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Abstract

Modern interconnected power grids are a critical target

of many kinds of cyber‐attacks, potentially affecting

public safety and introducing significant economic

damages. In such a scenario, more effective detection

and early alerting tools are needed. This study in-

troduces a novel anomaly detection architecture, em-

powered by modern machine learning techniques and

specifically targeted for power control systems. It is

based on stacked deep neural networks, which have

proven to be capable to timely identify and classify

attacks, by autonomously eliciting knowledge about

them. The proposed architecture leverages auto-

matically extracted spatial and temporal dependency

relations to mine meaningful insights from data com-

ing from the target power systems, that can be used as

new features for classifying attacks. It has proven to

achieve very high performance when applied to real

scenarios by outperforming state‐of‐the‐art available

approaches.
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1 | INTRODUCTION

With the increasing success of the Internet of Things (IoT) and automation technologies, most
of the industrial facilities and public service utilities, such as manufacturing plants, electricity,
water and gas distribution infrastructures, transportation control and monitoring systems, and
many others have been interconnected through public and private cyber‐infrastructures, pro-
viding advanced automation control and interoperation capabilities. Despite the obvious ad-
vantages in terms of technological advancement, such practices have nonnegligible effects on
the attack surface exposed by modern cyber‐physical infrastructures. We remark that nowa-
days, such infrastructures include sophisticated field sensor or actuator devices as well as
supervisory control and data acquisition (SCADA) systems, often involving legacy hardware or
software solutions with a limited resistance and robustness to external cyber‐attacks or generic
abuses.

In this scenario, the electrical power grid, characterized by a significant improvement in
automation and remote control facilities, becomes one of the most critical targets for attacks,
potentially affecting public safety and hence involving homeland security‐level attention. These
infrastructures now include many smart control and metering devices, such as phasor mea-
surement units (PMUs), digital fault recorders, and so on, providing a huge amount of data
about the overall system's state and operations, supporting automation decisions and fault
monitoring. Specific power system events, like transmission line faults, that can be spontaneous
or originated by compromised control devices sending fraudulent control commands or mea-
surement data, can start a reaction chain leading to cascading blackouts or critical equipment
faults, if proper reactions take not place in a timely way. More specifically, attacks against
power distribution infrastructures operate by exploiting vulnerabilities in remote management
or metering devices and corrupting control signals to introduce faults, impersonate dis-
turbances, or fraudulently performing wrong control actions.1 Proper situational awareness
capabilities are needed to analyze these phenomena and discriminate attacks from real dis-
turbance or faults occurring during the normal system operations. This is not an easy task
due to both the overall system complexity and the huge variety of attacks available as well as to
their unpredictability. Furthermore, some specific attacks can be only spotted by considering
the occurrence of a combination of specific events over time, and consequently stateful and
context‐dependent analysis and inference capabilties are needed exploring correlation between
events/observations in both space and time. Consequently, a new generation of anomaly de-
tection systems is needed, capable of recognizing and classifying attacks from disturbances or
faults or legitimate control actions, for timely generating alerts to operators as well as auto-
matically triggering the proper actions when an attack is discovered. To provide the needed
versatility and situational awareness, these systems must be empowered by the most advanced
artificial intelligence (AI) and machine learning (ML) technologies, to significantly outperform
the traditional solutions based on the mining and analysis of specific field‐related features.
These systems must be able to exploit spatial and temporal correlations among all the different
observations characterizing the system activities by autonomously eliciting new field‐related
knowledge. Besides, the elicited knowledge consists of new (presumably unknown) features
capable to describe unambiguously the attacks and the normal power systems operations by
also correctly classifying them.

To this purpose, we propose a complex deep neural network (DNN) framework able to mine
meaningful information from the power system monitoring data regarding both relations
among the different observations and their correlations over time, represented as spatial and
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temporal dependencies, constituting more expressive and representative features to be used for
attack detection. As it is described below, this is accomplished through the usage of two sparse
autoencoders (SAEs) whose encoder–decoder functions are replaced with two DNNs, respec-
tively a convolutional and a recurrent ones, providing the ability of capturing the aforemen-
tioned correlations between their inputs. Although the convolutional and recurrent networks
have proven to be effective also without being used in combination with the autoencoders, their
performance tends to decrease if they are trained on an unbalanced data set. Furthermore, for a
high number of hidden layers, such networks are affected by the well‐known problem of the
vanishing gradient.2 On the contrary, the stacked autoencoder‐based deep network solves many
issues related to the training of networks enclosing a high number of layers and offers a
powerful tool that can be used also in different fields of application. Indeed, since our approach
does not preliminarily require any specific field‐related knowledge about the system of interest
as well as about the kind of devices of interest and generates all the knowledge needed for its
operations at the training time, it can be ideally used for any kind of industrial control system
(ICS) involving the production of a sufficiently expressive amount of time‐sequenced system
monitoring observations. The complexity of sophisticated (and hidden) dependencies between
events occurring over time as well as among the values of many apparently unrelated ob-
servations, that does not emerge with more traditional analysis techniques, can be easily
captured by the combination of the stacked networks. Excellent performance evaluation results
demonstrated that the proposed contribution and ideas are extremely promising for further
investigation and implementation in real‐world production scenarios to improve the depend-
ability of critical infrastructures.

