T
(i)
k := T

(i)
k [y](x) =

hi+kT
(i)
k−1 − hiT

(i+1)
k−1

hi+k − hi
,

k = 1, . . . , m − 1,
i = 0, . . . , m − k.

Then, for i = 0, . . . , m − k

lim
hi→0

T
(i)
k = y(x), k = 1, 2, . . . ,m − 1.
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Moreover, the following representations of the error and of T
(i)
k hold:

T
(i)
k − y(x) = (−1)khi hi+1 · · · hk

(
Sk+1[y](x) + O (hi)

)
,

T
(i)
k [y](x) =

k∑

j=0

lj (0) ynj
(x), lj (h) =

k∏

i=0,i �=j

hi − h

hi − hj
.

From Theorem 15, for any z ∈ [0, 1], y(z) is approximated by T
(0)
m [y](z),

nm being the last element of the considered numerical sequence {ni}i.

5. Algorithm for Practical Calculations

To calculate the first-order approximation φn(x) by formula (4.2), we need
the values y

(s)
i ≈ y(s) (xi), s = 0, . . . , q, i = 0, . . . , n, with s �= 2j + 1, j =

0, . . . ,
⌊

q−1
2

⌋
, when i = 0 and s �= 2j, j = 0, . . . ,

⌊
q
2

⌋
, when i = n.

To this aim, we consider the algebraic system of dimension n(q + 1)

y
(s)
i = Q(s)

r [y] (xi) +
n∑

k=0

p
(s)
n,k (xi) f

(
xk, yk, y′

k. . . . , y
(q)
k

)
,

i = 0, . . . , n,
s = 0, . . . , q,

(5.1)

and y
(2j+1)
0 = y(2j+1)(0) = αj , j = 0, . . . ,

⌊
q−1
2

⌋
, y

(2j)
n = y(2j)(1) = βj ,

j = 0, . . . ,
⌊

q
2

⌋
.

Let us put Y q
n = (Y 0, . . . , Y q)T , with Y 2j =

(
y
(2j)
0 , . . . , y

(2j)
n−1

)
, j =

0, . . . ,
⌊

q
2

⌋
, Y 2j+1 =

(
y
(2j+1)
1 , . . . , y(2j+1)

n

)
, j = 0, . . . ,

⌊
q−1
2

⌋

Aq
n =

⎛

⎜
⎜
⎜
⎜
⎝

A0 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 Aq

⎞

⎟
⎟
⎟
⎟
⎠

,

with Aj ∈ IRn×(n+1)

A2j =

⎛

⎜
⎜
⎝

p
(2j)
n,0 (x0) · · · p

(2j)
n,n (x0)

...
...

p
(2j)
n,0 (xn−1) · · · p

(2j)
n,n (xn−1)

⎞

⎟
⎟
⎠ , j = 0, . . . ,

⌊q

2

⌋
,

A2j+1 =

⎛

⎜
⎜
⎝

p
(2j+1)
n,0 (x1) · · · p

(2j+1)
n,n (x1)

...
...

p
(2j+1)
n,0 (xn) · · · p

(2j+1)
n,n (xn)

⎞

⎟
⎟
⎠ , j = 0, . . . ,

⌊q − 1
2

⌋
.

Moreover

FY q
n

= (Fn, . . . , Fn
︸ ︷︷ ︸

q+1

)T ,
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with

Fn = (f0, . . . , fn)T
, fk = f

(
xk, yk, y′

k. . . . , y
(q)
k

)
, k = 0, . . . , n

and

Cq
n = (C0, . . . , Cq)

T
,

with

C2j =
(
Q

(2j)
r [y](x0), . . . , Q

(2j)
r [y](xn−1)

)
, j = 0, . . . ,

⌊
q
2

⌋
,

C2j+1 =
(
Q

(2j+1)
r [y](x1), . . . , Q

(2j+1)
r [y](xn)

)
, j = 0, . . . ,

⌊
q−1
2

⌋
.

