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Abstract

The estimation of the fatigue resistance of cellular structures is fundamental in

many applications. The maximum stresses in a material determine the fatigue

resistance of the component. In this work, a numerical method is proposed

for the estimation of the Stress Concentration Factors (SCF) at the cell wall

junctions of 2D cellular structures based on square unit cells. The aim is to

obtain a model capable of calculating the values of the SCF as a function of

the unit cell geometrical parameters, namely the cell‐wall thickness t0 and

the fillet radius R at the joints. This was achieved by applying the Finite

Elements (FE) method to the unit cell for wide intervals of t0 and R to calculate

the SCF for each couple of the parameters. The values of the SCFs were then

fitted with some functions.
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1 | INTRODUCTION

The advent of Additive Manufacturing gave a considerable boost to the study of cellular materials because the new 3D
printing processes, such as Selective Laser Melting (SLM), permit to obtain products with dimensional accuracy less
than 0.2 millimeters, giving the possibility of fabricating, in minute details, components made of complex lattice struc-
tures. These premises highlight the importance of studying filleted joints in cellular materials as they can be introduced
into the design phase to reduce stress concentrations.1 Indeed, tensile fatigue tests show that fatigue cracks in SLM
lattices occur at the joints,2 indicating that the shape of the joints is critical in determining the fatigue behavior of this
type of structures.3 In fact, the positive effect of filleted joints on the fatigue resistance of cellular structures was shown
by Abad et al.1 On the other hand, fillets at junctions can be unwanted, but generated due to the accumulation of
parasitic mass at the strut joints in some AM processes such as SLM.4

In this work, a numerical method is proposed to estimate the SCFs at the cell wall junctions of 2D regular square cell
cellular structures. This type of lattice can be viewed as an infinite plate with a regular distribution of square holes with
rounded edges. In the literature there are several studies concerning the stress distribution around holes of various
geometries in infinite plates. Nevertheless, to the best of our knowledge, there are no solutions available to compute
the stress distribution in plates with a regular distribution of square holes with rounded corners. Indeed, the closed form
solutions provided refer to a single hole,5,6 double holes7 or, at most, an infinite array8 in an infinite plate. Such cases,
despite being close to the problem examined in our work, clearly do not capture accurately the stress distribution at the
filleted junctions of the cellular lattice. Moreover, due to the complexity of the analytical approaches (generally based on
the complex‐variable method), the analytical solutions are often limited to the uniaxial tension case. Therefore, the aim
is to obtain a model capable of calculating the values of the SCFs as a function of the unit cell geometrical parameters,
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namely the cell‐wall thickness t0 and the fillet radius R at the joints, for any in‐plane load case. This was achieved

by applying the FE method to the unit cell for wide intervals of t0 and R normalized by the unit cell size L, t*0 ¼
t0
L

and R* ¼ R
L
, to calculate the SCF for each couple of the parameters. The values of the SCF were then fitted with some

functions. This work is an effort to provide a useful semi‐analytical instrument that allows the designer to estimate the
maximum stress in a structure by avoiding lengthily numerical simulations. This model has similar basis to that of
Dallago et al.,9 which is aimed at predicting the elastic constants of the same type of lattices. Indeed, the present model
can be coupled with the model for the elastic constants to identify the geometrical parameters of a 2D lattice that min-
imize the stress concentrations while controlling the values assumed by the elastic constants. This can be very useful in
the design of load bearing biomedical lattices, where the value of the elastic modulus is of paramount importance to
improve biocompatibility.10 Moreover, our model can be the starting base also for the study of 3D lattices.
1.1 | Model development

The effect of the filleted cell‐wall junctions of square cell lattices (Figure 1a) on the local stress field is represented by the
equivalent stress concentration factor Keq. This factor is defined in Equation (1) as the ratio between the maximum
equivalent stress σ at the fillet (as indicated in Figure 1c) and the equivalent stress calculated from the nominal stress
components acting on the unit cell σn (as indicated in Figure 1b). The equivalent stresses are calculated form the stress
components according to the von Mises criterion because it is one of the most used for ductile metals,11 but in principle
any other criterion could be used. Regarding fatigue design, using the geometrical stress concentration factor instead of
the fatigue notch factor is conservative as it intrinsically assumes a notch sensitivity of 1 and, moreover, it decouples this
analysis from the material properties.