The main contributions of the paper are summarized as follows:

• A stacked‐autoencoder‐based convolutional and recurrent neural network is used for de-
tecting cyberattacks in interconnected power control systems.

• Meaningful information is mined from the power system monitoring data, which are used for
inferring the operation status of the control system.

• The elicited knowledge is able to describe unambiguously the attacks and the normal power
systems operations.

• Such information is expressed by using spatial and temporal features, which are able to
capture correlations existing among the data and among them over time.

• A detailed mathematical description of the network architecture is provided to highlight the
effects of any network component in mining the aforementioned features.

The remainder of the paper is organized as follows. In Section 2, the related works are
shown. A detailed description of the proposed architecture is reported in Section 3. The ex-
periments and their results are discussed in Section 4. Finally, concluding remarks are provided
in Section 5.

2 | RELATED WORK

The reliable and timely detection of attacks and anomalous events is an extremely challenging
issue and hence a hot topic in IoT and ICS research arena. An anomaly detection scheme for
power systems based on whitelisting legitimate transactions within control‐layer commu-
nications has been presented in Reference [3]. However, this approach is not able to detect
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fraudulently injected valid sequences of commands that aim at tripping protection relays to
cause a blackout. Other detection solutions are based on power system‐related theoretical
issues such as the one proposed in Reference [4] that by leveraging optimal power flow
programming allow the detection of attacks that cause wrong power flow dispatching through
the alteration of service measurements. Similarly, the approach presented in Reference [5] is
able to spot attacks based on the injection of malicious data for tampering state variables in the
power system, through proper weighted state estimation techniques. Also the unsupervised
detection solution described in Reference [6] is aimed to spot false data injection attacks in
power systems by analyzing historical data and recognizing state vectors the deviate respect to
normal trends. Clearly, the above approaches lack of generality and their scope is limited to the
attacks on which they are specifically targeted, without any chance of extension to other ones.
Host‐based detection approaches for intelligent electronic devices (IEDs) operating within
smart grids have been proposed in References [7] and [8]. Unfortunately, these localized ap-
proaches are only able to identify attacks against individual device without a global and more
articulated vision of the phenomena of interest. To determine causal relationships between
multiple different observations/information and temporal state transitions the approach pre-
sented in Reference [9] leveraged a Bayesian network, resulting in a specification‐based de-
tection framework capable of detecting attacks and classifying several substation scenarios.
Temporal state‐based specifications and sequential patterns have been also used for classifying
attacks and power disturbance events10 with heterogeneous time‐synchronized observations.11

However, all the above approaches based on mining large amounts of data for determining the
nature of power system events may be not suitable for timely spotting phenomena of interest
from measurements coming from synchro‐phasors since all the data to be analysed has to be
available in memory to perform pattern classification. However, the combination of more
traditional data‐oriented solution, leveraging physics‐based PMU features, with ML capabilities
may result in a more promising approach.12 Indeed, the use of ML technology is a quite
effective approach for timely detection of attacks against industrial power control systems. The
authors in Reference [13] extensively explored ML potentialities in classification of power
system disturbances, by explicitly focusing on discriminating attacks on power grids. A a kernel
ML method has been used in Reference [14] for baselining SCADA systems with the aim of
isolating intrusions and faults. However, due to the lack of attack data, such approach resulted
of limited effectiveness in discriminating attacks. An ML‐based model leveraging autoencoders
for detecting PMU manipulation attacks has been presented in Reference [15], whereas
two ML‐based schemes for detecting stealth attacks in smart power grids are reported in
Reference [16]. The first one is based on principal component analysis (PCA) and distributed
SVMs and the second, unsupervised, detects measurement deviations. An artificial neural
network (ANN)‐based approach for baselining power systems at the substations level and
generating alarms in presence of anomalous outliers has been presented in Reference [17]. The
right choice of features, assumes paramount importance in guaranteeing the success of these
approaches. A convolutional neural network (CNN) has been used in Reference [18] together
with random forests for learning features to be used in classification from convolution and
downsampling of massive smart metering data, with the purpose of detecting electricity theft
events. Finally, an approach based on a stacked long short term memory (LSTM) network and
softmax classifier has been proposed in Reference [19] for multilevel anomaly detection in ICS.
Nevertheless, most of these works have shown a reduction in performance when applied to
unbalanced data sets, and also have proven to be time‐expensive in the training phase. On the
contrary, the experimental results related to our proposal have shown that the achieved
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performance of the proposed architecture remains steady with respect to the different appli-
cation scenarios and training/testing data sets.

