
Chapter 6
One Step in-Memory Solution of Inverse
Algebraic Problems

Giacomo Pedretti

6.1 Introduction

Linear algebra problems, such as solving a linear system of equations, are the back-
bone ofmodern scientific computing and data-intensive tasks. Among these,machine
learning is currently the discipline with most effort of study from scientists and engi-
neers, to unleash the full power of computational algorithms with applications to any
aspect of our life. These powerful algorithms, such as linear and logistic regression,
are usually executed in conventional digital hardware by combining sequences of
boolean functions on binary data. Thus, computing complicated operations requires
a large memory and many computing steps. These problems are encoded in matrix
form and executed by iteratively performing matrix-vector multiplications [7, 36],
resulting in a polynomial computational time complexity, for example O(N 3)where
N is the size of the problem. In this chapter, novel analog circuits for the solution of
matrix equations in one step will be presented. Thanks to the in-memory computing
framework, the problem implementation does not require data transfer betweenmem-
ory and processing unit, resulting in unprecedented speed.With nanoscale crosspoint
resistive memories, the novel circuit requires also less area compared to traditional
technology. The results pave the way for the development of memory computing unit
to overcome the limitation of current accelerators.
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6.2 In Memory Computing

Technology scaling has been driven by Moore’s law [21] in the last decades, pre-
dicting that the number of transistors per mm2 of an integrated circuit doubles every
18 months. Figure6.1a depicts in red the exponential growth fitted from real data of
different technology node of the last 25 years and the confirmed prediction from the
future releases [28]. It is already possible to see a deviation from the ideal exponential
scaling, as the some technologies will see the market with significant delay. Moore’s
law is in fact slowing down, due to physical limits of devices scaling and increased
cost manufacturing [28]. It has also been observed [13] that the energy dissipated
by transistors has decreased exponentially with the technology node until the late
80’s. However, by now this energy should have reached the thermal fluctuation kT ,
known as Landauer limit [13], which is impossible with modern Complementary-
Metal-Oxide-Semiconductor (CMOS) technologies. Even future predictions are far
away from the Landauer limit. It is thus evident that new computing technologies
need to be developed to keep the pace with Moore’s Law and reduce the energy
dissipation. Among this, novel memory devices have attracted research interest also
from the computing community [39], in fact they have been demonstrated able of
performing traditional computing tasks such as boolean function [31].

However Moore’s law speed is not enough. Figure6.1a shows a comparison of
Moore’s law (in red) with the performance required for executing state of the art
algorithms (in blue) developed across the last years [3]. It is possible to see that
with an exponential growth of the number of floating point operations per second
(FLOP/s) that doubles every 3.4 months, the required resources scaling outperforms
Moore’s Law. This suggest that not only new materials and devices are needed to
fulfill Moore’s law requirements, but a shift of paradigm in architecture is needed
to outperform traditional computing systems. Figure6.1b shows the conventional

Fig. 6.1 a Comparison between the exponential growth of Moore’s Law (red) and the required
performance for executing modern artificial intelligence (AI) algorithms (blue), b conventional
von-Neumann architecture suffering from a bottleneck when transferring data between memory
and processing unit and c in-memory computing concept
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von-Neumann architecture [22], where the processing unit (blue) is responsible only
for executing operations whereas the memory unit (red) is responsible for storing
them. Most of nowadays computers are based on this architecture, where one or
multiple types of memory store the data with the central processing units (CPU)
or graphic processing units (GPU) performing computation. When a lot of data
need to be analyzed this architecture exposes a bottleneck in computation, known as
von-Neumann bottleneck [19], due to the time and energy spent for handling data
travelling from memory to processor and back. A new computing architecture that
avoids the bottleneck is then desired.

In-memory computing with novel resistive memories [10, 11] has been proposed
as a solution to overcome the limitation of bothMoore’s law speed and vonNeumann
bottleneck. The idea is to harness intrinsic materials properties of such memories to
create new computing paradigms based on physical laws and known as physical
computing [11, 44]. By organizing memories in crosspoint arrays it is possible then
to have a compact accelerator known as memory processing unit (MPU) [44], which
does not require data transfer and can perform computations within the memory.
Figure6.1c shows a conceptual representation of a MPU architecture, with many
memory cores interconnected with each other. The novel computing unit have been
shown to have unprecedented speed up compared with traditional and specific circuit
for acceleration [25].