Thus, system (5.1) can be written in the form

Y q
n − Aq

nFY q
n

= Cq
n,

or

Y q
n = G (Y q

n ) , with G (Y q
n ) = AFY q

n
+ Cq

n. (5.2)

Proposition 5. For the matrix Aq
n, the following relation holds:

‖Aq
n‖∞ = O(1), n → ∞.

Proof. ‖Aq
n‖∞ = max0≤s≤q ‖As‖∞. Since all Bernstein basis functions bn,k(t)

of the same order have the same definite integral over the interval [0, 1], that
is
∫ 1
0

bn,k(t)dt = 1
n+1 , we have that

• if s = 2j, j = 0, . . . ,
⌊

q
2

⌋
, then

∣
∣
∣p

(2j)
n,k (xi−1)

∣
∣
∣ ≤
∫ 1

0

∣
∣
∣
∣

∂2j

∂x2j
Kr(x, t)

∣
∣
∣
∣
x=xi−1

bn,k(t)dt

=

∫ 1

0

|Kr−j(xi−1, t)| bn,k(t)dt ≤ 1

n + 1

∣
∣Kr−j(xi−1, t)

∣
∣ , t ∈ (0, 1);

hence

‖As‖∞ = max
0≤i≤n

n∑

k=0

|p(2j)
n,k (xi−1) | ≤ 1

n + 1

n∑

k=0

max
0≤i≤n

∣
∣Kr−j(xi−1, t)

∣
∣

= max
0≤i≤n

∣
∣Kr−j(xi−1, t)

∣
∣ ;

• if s = 2j + 1, j = 0, . . . ,
⌊

q−1
2

⌋
, then

∣
∣
∣p

(2j+1)
n,k (xi)

∣
∣
∣ ≤
∫ 1

0

∣
∣
∣
∣
∣

∂2j+1

∂x2j+1
Kr(x, t)

∣
∣
∣
∣
∣
x=xi−1

bn,k(t)dt

=

∫ 1

0

∣
∣
∣
∣

∂

∂x
Kr−j(x, t)

∣
∣
∣
∣
x=xi−1

bn,k(t)dt ≤ 1

n + 1

∣
∣
∣
∣

∂

∂x
Kr−j(xi, t̃)

∣
∣
∣
∣ , t̃ ∈ (0, 1);

hence

‖As‖∞ = max
0≤i≤n

n∑

k=0

|p(2j+1)
n,k (xi) | ≤ 1

n + 1

n∑

k=0

max
0≤i≤n

∣
∣
∣
∣

∂

∂x
Kr−j(xi, t̃)

∣
∣
∣
∣

= max
0≤i≤n

∣
∣
∣
∣

∂

∂x
Kr−j(xi, t̃)

∣
∣
∣
∣ .
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From definition of Kl(x, t), there exist M1,M2 ∈ IR, such that |Kl(x, t)| ≤ M1

and
∣
∣
∣
∣

∂

∂x
Kl(x, t)

∣
∣
∣
∣ ≤ M2, l ≥ 0, for all 0 ≤ x, t ≤ 1. From this, the result

follows. �

Lemma 1. With the previous notations and hypothesis, system (5.2) has a
unique solution if T = L ‖A‖∞ < 1. The solution can be calculated by the
iterations

(Y q
n )j+1 = G

(
(Y q

n )j

)
, j = 0, . . . , N,

with a fixed (Yn)0 ∈ IRn(q+1). Moreover, at the jth iteration, the error is
∥
∥
∥(Y q

n )j+1 − Y q
n

∥
∥
∥

∞
≤ T j

1 − T
‖(Y q

n )1 − (Y q
n )0‖∞ .