3 | THE ANOMALY DETECTION FRAMEWORK

In this section, the proposed anomaly detection architecture is presented in detail. It is es-
sentially focused on building a DNN able to mine meaningful evidence to be used for detection
(i.e., the features) from measurement data related to ICS activity to distinguish between normal
and anomalous situations/behaviors associated with disturbance, control, and cyber‐attack
events. To accomplish this, relations existing among the power system monitoring data
(referred to as status variables from here on) and their correlations over space and time are
extracted. We refer to them as spatial and temporal dependencies, respectively. More precisely,
the aim of the spatial dependencies is to discover relevant hidden insights capable to represent
useful relations among all the involved status variables. On the other hand, the temporal ones
are used for learning higher‐order dependencies that may exist among a set of status variables
over time.

As widely described in the scientific literature, CNNs have proven to be the best candidate
in extracting spatial insights from data, especially in computer vision and image processing
fields.20 As it will be shown below, the usage of several stacked convolutional layers in CNNs,
used to create a hierarchy of progressively more abstract representations of the input data,
constitutes their main strength for mining spatial dependencies. Similarly, recurrent neural
networks (RNNs) are the most suitable neural network typology for modeling temporal de-
pendencies in time‐series data.21

Ultimately, the combination CNN‐RNN in a unified network is able to elicit temporal
dependencies among spatial relations extracted by a convolutional‐based network. This type of
combined network is already widely used in the state‐of‐the‐art related to several scientific and
industrial fields,22 where modeling spatio‐temporal information is crucial, such as financial
applications, speech recognition, weather forecasting, and more.

Nevertheless, training may be almost time‐expansive for high‐dimensional data. Besides,
the well‐known problem of the vanishing gradient2 for networks enclosing numerous layers
could cause a significant reduction in performance. To overcome these drawbacks, known also
as the curse of dimensionality problem,23 we used the CNN and RNN as encoder/decoder
stages in two distinct SAEs. Each SAE is trained separately and then, along with a softmax‐
based classifier network, they are stacked to obtain a unified network.

SAEs are mainly used for learning a compressed representation of a set of data, namely
for a dimensionality reduction. Unlike PCA, SAEs are able to learn nonlinear transfer
functions. This ability leads to represent the input data in a more meaningful state space,
which could better offer the possibility to extract more representative features from data,
better suitable for classification purposes. As depicted in Figure 1, the proposed detection
architecture makes use of two SAEs, named CNN‐SAE and RNN‐SAE, respectively. The
encoder–decoder function of the former encloses a CNN, and it is trained on status variables
values arranged as a two‐dimensional (2D) image‐like matrix. The latter SAE uses an RNN
for the encoder–decoder functions, and it is trained on the data coming from the latent
space of the first SAE. Next, the encoder stages of both SAEs are stacked to form a unique
network, whose output is fed to a classifying network that will perform final attack
detection.
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As it will be shown from the theoretical point of view, the proposed architecture firstly
extracts compressed spatial relations from system variables through the CNN‐SAE, next, a
compact representation of their behavior over time (temporal dependencies) is derived by the
RNN‐SAE. Finally, a softmax classifier, using all the extracted elements as its input features,
concludes the network. As reported in Reference [24], such an approach has proven to be
effective also in network traffic classification. The mathematical characterization of each
component is provided in the following to ease the understanding of the deepest architectural
insights, starting from its theoretical bases.

3.1 | Input adaptation

Usually, the raw data captured by an industrial power control system are provided as a set of
time‐series status variables arranged as a one‐dimensional (1D) vector, each related to a given

FIGURE 1 The proposed architecture. It includes an input adapter that serves as a dimensional transformer
of the input data, two SAEs, and a softMax full‐connected neural network. CNN‐SAE uses a CNN for its
encoder, while RNN‐SAE makes usage of an long short term memory network. Both SAEs are trained
separately, and then their encoders are being stacked along with the input stage and the softMax network to
form the final network. CNN, convolutional neural network; RNN, recurrent neural network;
SAE, sparse autoencoder [Color figure can be viewed at wileyonlinelibrary.com]
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timestamp. Let d be such a dimension, the d‐dimensional input needs to be arranged to a 2D
matrix for being fed into 2D‐CNN. Accordingly, let ∈x d be the raw input and let
≡d N N′ ( × )x y be a derived 2D‐matrix, then the input to CNN can be expressed as follows:

∈x ′γ d[ ] (1)

where the superscript notation ∗ γ[ ] refers to all the specific parameters related to the CNN network.

3.2 | Sparse autoencoder

With reference to the general autoencoder (AE) architecture, ENotice that here we have
replacedquation (2) expresses the overall input–output transfer function. As it can be
observed, the input ( ∈x α d[ ] ) is fed to the hidden layer, whose output (h, the latent space), is
used to reconstruct (x α[ ]) the input through the output layer ( y). We use the same superscript
notation ∗ α[ ] referring to all the specific parameters related to the AE network.