6.3 In-Memory Matrix-Vector-Multiplication Accelerator

Emergingmemorydevices, commonly referred asmemristors, have recently attracted
interest for their application both as memory and computing elements. Among these,
resistive random access memories (RRAM) are a promising candidate for comput-
ing, due to their low energy operation, high endurance, small area and cost-effective
fabrication [9]. Figure6.2a shows a typical current-voltage characteristic of a RRAM
device which is depicted in the inset and made of a Ti top electrode (TE) deposited
on a HfOx layer and a C bottom electrode (BE) [2]. After a forming process it is
possible to change and modulate the conductance of the device. A positive pulse
applied from the TE to the BE will result in a filament growth from TE to BE, or
set transition, bringing the device into a low resistance state (LRS). By fixing the
maximum current flowing to the RRAMduring the set transition, namely compliance
current (IC ), it is possible to avoid hard breaks of the device oxide and modulate the
LRS conductance. IC can be fixed by an external circuit, such a SourceMeasurement
Unit (SMU), or with a transistor connected with the drain at the BE, that can also be
used as selector device in an array configuration. By applying a negative pulse the
RRAM undergoes a reset, resulting in the filament rupture and a gap formation in the
conductive path, thus an high resistance state (HRS). The gapwidth can be controlled
by the maximum applied negative voltage during reset and can be used as well to
modulate the conductance. Figure6.2b shows different measured conductance states
demonstrating the possibility of analog programming of the RRAM device. Given
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Fig. 6.2 a Resistive Random Access Memory (RRAM) I-V characteristics. By applying a positive
voltage it is possible to set the memory device into a low resistance state (LRS) whose conductance
is controlled by the maximum compliance current IC flowing during the set operation, while by
applying a negative voltage it is possible to reset the device into a high resistance state (HRS)
whose depth is controlled by the maximum applied negative voltage. Inset shows the fabricated
Ti-HfOx -C RRAM device. b Different conductance achieved by modulating IC during the set
operation. c Crosspoint memory architecture for multiply-accumulate operation. RRAM devices
are organized in an array representing an analog matrix A, by applying a voltage vector V on the
columns, the current vector I at the rows is the matrix-vector multiplication result I = GV . Inset
represent a measured programmed matrix A. d Measured (circles) and calculated (lines) currents
vector I as function of the parameter α controlling the applied voltage vector V = α[0.2, 0.3, 0.4]
with −1 ≤ α ≤ 1. Adapted from [33]

the possibility of representing in principle any given number, applications in analog
operation acceleration with RRAM devices have rapidly arisen. Different architec-
tures have been presented to accelerate analog problems such as crosspoint arrays
[40] and content addressable memories [17]. Figure6.2c shows a crosspoint array
implementation where memristive devices are arranged in a matrix form to directly
write an algebraic matrix of real positive numbers G into the RRAM conductance.
By applying a input voltage vector V on the crosspoint columns, the current flowing
through the crosspoint rows is I = GV or the dot product of matrix G by vector V .
In this way, it is possible to accelerate dot product, also referred as matrix-vector-
multiplication (MVM), in one step [10, 11]. Memristive crosspoint has been shown
able to accelerate different problems based on MVM, such as the training [16, 27,
38] and inference [20, 41] of neural networks, image processing [18], sparse cod-
ing [29], optimization problems [6, 24] and the solution of linear equations through
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iterative numerical approaches [14, 43]. Integrated circuits comprising memristive
arrays and the circuitry need to generate the input, such as digital-analog-converters
(DAC), sense and read the outputs, such as transimpedance amplifiers (TIA) and
analog-digital-converters (ADC), and cell selecting and routing, able to accelerate
MVM have been proposed [5, 37, 42], outperforming modern processor both in
throughput and energy saving [42].

6.4 One Step in-Memory Solution of Inverse Algebraic
Problems

Crosspoint arrays offer the analog capability ofwriting arbitrary positive realmatrixes
coefficients, however iterative operations are usually performed in conventional dig-
ital hardware [6, 43]. To harness the full potential of the analog approach, iterations
can be performed in the analog domain through feedback connected operational
amplifiers [23, 33, 34]. By properly programming the conductance matrix and con-
necting the feedback amplifiers, one can solve different inverse problems such as
linear systems [33], eigenvectors calculation and pageranking[32], linear and logis-
tic regressions [34].