Keq ¼ σ
σn

(1)

The definition of Equation (1) is based on the observation that lattice structures can be considered continuous
homogenous materials if the unit cell is infinitesimally small if compared to the size of the lattice. Consequently, the
stress tensor in a point of the lattice material can be applied to the unit cell as the nominal stresses shown in Figure 1b.
In real applications, the unit cell has finite dimensions and the larger the unit cell compared to the macroscopic part,
the less accurate becomes this procedure.

The maximum local stress components on the fillet are related to the nominal stress components by a stress concen-
tration factors matrix K (Equation (2)).
FIGURE 1 Regular 2D square unit cell cellular material with filleted junctions: (a) unit cell geometry; (b) nominal plane stress

components acting on the unit cell sides; (c) infinitesimal square element in the 1–2 reference system defining the local stresses at the

fillet. The 1–2 cartesian reference system indicates the material principal directions.
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If the nominal stress components are divided by the nominal equivalent stress σn, and thus the R1 ¼ σ1;n
σn

, R2 ¼ σ2;n
σn

and R12 ¼ τ12;n
σn

ratios are defined, Equation (2) can be rewritten explicitly as a function of these non‐dimensional ratios:

σ1 ¼ K1;1R1 þ K1;2R2 þ K1;12R12
� �

σn ¼ C1σn (3a)

σ2 ¼ K2;1R1 þ K2;2R2 þ K2;12R12
� �

σn ¼ C2σn (3b)

τ12 ¼ K12;1R1 þ K12;2R2 þ K12;12R12
� �

σn ¼ C12σn (3c)

Substituting Equations (3) into the definition of von Mises equivalent stress in plane stress and then into Equation (1)
leads to the expression that relates the equivalent stress concentration factor Keq to the components of the K matrix and
the nominal stresses on the unit cell.

Keq ¼ σ
σn

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�σ2nC

2
1 þ �σ2nC

2
2 − �σ2nC1C2 þ 3�σ2nC

2
12

q
σn

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
1 þ C2

2 − C1C2 þ 3C2
12

q
(4)

The components of K depend exclusively on the geometrical parameters of the junction (t0 and R) and can be easily
calculated with FE simulations. If the components of K are calculated for wide intervals of the geometrical parameters
and are then fitted with appropriate functions of t0 and R to be substituted into Equations (4), the desired expression for
Keq is obtained. Such equation will be only function of the geometry and the nominal loads on the unit cell.

1.1. Finite element model and calculation of the components of K

The nine components of the K matrix were obtained by solving a parametric 2D FE model of the unit cell (Figure 2a)
with the boundary conditions derived from the definition of the stress concentration factors matrix according to Equa-
tion (2) (Figure 2b, 2c, 2d). The cell wall thickness‐to‐length ratio t0=L of the parametric FE model was varied in the

[0.02–0.2] interval, while the fillet radius‐to‐cell wall length ratio R
�
L was varied in the [0.01–0.15] interval, both with

a step of 0.01. The FE model of the unit cells was built in ANSYS® and meshed with 2D 8‐node structural elements with
quadratic displacement behavior (PLANE183) and plane stress formulation. A convergence analysis was carried out on
the mesh and it was deemed acceptable when the deviation of the von Mises equivalent stress with respect to the finest
mesh was below 0.5%.