 ≡x y h x x=
′ ′

( ( )) ,α
W b W b

α α[ ]
( , ) ( , )

[ ] [ ] (2)

here W b( , ) and W b( ′, ′) represent the weighting and biasing vectors associated with the en-
coder and decoder functions, respectively. For s hidden neurons, then ∈W s d× and ∈b s,
and the output of the latent space (h W b( , )) can be expressed as follows:

h x σ Wx b( ) = ( + )W b
α α

( , )
[ ] [ ] (3)

where σ is the activation function.
As it is known, to obtain a compact representation from data, SAEs are used.25 The sparsity

property is obtained by training the network so that only a small number of hidden neurons are
being simultaneously activated. In the extreme case, in which only one neuron is active at a
time, the activation of a hidden neuron is caused by a specific content (features) in the input.
Consequently, it is possible to capture, in theory, as many numbers of content‐features as the
number of hidden neurons.

Indeed, according to Equation (3), the output of the lth hidden neuron (hl) of an SAE is
given by:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑h σ w x b= +l

k

d

l k k l

=1

,
[ϑ] (4)

with ∈w Wl k, and xk
[ϑ] the kth component of x[ϑ]. Notice that here we have replaced the

superscript notation ∗ α[ ] with ∗[ϑ] to refer to the SAE.
If ∣ ∣ ∣ ∣ ≤x 1[ϑ] 2 , then the kth component (xk

[ϑ]) of the input (x[ϑ]) capable to activate the lth
hidden neuron can be expressed by:

∑

∀x
w

w

k d=

( )

, = 1 … .k
l k

m

d

l m

[ϑ] ,

=1

,
2

(5)
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That is, without considering the constant term associated with the denominator, the
weights (wl k, ), related to the kth hidden neuron, identify a specific features‐vector representing
a specific content enclosed into raw data. In other words, the set of wl k, for a given k corre-
sponds to the features that we were looking for.

Nevertheless, as it is shown below, several transformations can be applied to these weights
by using the CNN and RNN as encoder–decoder functions. Such derived weights are able to
extract more complex content from data, and in particular to mine spatial and temporal
dependencies to be used as detection features.

3.3 | CNN‐SAE

The convolution operation between an input matrix ( ∈x γ N N[ ] ×x y) and Nf bidimensional
filters, whose dimensions are P and Q ( ∈Kf P Q× ), is defined as follows:

∑∑∑Y K x=i j

f

N

p

P

q

Q

p q
f

i p j q
γ

,

=1 =1 =1

, + −1, + −1
[ ]

f

(6)

with Yi j, being the components of the convolutional operation.
Note that the components of x γ[ ], depicted in Equation (6), are directly related to the

components of the 1D vector x , according to the following relation:

≡x xk i j
γ
,
[ ] (7)

with k d= 1 … , i N= 1 … x, j N= 1 … y, and d N N= ×x y.
Let φ k i p j q( ) = ( + − 1, + − 1) be an analytic relation associated to Equation (7), and

replacing Equation (6) into Equation (4), we have:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑h σ w x b= ′ +l

k

d

l k φ k l

=1

, ( ) (8)

with:

∑∑∑w K w′ =l k

f

N

p

P

q

Q

p q
f

l k,

=1 =1 =1

, ,

f

(9)

As depicted, the weights derived by using a CNN as encoder–decoder function in the SAE
express a more complex relation involving the feature extracted by the latent space of a pure SAE.
Indeed, as it can be observed from Equation (9), the new features w ′l k, are expressed as a linear
combination of the basic ones, wl k, of Equation (4). As a consequence, we can assert that features of
Equation (9) are able to capture the aforementioned spatial dependencies from the input data.

3.4 | RNN‐SAE

RNNs are networks that are widely used for mining temporal dependencies among data by
maintaining the memory of the information over time. Nevertheless, as already mentioned, due
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to the vanishing gradient problem, the training of RNNs could be difficult, and in some cases
impossible. LSTM and gated recurrent unit (GRU) are powerful alternatives capable to over-
come this issue.26 A single LSTM unit includes a cell of memory maintaining information for
sufficiently time intervals. A set of gates are used to control the information flow and to make
decisions about what data should be put into memory, and when they need to be forgotten.
GRUs are similar to LSTMs but they use a simplified structure comprising fewer gates to
control the flow of information. As depicted in Figure 2, a LSTM unit includes different gates
which can be described by the following equations:

f σ W h x b= ( [ , ] + )t f t t f−1 (10)

i σ W h x b= ( [ , ] + )t i t t i−1 (11)

C W h x b= tanh( [ , ] + )t c t t c−1 (12)

o σ W h x b= ( [ , ] + )t o t t o−1 (13)

⊗ ⊗C f C i C= +t t t t t−1 (14)

⊗h o C= tanh( )t t t (15)

where ⊗ indicates the element‐wise product, W W W W, , ,f i c o are matrices that act as linear
transformations on data, Ct and ht are, respectively, the state of the memory and the output at a
given timestamp t . Note that the output (ht) is time‐dependent and is related to the state that
the cell assumes in the previous timestamps.