Proof. The proof follows by standard technique by applying the well-known
contraction principle and Proposition 5. �

The previous Lemma allows us to consider the first-order approximating
function

φn (x) = Qr [y] (x) +
n∑

k=0

pn,k (x) f
(
xk, yk, y′

k. . . . , y
(q)
k

)
. (5.3)

Proposition 6. Let y(x) be the solution of problem (1.1) and φn (x) the first-
order approximation. Then

‖y − φn‖ = o(1),

if LZ < 1, where Z = (q + 1)D with D as in Theorem 10.

Proof. For all j = 0, . . . , q and for all x ∈ [0, 1], from (4.2), we get

φ(j)
n (x) = Q(j)

r [y] (x) +
n∑

k=0

p
(j)
n,k (x) f

(
xk, y(xk), y′(xk). . . . , y(xk)(q)

)
,

(5.4)

and by differentiating the (5.3)

φ
(j)

n (x) = Q(j)
r [y] (x) +

n∑

k=0

p
(j)
n,k (x) f

(
xk, yk, y′

k. . . . , y
(q)
k

)
. (5.5)

�

From (5.4), (5.5) and (4.1), we obtain

φ
(j)
n (x) − φ

(j)
n (x) =

n∑

k=0

[
f
(
xk, y(xk), y

′(xk). . . . , y
(q)(xk)

)
− f
(
xk, yk, y′

k. . . . , y
(q)
k

)]

×
∫ 1

0

∂j

∂xj
Kr(x, t)bn,k(t)dt.
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Hence, from the Lipschitz property of f

∣
∣
∣φ

(j)
n (x) − φ

(j)

n (x)
∣
∣
∣ ≤

n∑

k=0

(

L

q∑

i=0

∣
∣
∣y

(i)(xk) − y
(i)
k

∣
∣
∣

)

max
0≤x,t≤1

∣
∣
∣

∂j

∂xj
Kr(x, t)

∣
∣
∣

1

n + 1

≤ L max
0≤i≤q

{

max
0≤k≤q

∣
∣y(i)(xk) − y

(i)
k

∣
∣

}

(q + 1) max
0≤x,t≤1

∣
∣
∣

∂j

∂xj
Kr(x, t)

∣
∣
∣

≤ L max
0≤i≤q

{

max
0≤x≤1

∣
∣y(i)(x) − φ

(i)

n (x)
∣
∣

}

(q + 1) max
0≤j≤q

{

max
0≤x,t≤1

∣
∣
∣

∂j

∂xj
Kr(x, t)

∣
∣
∣

}

= LZ
∥
∥y − φn

∥
∥ .

Finally, the last inequality yields
∥
∥y − φn

∥
∥ ≤ ‖y − φn‖ +

∥
∥φn − φn

∥
∥ ≤ ‖y − φn‖ + LZ

∥
∥y − φn

∥
∥ ;

hence, the thesis follows, according to Corollary 3. �

The Bernstein extrapolation method for BVP (1.1) can be summarized
as follows:

1. Data input: problem (1.1);
2. for a fixed n ∈ IN, solve the algebraic system (5.1);
3. for a fixed m ∈ IN, choose a sequence ni, i = 0, . . . , m and calculate

φni
(x);

4. for k = 1, . . . , m − 1, i = 0, . . . , m − k, calculate T
(i)
k .

5.1. Collocation-Birkhoff–Lagrange Approach

The collocation-Birkhoff–Lagrange approach to BVPs has been proposed in
[16]. Here, we use this approach as comparisons with the method described
above.

Let y(x) be the solution of problem (1.1). For any n ∈ IN, if y(x) ∈
C2r+n+2[0, 1], we can approximate y(2r+1) (x) in x ∈ [0, 1] by the well-known
Lagrange interpolation polynomial

y(2r+1)(x) = Ln [y] (x) + Rn [y] (x) , (5.6)

where

Ln [y] (x) =

n∑

i=0

li(x)y
(2r+1) (xi) , Rn [y] (x) =

1

(n + 1)!
ωn(x)y

(2r+n+2) (ξx) ,

li (x) being the fundamental Lagrange polynomials and ωn(x) =
∏n

i=0(x−xi),
with xi, for i = 0 . . . , n, n + 1 distinct points in [0, 1] and ξx a point in the
smallest interval containing x and all xi, i = 0, . . . , n.