Despite the procedure illustrated above seems quite straightforward, there is a considerable issue: the location of
the point on the fillet where the local stresses σ1, σ2, τ12 should be extracted. Considering Equation (1), all the com-
ponents of the K matrix should be calculated in the point in which the highest equivalent local stress is reached. This
unfortunately is not trivial because the position of this point, besides the geometry, depends on the ratio between the
nominal stress components acting on the unit cell, which is not known a‐priori. This issue is solved by extracting the
values of the stresses from the FE model along the fillet radius as a function of an angle α (Figure 3) and then
calculating the components of K for each α. From these data, it was possible to establish that, for each geometry,
the maximum equivalent stress occurs in a point close to A (prevalently monoaxial load along direction 1) or C (prev-
alently monoaxial load along direction 2) or both, in the case of pure shear or biaxial loading in wide fillet radii. On
the other hand, point B is critical in the case of pure shear or biaxial loading for sharp fillets. It is thus clearly impos-
sible to find a single point on the fillet to use as a reference to calculate K before having calculated Keq. Therefore,
the only viable strategy is to calculate the components of K at each of the three points and then retain only those
that correspond to the location of the highest Keq. For practical reasons, locations A, B and C are kept the same



FIGURE 3 Points A, B and C are the locations where the components of the SCF matrix are calculated.

FIGURE 2 (a) Parametric FE model used to calculate the components of the SCF matrix and boundary conditions to calculate the

components of the SCFs matrix: (b) pure traction along direction 1 to calculate the first column of K; (c) pure traction along direction 2 to

calculate the second column of K; (d) pure shear in the 1–2 plane to calculate the third column of K.
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for all the load cases and geometries considered, despite the location of the maximum σ slightly fluctuates depending
on the load ratios and the geometry. The position of A is calculated as to minimize the error between the equivalent
stress concentration factor Keq in the reference points and the actual maximum values, for all the geometries
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considered and the load ratios R1, R2 and R12. The position of A is thus α0 = 6° and, consequently, C is located in
α = 90 ° − α0 = 84°.
1.2 | Fitting procedure

The FE simulations produced the values of each component of the SCF matrix as a function of the geometrical param-
eters for each of the critical A, B and C points. Analytical functions of the type of Equation (5) were subsequently
obtained from these data by determining the coefficients via a fitting procedure, for each component and for each of
the three points. The coefficients of Equation (5) are provided in the Supporting Information file in Section S1 for each
location A, B and C.

Kij;ij ¼ A1 þ B1
R
L

� �C1

þ D1
t0
L

� 	E1

þ F1

Q1
R
L

� �G1 þ R1
t0
L

� �H1
þ I1

R
L

� �L1 t0
L

� 	M1

þ N1e
O1

R
Lð ÞþP1

t0
Lð Þð Þ (5)

Contour plots of Keq for pure traction and pure shear and the total maximum relative error on Keq between the model
and the FE data as a function of t0/L and R/L are shown in Figure S1, S2 and S3 in the Supporting Information (Section
S2), respectively. The maximum error is below 10% in most of the domain, except in the case of sharp fillet radii
and thick cell walls. In the use of such fitting model, the designer should be careful when working with t0=L > 0:15

and R
�
L < 0:02. On the other hand, it must be considered that the maximum error is positive, meaning that the model

overestimates the severity of the fillet. In other words, the model is conservative.
1.3 | Applicative example: Optimization tool

Probably the situation in which analytic functions can be the most useful are optimization problems. Let us consider a
regular square cell lattice of finite size with filleted junctions loaded by a monoaxial distributed load (Figure 4a) and
assume that we are interested in finding the geometrical parameters that minimize the stress concentration at the junc-
tions while satisfying constraints on the elastic constants and on the geometrical parameters. Such problem could be
encountered, for instance, in the design of fatigue resistant load bearing orthopaedic implants: the cellular lattice should
have low stresses and an elastic modulus close to that of the human bone.12 Let us also assume that the lattice principal
directions 1–2 can have an inclination θ to the load direction, as shown in Figure 4a. The elastic constants of regular
square cell lattices with filleted junctions of the same type discussed in this work can be easily calculated using semi‐
analytical functions developed by Dallago et al..9 The models assume plane stress behavior. The lattice is assumed to
be made of a Ti alloy (elastic modulus Em = 110GPa and Poisson's ratio νm = 0.34). The aim is to search the values
of t0/L, R/L and θ that minimize Keq for a specific value E0 of the elastic modulus in the load direction y (Eyy). In this
example, the geometrical parameters can assume any value inside the interval of validity of the semi‐analytical model
FIGURE 4 (a) Optimization problem: cellular lattice of finite size loaded by a monoaxial tension in direction y; (b) optimal geometrical

parameters and Keq as a function of the target stiffness of the structure in the loading direction.