LSTM accepts as input a time‐series of data of a given length T , and the final output is
produced only after all the input data have been examined. Consequently, the equations from
(10) to (15) are continuously and recursively updated for T timestamps.

Let ∈t T{1, …, } be the timestamps at which the input data are being considered, and by
indicating with x t( ) the input at the timestamp t , then the output (yT) at the timestamp T can be
expressed by:

y x x x= Ψ ( , , …, )T T T(1) (2) ( ) (16)

FIGURE 2 Long short‐term memory unit. A set of gates are used to control the information flow [Color
figure can be viewed at wileyonlinelibrary.com]
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where ΨT expresses the updating of equations from (10) to (15) of the unit forT timestamps as a
nonlinear multivariable vector‐valued function.

Supposing yT be a r( × 1)‐dimensional vector, by replacing xk
[ϑ] of Equation (4) with the kth

component of yT (i.e., yk
T), the output of the hidden neuron l of the SAE is given by:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑h σ w y b= +l

k

r

l k k
T

l

=1

, (17)

Comparing Equation (17) with Equation (4), it can be noted that the derived features gather
the behavior of the input over time (T timestamps) in a compact form.

A first‐order Taylor approximation of ΨT can help to better understand how the derived
features are related to the basic ones provided by the pure SAE of Equation (4).

To accomplish this, let XΨ ( )k
T be the kth component of ΨT , with X the set of the input x t( )

for t T= 1, …, , then according to Taylor's theorem, the first‐order expansion, at null initial
hypothesis (i.e., X̄ = {0}T d× ), of Ψk

T is given by:

≈ ∇X X X X XΨ ( ) Ψ ( ¯ ) + Ψ ( ¯ )[ − ¯ ]k
T

k
T

k
T (18)

Note that at the initial stage of operation, the cell outputs expressed by Equations (14) and
(15) are null, then XΨ ( ¯ ) = 0k

T , and by considering that XΨ ( )k
T is a multivariable scalar‐valued

function, we have:

⎡
⎣⎢

⎤
⎦⎥∇

∂

∂

∂

∂

∂

∂
X

X

x

X

x

X

x
Ψ ( ¯ ) =

Ψ ( ¯ )
,
Ψ ( ¯ )

, …,
Ψ ( ¯ )

k
T k

T
k
T

k
T

T(1) (2) ( )
(19)

which replaced in Equation (18) it yields:

∑≈
∂

∂
X

X

x
xΨ ( )

Ψ ( ¯ )
k
T

t

T
k
T

t
t

=1
( )

( ) (20)

Besides, remarking that x t( ) is a d‐dimensional column vector, then:

∑∑≈
∂

∂
y X

X

x
x= Ψ ( )

Ψ ( ¯ )
k
T

k
T

t

T

u

d
k
T

u
t u

t

=1 =1
( )

( ) (21)

By replacing xk
α[ ] of Equation (4) with yk

T , it yields:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑∑

∂

∂
h σ w

X

x
x b=

Ψ ( ¯ )
+l

k

r

l k

t

T

u

d
k
T

u
t u

t
l

=1

,

=1 =1
( )

( ) (22)

which can be rewritten as follows:

⎛

⎝

⎜⎜⎜⎜⎜

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

⎞

⎠

⎟⎟⎟⎟⎟
∑ ∑ ∑

∂

∂ ⏟
⋯

∂

∂ ⏟
h σ

X

x
w x

X

x
w x b=

Ψ ( ¯ )
+ +

Ψ ( ¯ )
+l

k

r

u

d
k
T

u

l k

w

u

u

d
k
T

u
T l k

w

u
T

l

=1 =1
(1) ,

(1)

=1
( ) ,

( )

l u l u

T

,

(1)

,

( )

(23)

As depicted, the derived features (wl u
t
,
( )) express a complex form of content enclosed in data

observed at different timestamps t . Also, their summation (on k) is able to group in a compact
result all the behaviors of the input over T timestamps. Ultimately, Equation (23) provides the
aforementioned temporal dependency features.
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3.5 | Stacked CNN‐RNN‐SAE

Once the two SAEs are being separately trained, each on the input provided of the previous
stage, the input adapter (see Section 3.1) and the encoder functions of both CNN‐SAE
(Section 3.3) and RNN‐SAE (see Section 3.4) are stacked to form a unique network.