6.4.1 In-Memory Solution of Linear Systems in One-Step

Operational amplifiers in negative feedback configuration offer analog implementa-
tion of loops. Solving a system of linear equation is the equivalent matrix operation
of performing a division between two scalars. This is the role of a TIA, an operational
amplifier with a feedback resistance R connected between the negative input and the
output. Grounding the positive input and injecting a current I on the negative input,
the output voltage will adjust on V = I R or V = I/G with G = 1/R conductance
of the resistance R. This is due to the negative feedback effect and the nature of the
operational amplifier that has a very large input impedance. By considering a matrix
version of this circuit, it is then possible to calculate the solution of a linear system
encoded in a matrix of conductance G, which is connected in feedback with opera-
tional amplifiers [33]. Figure6.3a shows the circuit schematic for a 3 equations linear
system. The system coefficients are encoded in the conductance matrix A (Fig. 6.3a
inset) measured on 9 HfOx RRAM devices arranged in crosspoint configuration.
The crosspoint rows are connected to the negative input of the operational ampli-
fiers, the columns to the output of the operational amplifiers while the positive input
of the operational amplifiers is kept connected to ground. By injecting a current I
on the rows representing the known vector of the linear system the output voltage
vector will be the solution of the linear system V = A−1 I , which is computed in
one step without digital iteration [33]. Figure6.3b demonstrate the concept showing
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Fig. 6.3 a Circuit for solving a linear system in one step comprising a cross-point array of RRAM
devices (red cylinders) programmedwith the conductancematrix A (inset), connected with the rows
(blue bars) at the negative input of operational amplifiers. By injecting a current I through the rows,
the columns (green lines) connected to the operational amplifier outputs will stabilized to a voltage
vector V = A−1 I which is the solution of a linear system. b Measurements of output voltages
(circles) and analytical (lines) solution of the linear systems AV = I with I = β[0.2; 1; 1] and
−1 ≤ β ≤ 1 as function of the controlling parameter β. The comparison of the measured voltages
with the analytical solution support the accuracy of the system. c Hardware implementation of
the circuit for solving linear systems with HfOx devices arranged on a printed circuit board with
commercial operational amplifiers controlled with an external arbitrary waveform generator. d 1-
dimensional Fourier equation encoded with 21 points in a 21 × 21 conductance matrix. e Output
voltages V (circle) simulated with SPICE for a larger circuit showing the solution of the 1-D Fourier
heat equation confirming a good agreement with the analytical result (lines). Adapted from [33]

the measured voltage V and the analytical solution of the linear system AV = I
with I = β[0.2; 1; 1] as function of the controlling parameter β, indicating a good
agreement between electricalmeasurements and analytical result. Themeasurements
were performed on a printed circuit board (PCB) with Ti/HfOx /C RRAM devices
[2] arranged on a crosspoint configuration and connected in feedback with commer-
cial operational amplifiers (Fig. 6.3c). The known vector is given as voltage with
an arbitrary waveform generator and then converted to current with input resistance
connected to the negative input of the operational amplifiers. The output voltage
is monitored with an external oscilloscope. To represent both positive and negative
coefficients of the linear system, it is possible to use two separated crosspoint that
represent the matrixes B and C , with A = B − C . By connecting matrix B to the
circuit of Fig. 6.3a, the output voltage to the matrix C through negative buffers and
feeding both matrix B and matrix C with the same input current representing the
known vector, one can solve an arbitrary linear system (B − C)V = AV = I where
A has both positive, negative and zero coefficients [33]. As an example, this circuit
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can be used to solve differential equations such as the Fourier heat equation [33].
Figure6.3d shows a 1-D Fourier heat equation encoded in its 21 × 21 discretized
matrix form, that can directly be mapped in a crosspoint array and be solved in one
step. Figure6.3e shows the output voltage vector V simulated with in SPICE rep-
resenting the solution of the problem in Fig. 6.3d for different starting temperature
compared with the analytical results and as function of the distance.

The results shows a good match supporting the use of the circuit for solving large
systems of equations. In fact, interestingly the solution time does not depends on
the matrix, thus linear system, dimension [35]. One can think about the operational
amplifier in negative feedback configuration, where the bandwidth is limited by the
loop gain and equal to fmax = GBW P · Rin

Rin+R f
whereGBW P is the gain bandwidth

product of the operational amplifiers, Rin the input resistance and R f the feedback
resistance. By considering a feedback matrix, it is possible to demonstrate that the
settling time, thus the bandwidth, is solely limited by the minimal eigenvalue of
the matrix [35] and not by its size making the time complexity O(1). This is an
unprecedented speedup compared with conventional conjugate gradient solvers [30],
where time complexity is O(N ) at its best and quantum computing [8], where the
best time complexity is O(log(N ))where N is the size (i.e. the number of equations)
in the linear system. The result supports the use of the circuit for solving systems of
linear equations in one step, outperforming digital and quantum computers.