Then, by substituting (5.6) in (3.1), we have

y(x) = Qr [y] (x) +
n∑

i=0

qn,i(x)f
(
xi, y(xi), y′(xi), . . . , y(q)(xi)

)
+ Tr,n[y](x),

(5.7)

where

qn,i(x) =
∫ 1

0

Kr(x, t)li(t) dt, i = 0, . . . , n,
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and the remainder term Tr,n[y](y, x) is given by

Tr,n[y](x) =
1

(n + 1)!

∫ 1

0

Kr(x, t)ωn(t)y(2r+n+2) (ξt) dt.

Relation (5.7) suggests to consider the implicitly defined polynomial

yn(x) = Qr [y] (x) +
n∑

i=0

qn,i(x)f
(
xi, yn(xi), y′

n(xi), . . . , y(q)
n (xi)

)
. (5.8)

Theorem 16. [16] The polynomial yn(x) of degree 2r + n + 1 defined in (5.8)
is a collocation polynomial for (1.1) at nodes xi.

An algorithm for practical calculation is similar to that used in [16].

6. Numerical Examples

As we said, there are no specific methods for the numerical solution of prob-
lem (1.1). Neither specific numerical examples we have found in the literature,
to compare the numerical results. Anyhow, in the following, we report some
problems to validate the theoretical results previously given. Since the ana-
lytical solutions of the considered examples are known, we compute the true
errors ∀x ∈ I fixed

eB,n(x) =
∣
∣y(x) − φn(x)

∣
∣ , EB,m(x) =

∣
∣
∣y(x) − T

(0)
m [y](x)

∣
∣
∣ , eL,n(x) = |y(x) − yn(x)| .

Example 1. Consider the following problem:
⎧
⎨

⎩

y′′′(x) + 2e−3y(x) = 4(1 + x)−3, x ∈ [0, 1]
y (1) = log 2, y′(0) = 1,
y′′(1) = − 1

4 .
(6.1)

The analytical solution is y (x) = log(1 + x).
The first approximating polynomials φn(x) are

φ2(x) = 0.10803 + x − 0.70961x2 + 0.42560x3 − 0.15413x4 + 0.023259x5

φ3(x) = 0.06454 + x − 0.62952x2 + 0.39201x3 − 0.17309x4 + 0.04420x5 − 0.00500x6

φ4(x) = 0.04531 + x − 0.59258x2 + 0.37570x3 − 0.18558x4 + 0.06144x5 − 0.01226x6

+ 0.00112x7

φ5(x) = 0.03473 + x − 0.57175x2 + 0.36631x3 − 0.19457x4 + 0.07557x5 − 0.02022x6

+ 0.00333x7 − 0.00025x8

φ6(x) = 0.02808 + x − 0.55847x2 + 0.36027x3 − 0.20137x4 + 0.08726x5 − 0.02815x6

+ 0.00636x7 − 0.00089x8 + 0.00006x9.

Figure 1 shows the graphs of the error functions eB,nk
(x) with nk = 4 + 2k,

k = 0, . . . , 3 (Fig. 1a) and the graph of EB,3(x) (Fig. 1b). Figure 1a shows
the low convergence of the approximating polynomial sequence

{
φn

}
.

The absolute errors in x = 1
2 using extrapolation for different sequences

nk, k = 0, . . . , m, are displayed in Table 1.
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(a) (b)

Figure 1. Error functions for nk = 4 + 2k, k = 0, . . . , 3—
Problem (6.1)

Figure 2 shows the graphs of the error functions eL,n(x) in the case of
collocation on equidistant nodes, for several values of the degree n of the
approximating polynomials.