With reference to Equations (1), (6), and (7), any component (Yi j
t
,
( )) of the CNN output (Y t( ))

at time t can be expressed as:

∑∑∑≡Y Y K x=u
t

i j
t

f

N

p

P

q

Q

p q
f

φ u
t( )

,
( )

=1 =1 =1

, ( )
( )

f

(24)

with ∈t T{1, …, }, ∈u d{1, …, ′}, and d N N′ = ×x y.
Consequently, according to Equation (8), the lth component of the output (h γ t[ ] ( )) of the

encoder associated with CNN‐SAE at the time ∈t T{1, …, } is:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∈h σ w Y b l s= + , {1, …, }l

γ t

u

d

l u
γ

u
t

l
γ t[ ]( )

=1

′

,
[ ] ( ) [ ] ( ) (25)

Next, according to Equation (16), any component k of the LSTM‐cell output after T itera-
tions can be expressed as:

∈y h h k r= Ψ ( , …, ), {1, …, }k
T

k
T γ γ T[ ](1) [ ]( ) (26)

Lastly, the lth output component of the encoder (h[ϱ]) of the RNN‐SAE at the time
∈t T{1, …, } is:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∈h σ w y b l r= + , {1, …, ′}l

k

r

l k k
T

l
[ϱ]

=1

,
[ϱ] [ϱ] (27)

Also in this case we use the superscript notation ∗[ϱ] referring to all the specific parameters
related to the LSTM network.

As depicted from these equations, the derived features are produced by a combination of the
weights associated with the encoders of both the CNN and RNN‐SAEs, that is (wl k

γ
,
[ ]) and (wl k,

[ϱ]),
respectively.

As above, a first‐order Taylor expansion can help to understand the meaning of
Equation (27).

By substituting Yu
t( ) of Equation (24) into Equation (25), for a sigmoid activation function, it

yields:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑

h

w x b

=
1

1 + exp− ′ +

l
γ t

u

d

l u φ u
t

l
γ t

[ ] ( )

=1

′

, ( )
( ) [ ] ( )

(28)

with

∑∑∑w K w′ =l u

f

N

p

P

q

Q

p q
f

l u
γ

,

=1 =1 =1

, ,
[ ]

f

(29)
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Thus, if we assume X̄ = (0, …, 0)′, b = 0l
γ t[ ] ( ) ∀ ∈t T{1, …, }, the Taylor series expansion of

hl
γ t[ ] ( ) is given by:

∑

∑

≈ ∇

∂

∂

h h X h X

h X

x
x

w x

( ¯ ) +

=
1

2
+

( ¯ )

=
1

2
+ ′

l
γ t

l
γ t

l
γ t t

u

d
l
γ t

φ u
t φ u

t

u

d

l u φ u
t

[ ] ( ) [ ] ( ) [ ] ( ) ( )

=1

′ [ ] ( )

( )
( ) ( )

( )

=1

′

, ( )
( )

(30)

with w ′l u, given by Equation (29), and ( )X x x= , …,
′
′t

φ
t

φ d
t( )

(1)
( )

( )
( ) being a column vector of the

input at time t .
Let H h h= ( , …, )′γ γ T[ ] (1) [ ] ( ) , for X X= ¯ , then:

⎧⎨⎩
⎫⎬⎭{ } { }H H X¯ = ( ¯ ) =

1

2
, …,

1

2

s s T

(31)

where s is the number of hidden neurons, first defined in 3.2.
Therefore, the Taylor series expansion of Ψk

T can be expressed as follows:

∑∑

≈

∂

∂ ( )

y H H H H

H h

= Ψ ( ) Ψ ( ¯ )( − ¯ )

= Ψ ( ¯ ) + −

k
T

k
T

k
T

k
T

t

T

u

s
H

h u
γ t

=1 =1

Ψ ( ¯ ) [ ] ( ) 1

2
k
T

u
γ t[ ]( )

(32)

By replacing hu
γ t[ ] ( ) of Equation (32) with hl

γ t[ ] ( ) of Equation (30), it yields:

∑∑∑≈
∂

∂
H H

H

h
w xΨ ( ) Ψ ( ¯ ) +

1

4

Ψ ( ¯ )
′k

T
k
T

t

T

u

s

ν

d
k
T

u
γ t l ν φ ν

t

=1 =1 =1

′

[ ] ( ) , ( )
( ) (33)

Finally, by substituting Equation (33) into Equation (26), and then in Equation (27), it yields:

⎛
⎝
⎜⎜

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎞
⎠
⎟⎟∑ ∑∑∑

∂

∂
h σ w H

H

h
w x b= Ψ ( ¯ ) +

1

4

Ψ ( ¯ )
′ +l

k

r

l k k
T

t

T

u

s

ν

d
k
T

u
γ t l ν φ ν

t
l

[ϱ]

=1

,
[ϱ]

=1 =1 =1

′

[ ] ( ) , ( )
( ) [ϱ] (34)

which can be rewritten as follows:

  

  

⎛
⎝
⎜⎜

⎛

⎝

⎜⎜⎜⎜⎜
⎞

⎠

⎟⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟⎟

∑

∑ ∑∑

∑∑⋅⋅

∂

∂

∂

∂

h σ w H

w w x

w w x b

= Ψ ( ¯ )

+ ′ + , …

+ ′ +

l

k

r

l k k
T

k

r

ν

d

u

s
H

h l ν l k

w

φ ν

ν

d

u

s
H

h l ν l k

w

φ ν
T

l

[ϱ]