6.4.2 In-Memory Eigenvectors Calculation in One-Step

Many scientific and machine learning problems, such as the solution of differential
equations, require not the simple solution of a linear system, but the eigenvector com-
putation.Mathematically speaking, this means to solve the equation Ax = λx , which
can be arranged such as (A − λI )x = 0. It is possible to observe that by encoding on
a crosspoint the matrix A and on a second crosspoint the diagonal matrix λI , with the
mixed matrix configuration it is possible to compute the eigenvectors with the feed-
back circuit of Sect. 6.4.1 [32, 33]. Figure6.4a shows a compact circuit schematic for
calculating the eigenvector solution where the diagonal matrix is represented with
feedback conductance Gλ. To guarantee the stability of the circuit, only the eigen-
vectors corresponding to highest positive and lower negative eigenvalue can be com-
puted. In fact the circuitworks at the boundary of stabilitywith a loop gainGLoop = 1.
Without any input current the opamp corresponding to the maximum value of the
eigenvector saturates while the others adjust resulting in an output voltage vector
V , which normalized by the supply voltage, it is equal to the normalized eigenvec-
tor x corresponding to the non-trivial solution of (A − λI )x = 0. Figure6.4a-inset
shows a programmed conductance matrix A and Fig. 6.4b the measured eigenvectors
calculation corresponding to the highest positive (red) and lowest negative (blue)
eigenvalue as function of the analytical solution, showing a good agreement. It has
to be noted that to compute the eigenvector corresponding to the negative eigenvalue
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Fig. 6.4 a Circuit for solving the eigenvector equation Ax = λx , where x is the eigenvector and
λ the maximum positive eigenvalue. With an input current I = 0, the operational amplifier corre-
sponding to the maximum value of the eigenvector x saturates. By normalizing the output voltages,
the eigenvector is found. Inset shows a 3 × 3 matrix encoded in RRAM conductance. b Experimen-
tal solution of the eigenvector corresponding to the highest positive (red) and lowest negative (blue)
eigenvalue, as function of the analytical solution. The eigenvalues are encoded in the feedback con-
ductance Gλ. c Illustration of Pagerank algorithm, web pages are represented by green circles and
the corresponding citation with blue arrows. d Stochastic link matrix corresponding to the problem
in (c), which is calculated by normalizing the boolean link matrix by the sum over each column.
e Simulation (circles) results of Pagerank problem in (c) as function of the ideal ranking. Adapted
from [33]

the analog inverter of Fig. 6.4 should be removed with the output voltages of the
operational amplifiers directly connected to the crosspoint array A. Unfortunately,
in any case the highest eigenvalue λ1 must be known. To do that it is possible to
apply iterative solution such as power iteration, or a sweep the conductance Gλ until
one of the operational amplifier saturates. However, for some applications such as
Pagerank the algorithm at the backbone of Google search engine [4], the maximum
eigenvalue is always known a priori. Figure6.4c shows an illustration of a web pages
network with pages represented with green circles and citation represented by blue
arrows. Goal of pageranking is to give a score to every webpage corresponding to its
authority, namely how many citation receives from other pages with high authority.
To do that it is possible to compute the eigenvector corresponding to the maximum
eigenvalue of a stochastic matrix, namely the boolean link matrix between webpages
normalized by the sum over each column [32, 33]. Interestingly, themaximum eigen-
value of such matrix is always known and λ1 = 1, making the system highly feasible
for giving such solution. Figure6.4d shows the stochastic matrix corresponding to
the network in Fig. 6.4c, whose SPICE simulated eigenvector solution is plotted in
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Fig. 6.4e as function of the ideal solution showing good agreement. The circuit was
also simulated with measured RRAM conductance tuned with a program and verify
algorithm showing good agreement with the Hardvard500 dataset results [32]. As
the circuit in Sect. 6.4.1, the circuit for eigenvector computation shows a constant
time complexity O(1) [32], making it aggressively interesting for machine learning
and scientific applications compared with other computing technologies.

6.4.3 In-Memory Regression and Classification in One-Step

Many computing problems have more unknowns than equations or more equations
than unknowns. The latter is the case of regression problem, which is a fundamental
machine learning model for predicting a certain data behavior or classify its class.
Linear and logistic regression are among the most used ML algorithms [1]. A linear
regression problem can be described with the overdetermined linear system Xw = y,
where X is a N × Mmatrixwith N > M , y is knownvector of size N × 1 andw is the
unknown weight vector of size M × 1. There is no exact solution to this problem,
but the best solution can be calculated with the least squares error approach, that
minimizes ||ε|| = ||Xw − y||2 which is the euclidean norm of the error. This can be
done through the Moore-Penrose pseudoinverse [26] solving the equation

w = (XT X)−1XT y. (6.1)