Table 2 lists the comparison between the approximation by extrapolated
Bernstein polynomials (using one of the sequences considered in Table 1) and
collocation-Birkhoff–Lagrange polynomials of degree 10 and 12, respectively.

Example 2. Consider the following problem:
⎧
⎪⎨

⎪⎩

y(v)(x) = y2(x)e−x, x ∈ [0, 1]
y (1) = y′′(1) = y(iv)(1) = e,

y′(0) = y′′′(0) = 1.

(6.2)

The analytical solution is y (x) = ex.
Figure 3 shows the graphs of the error functions eB,nk

(x) with nk =
2 + 2k, k = 0, . . . , 3 (Fig. 3a) and the graph of EB,2(x) (Fig. 3b).

The errors in x = 1
2 using extrapolation for different sequences nk are

displayed in Table 3.
Figure 4 shows the graphs of the error functions eL,n(x) in the case of

collocation on equidistant nodes, for several values of the degree n of the
approximating polynomials.

Table 1. Extrapolation error in x = 1
2—Problem (6.1)

nk m EB,m

(
1
2

)

2k+2 2 2.2214e−05
3 1.1868e−05

4 + 2k 5 1.9840e−07
6 1.8918e−09

10 + 5k 2 4.3119e−06
3 6.6589e−07

2, 3, 4, 6, 8 4 1.3789e−05
2, 3, 4, 6, 8, 12 5 3.4022e−06
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Figure 2. Error functions eL,n(x), Problem (6.1)

(a) (b)

Figure 3. Error functions for nk = 2 + 2k, k = 0, . . . , 3—
Problem (6.2)

Table 4 lists the comparison between the approximation by extrapolated
Bernstein polynomials and collocation-Birkhoff–Lagrange polynomials.

7. Conclusions

In this paper, we considered general nonlinear high odd-order differential
equations with Lidstone–Euler boundary conditions of second type. First,
we studied the associated interpolation problem and we obtained new prop-
erties, such as the integral Cauchy and Peano representation of the error,
bounds for the error, and its derivatives, and we deducted the interesting
convergence properties of the interpolatory polynomial sequences. Then, we

Table 2. Comparison between extrapolated Bernstein poly-
nomials and collocation-Birkhoff–Lagrange polynomials—
Problem (6.1)

||EB,m|| ||eL,n||
nk = 4 + 2k
m = 5 m = 6 n = 10 n = 12

2.9285e−07 7.2597e−09 7.9449e−08 7.035e−09
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Table 3. Extrapolation error in x = 1
2—Problem (6.2)

nk m EB,m

(
1
2

)

4 + k 3 3.5572e−08
5 9.5277e−12

4 + 2k 3 1.4912e−08
4 4.6073e−10

2 + 2k 4 2.7929e−09
5 5.7065e−12

2, 3, 4, 6, 8 4 9.4358e−09
2, 3, 4, 6, 8, 12 5 4.3322e−11

Figure 4. Error functions eL,n(x), Problem (6.2)

Table 4. Comparison between extrapolated Bernstein poly-
nomials and collocation-Birkhoff–Lagrange polynomials—
Problem (6.2)

||EB,m|| ||eL,n||
nk = 2 + 2k
m = 4 m = 5 n = 7 n = 9

3.9448e−09 9.9367e−12 6.6291e−11 2.2598e−11

considered the associated Lidstone–Euler second-type boundary value prob-
lem, from both a theoretical and a computational point of view. Particularly,
we gave a theorem of existence and uniqueness of the solution of the prob-
lem and we proposed two different numerical approaches for the approximate
solution: one of them is based on extrapolated Bernstein polynomials, the
other one on Lagrange interpolation and collocation principle. We note the
convergence properties of the Bernstein extrapolation method and, in some
cases, a greater computational accuracy of the Lagrange-collocation meth-
ods. From the numerical examples, we can observe that the order of the error
is similar with the two different methods. Further developments are possible
and desirable as well theoretical as well computational.
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