=1

,
[ϱ]

1

4
=1 =1

′

=1

Ψ ( ¯ )
, ,

[ϱ]
( )
(1)

=1

′

=1

Ψ ( ¯ )
, ,

[ϱ]
( )
( ) [ϱ]

k
T

u
γ

l ν

k
T

u
γ T

l ν
T

[ ] (1)

,
″ (1)

[ ]( )

,
″ ( )

(35)
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Substituting w ′l u
t

,
( ) of Equation (29) into Equation (35), it is possible to observe that the

temporal dependency features at timestamp t are given by:

∑∑∑∑
∂

∂
w

H

h
K w w=

Ψ ( ¯ )
l ν

t

u

s

f

N

p

P

q

Q
k
T

u
γ t p q

f
l ν
γ

l k,
″ ( )

=1 =1 =1 =1
[ ]( ) , ,

[ ]
,
[ϱ]

f

(36)

As depicted, the derived features (wl ν
t

,
″ ( )), through the summations on the indexes f , p, and

q, are able to combine the features (wl ν
γ
,
[ ] and wl k,

[ϱ]) extracted from both SAEs, and provide a

compact representation of the input over the time. We remark that wl ν
γ
,
[ ] and wl k,

[ϱ] are derived by

two separate training processes, that is the training of CNN‐SAE and RNN‐SAE, respectively.

4 | EXPERIMENTAL RESULTS

To evaluate the effectiveness of the proposed approach, in this section, the results obtained over
a realistic testbed are shown and compared with the state‐of‐the‐art.

4.1 | Power system testbed and attack scenarios

The data used in our experiment refer to a Power system testbed framework provided by
Mississippi State University and Oak Ridge National Laboratory,27 enclosing several real‐world
operating scenarios. As depicted in Figure 3, it includes two power generators (i.e., G1 and G2),
four IEDs, that is, R1 through R4, each capable to control an assigned breaker (BR1 through
BR4). IEDs are able to detect faults and consequently trips the breakers, but they are not
equipped with intelligence allowing them to distinguish if the faults are actually valid or fake.
The control panel includes all the tools need for monitoring and control the power system.

The provided framework generates 37 total scenarios, which include 8 Natural‐events, 1 No‐
event, and 28 Attack‐events. Each event comprises thousand of monitoring observations cap-
tured by four PMUs working at 120 samples/s, one control panel logging system, and a Snort
intrusion detection system (IDS). Any PMU provides 29 status variables, thus the set of all
PMUs provides 116 (29 × 4) variables that become the features that directly describe the power
system behavior, while the Snort IDS and the logs provide other 12 additional elements to be
used for spotting anomalous events in the overall power control system. This, results into 128
basic elements describing the system activity, to be used for detecting and recognizing attacks,
plus the class (or supervisory signal) consisting in a label reporting the involved attack type or
the absence of anomalies (normal activity). For a more detailed description of these items, we
remand to Reference.27 These basic elements will be the starting point for mining the more
meaningful space or time‐related features that will be useful in detecting attacks.

All data are arranged into three schemes:

• Binary. Only two classes of operations are considered, that is Attack and Normal which include
28 and 9 events, respectively. Table 1 shows the numeric distribution of the items for each class.

• Three‐Class. All the scenario are grouped into three classes, that is Attack (28 events),
Natural (8 events), and “No events” (1 event). Table 2 shows the details of the numeric
distribution.
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• Multi‐Class. Each of the 37 scenarios is considered as a different class. Due to its large size,
the table of the numeric distribution is omitted.

Each schema is divided into 15 different data sets, each one comprising a different number
of time‐series items. Any item includes 129 columns reporting the 128 basic elements plus the

FIGURE 3 Power system testbed framework provided by Mississippi State University and Oak Ridge
National Laboratory27 [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Numeric distribution of the items for each class—Binary schema

Normal Attack

Data1 320 1150

Data2 453 1047

Data3 471 1133

Data4 530 1016

Data5 434 1094

Data6 433 1037

Data7 388 1163

Data8 453 1121

Data9 521 1061

Data10 484 1166

Data11 375 1181

Data12 521 1026

Data13 336 1225

Data14 396 1119

Data15 543 1015
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class. As shown below, we tested our approach for each of these schemes and compared it with
some ML‐based solutions characterizing the state‐of‐the‐art.

4.2 | Experimental setting and network training

The proposed solution and all the experiments were implemented by using the Python language and
the Keras‐Tensorflow library running on a Desktop PC equipped with an Intel i7 CPU operating at
2.00GHz frequency, 16GB RAM, and an NVIDIA GeForce MX150 GPU with 4GB of memory.

According to Equation (7), the 128 basic elements to be used for detection were arranged in
a (16 × 8)‐dimensional matrix.

The CNN‐SAE was implemented by using 2 Conv2D layers including 14 and 23 (6 × 3)‐
dimensional filters, respectively. A padding same= and a Relu activation function were used.
We remark that the inverse layer configuration, that is, 23 and 14, was used for the decoder. An
Adam optimizer and a MSE loss function were used for training.