TABLE 1 Comparison between the results of the optimization tool and FE simulations of a lattice of finite size. The error is defined as the

difference between the model results and the FE results divided by the FE results.

Elastic
modulus
[MPa]

Optimal geometry
SCF from
optimization

FE results Error [%]

t0/L R/L α [°] Keq Eyy [MPa] Keq Eyy

3000 0.19 0.144 43 33.9 33.9807 3013.4 0.19 0.34

4500 0.198 0.147 29 28.6 28.17837 4433.8 −1.55 −1.54

8000 0.064 0.141 0 17.4 17.6923 7946.2 1.45 −0.72
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and because of the symmetry of the structure, the angle varies only between 0° and 45°. The multivariable optimization
problem to solve becomes thus the following:

Minimize: Keq ¼ f
t0
L
;
R
L
; σ1; σ2; τ12

� �

Subject to:

Eyy ¼ f
t0
L
;
R
L
; α;Em; νm



¼ E0

0:02 ≤
t0
L
≤ 0:2

0:01 ≤
R
L
≤ 0:15

0° ≤ θ ≤ 45°

8>>>>>>>>><
>>>>>>>>>:

The reader should note that further constraints can be included if appropriate, such as bounds on the relative density
of the structure. The optimization problem was solved for several values of E0 between 2 and 10 GPa and the results are
shown in Figure 4b, where the optimal values of t0/L, R/L and θ are plotted against the elastic modulus. In general, wide
fillets and thick struts reduce the stress concentration at the junctions. Indeed, it is interesting to note that the fillet
radius tends to be always the maximum allowed size, indicating a very strong influence of the fillet on the stresses.
Therefore, to achieve low values of the elastic modulus but retain good fatigue resistance (as required, for instance,
by biomedical lattices12) it is convenient to incline the material principal directions to the load so that bending actions
are introduced into the lattice. On the other hand, if the requested elastic modulus is higher (as in other engineering
applications, such as the automotive or the aeronautic sectors), aligning the load with the material principal directions
seems the best solution to minimize the stresses.

The semi‐analytical models used in this optimization procedures were developed considering one unit cell con-
strained by periodic boundary conditions. Consequently, they provide accurate solutions only if the unit cell is infinites-
imally small compared to the lattice and there are no border effects: clearly, in engineering applications these conditions
are never verified. Nevertheless, these models still provide reasonably accurate solutions for finite size lattices provided
that the cells are small compared to the lattice dimension and far from the boundaries. Indeed, FE simulations were car-
ried out to verify the results shown in Figure 4b for three values of the elastic modulus (3000, 4500 and 8000 MPa). A
square lattice of side 10 times the unit cell length (which was fixed to 5 mm) with geometry determined by the optimal
parameters corresponding to the appropriate elastic modulus was meshed with PLANE183 elements (plane stress behav-
ior) and constrained as shown in Figure 4a. The stress field at a junction the furthest possible form the boundaries was
estimated by transferring the displacement field to a submodel13 with a very fine mesh (Figure 2). The results of the
semi‐analytical model and the FE simulation are very close, with a deviation around 1% (Table 1).
2 | CONCLUSIONS

A model capable of calculating the SCFs at the cell wall junctions of 2D regular square cell lattices with filleted
junctions was obtained by fitting parametric expressions to results of FE simulations. In such way a mathematical
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relationship was found to define an equivalent stress concentration factor that appears to successfully relate the
nominal homogenized loads in the cellular lattice to the local stress components at the filleted junctions. Compared
to the results of FE simulations, the maximum error of such fitting model is below 10% for a wide range of the geomet-
rical parameters. In the authors opinion, this work provides the designer with fast and useful design tools that avoid
time‐FE simulations. Indeed, a practical example demonstrates the potential of this approach in optimization problems.
As future work, the authors aim to develop a similar model for the staggered lattices described by Dallago et al.9 and to
improve the geometry of the junction by introducing variable radius fillets.14
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