To calculatew is one step, it is possible to cascademultiple analog stages representing
all the parts of the equation. Figure6.5a shows a schematic of the realized circuit
for calculating linear regression weights in one step [34]. The conductance matrix
X encodes the explanatory variables while the dependent variables are injected as
current I . The output voltage of the rows amplifier will then adjust on Vrow = (V X +
I )/GT I , thanks to the transimpedance configuration. Being the columns of the right
crosspoint array connected to the input of the columns operational amplifier the
current should be equal to zero, such as

(V X + I )

GT I
XT = 0. (6.2)

By rearranging equation (6.2), it is possible to observe that the weights of equation
(6.1) are obtained in one step, without iterations as voltage V [34]. The inset of
Fig. 6.5a shows a programmed conductance matrix on HfOx arranged in a double
array configuration and representing the linear regression problemof Fig. 6.5b,which
shows a comparison of the experimental linear regression and the analytical one,
evidencing a good agreement. Interestingly, with the same circuit is also possible
to compute logistic regression in one step, thus classify data. By encoding in the
conductance matrix the explanatory variables and injecting the class as input current,
indeed it is possible to obtain the weights corresponding to a binary classification of
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Fig. 6.5 a Circuit for calculating regressions operation trough the Moore-Penrose pseudo inverse.
Inset shows a programmed linear regression problem. b Experimental results and analytical cal-
culation of the linear regression of 6 data points. c Neural network topology implemented for the
weights optimization in one step. d Simulated weights as function of the analytical weights for the
training of the neural network classification layer. Adapted from [34]

data. To illustrate such concept it is possible for example to train an output layer of
a neural network in one step. Figure6.5c shows a neural network topology, namely
an extreme learning machine (ELM) used as example for neural network training.
The network is made of 196 input neurons (corresponding to the pixels of an input
image from the MNIST dataset reshaped on a 14 × 14 size), 784 hidden neurons
on a single hidden layer and 10 output neurons corresponding to the numbers from
0 to 9 of the MNIST dataset [15]. The first layer weights are randomized with a
uniform distribution between 1 and −1 and the output last layer is trained with
logistic regression. By encoding in the conductance matrix the dataset evaluated on
the hidden layer it is possible to use the circuit for calculating the weights of the
second layer corresponding to a single output neuron in one step [34]. Figure6.5d
shows a comparison between the analytical weights and the simulated weights with
a SPICE circuit simulation, showing little differences. The accuracy of the network
trained with the circuit in recognizing the MNIST dataset is 92%which is equivalent
to the ideal result for such network.

To evaluate the performance of the circuit it is possible to consider the number
of computing steps required for training such neural network on a von Neumann
architecture. With conventional computing approach, the complexity for calculat-
ing the logistic regression weights of equation (6.1) is composed by O(M2N ) to
multiply XT by X , O(MN ) to multiply XT by y and O(M3) to compute the LU
factorization of XXT and use it to calculate (XXT )−1. Thus, M2N + MN + M3

floating points operations are required. In the case of the training of the neural net-
work classification layer of Fig. 6.5c, 2.335×109 operations are required. Given that
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the simulated weight training with the in-memory closed loop crosspoint circuit
required 145 us [34], the circuit has an equivalent throughput of 16.1 TOPS. The
overall power consumption of the simulated circuit is calculated to be 355.6 mW
[34] per training operation assuming a conductance unit of 10μS in the circuit. As
a result the efficiency of the circuit is calculated to be 45.3 TOPS/W. As an approx-
imate comparison the energy efficiency of Google TPU is 2.3 TOPS/W [12] while
the energy efficiency of an in-memory open loop circuit is 7.02 TOPS/W [29], evi-
dencing that the in-memory closed loop solution is 19.7 and 6.5 times more efficient,
respectively. The results show the appealing feasibility of the in-memory computing
circuit for solving machine learning tasks, such as training a neural network with
unprecedented throughput.

6.5 Conclusions

In this chapter in-memory circuit accelerators for inverse algebra problems have been
presented. Compared to previous results, thanks to operational amplifiers connected
in feedback configuration, it is possible to solve such problems in just one step.
First the open loop crosspoint circuit for matrix vector multiplication is illustrated.
Then, the novel crosspoint closed loop circuits are demonstrated able of solving
linear systems and computing eigenvectors, in one step without iterations. Finally,
the concept is extended to machine learning tasks such as linear regression and
neural networks training in one step. These results supports in-memory computing
as a future computing paradigm to obtain size independent time complexity solution
of algebraic problems in a compact and low energy platform.
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