From the CNN‐SAE, a new net (CNN‐SAE‐Encoder) was extracted comprising the input
adapter and the encoder function of CNN‐SAE. The resulting features, representing spatial relations
among status variables, were fed into this network and its output (cf. Equation 8) was used to train
the second SAE, that is, the RNN‐SAE that will extract temporal dependencies.

The RNN‐SAE was implemented by using two LSTM layers of 16 and 36 cells, respectively.
A timesteps of 10 with stride of 1 was used, which corresponds to around 80ms for PMU
working at 120 samples/s. The reconstruction over time of the input was obtained by using a
TimeDistributed layer. Also, in this case, an Adam optimizer and an MSE loss function were
used for the training.

TABLE 2 Numeric distribution of the items for each class—Three‐Class schema

No‐Event Attack Natural

Data1 42 1150 268

Data2 87 1047 357

Data3 96 1133 365

Data4 111 1011 409

Data5 71 1094 353

Data6 247 1037 376

Data7 52 1163 325

Data8 97 1121 346

Data9 133 1061 378

Data10 88 1166 387

Data11 33 1181 331

Data12 105 1026 406

Data13 51 1225 275

Data14 14 111 372

Data15 144 1015 394
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The encoder function of RNN‐SAE was stacked with CNN‐SAE‐Encoder and its output
(cf. Equations 27 and 35) was fed into a fully connected softmax neural network. The softmax
network was used to classify the scenarios, and it includes 2 dense layers of 64 and 24 neurons,
respectively. Also, to avoid overfitting, a dropout layer with a rate of 0.5 was added after each
dense layer of the softmax network. As it is known, dropout is a regularization process that
probabilistically removes some inputs during training by yielding the effect of making layers
with a different number of nodes, thus avoiding overfitting. A Relu activation function
was used, and the training was performed by using the Adam optimizer and the
categorical crossentropy_ loss function. Finally, the whole final stacked network was further
trained for fine‐tuning. Note that all the networks were trained on a very low number of
epochs, that is 100. This means that the time spent on the training was around 1min and 20 s.

4.3 | Evaluation metrics and results

To test the performance of the proposed stacked network architecture, all data sets associated to
the aforementioned schemes were first divided by classes and then, the data of each class were
divided into two parts, namely the training (70%) and testing (30%) sets. As usual, all data sets
were rescaled through the min–max normalization to avoid biases. Besides, the exploratory
data analysis (EDA) showed no outliers and missing values. Therefore, no further preproces-
sing was required. Well‐known metrics derived from the multiclass confusion matrix28 were
used for the evaluation of the results obtained on testing sets, that is: Accuracy (Acc), Sensi-
tivity (Sens), Specificity (Spec), Precision (Prec), Area under the ROC curve (AUC), and
F_Measure (Fmea).

More precisely:

Accuracy (Acc) =
TP + TN

TP + TN + FP + FN
(37)

Sensitivity (Sens) =
TP

TP + FN
(38)

Specificity (Spec) =
TN

TN + FP
(39)

Precision (Prec) =
TP

TP + FP
(40)

AUC =
Sens + Spec

2
(41)

∗ ∗
F_Measure (Fmea) =

2 Sens Prec

Sens + Prec
(42)

where TPs denote true positives and are the scenarios correctly classified, FPs denotes false
positives and are the scenarios incorrectly classified, FNs denotes false negatives are the sce-
narios incorrectly rejected, and TNs denotes true negatives and are the scenarios correctly
rejected.

For each metric, the results are reported as the average evaluated on the different classes.
All the metrics were computed by using the scikit‐learn Python library.29 The results for any
schema are provided in the following sections.
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4.3.1 | Binary

Figure 4 depicts, for any data set (data1–data15), the performance metrics averaged on all the
classes. As it is shown, for most of the data sets the metrics achieved 100%. Although the
metrics associated with some data sets achieved lower values, it should be noted that they
correspond to values just below 100%. Indeed, the worst case is represented by data11, which
achieved 98.91%, 97.73%, 99.29%, 97.73%, and 98.48% for Accuracy, Sensitivity, Specificity,
Precision, AUC, and F_measure, respectively.

4.3.2 | Three‐class

Also in this case, for most of the data sets (9 out of 15, i.e., data 1, 5, 7, 8, 9, 10, 11, 13, and 15)
the metrics achieved the maximum value of 100%, while for the remaining data sets the metrics
achieved values just below the maximum. Indeed, as depicted in Figure 5, both data2 and data6
achieved the 99.91% of Accuracy and 99.87% for F_measure. Slightly lower values were
achieved with data12 and data14 data sets, with an Accuracy of 99.74% and 99.46%, respectively.
The worst cases are associated to data4 and data3 with an Accuracy of 99.17% and 99.08%,
respectively.

4.3.3 | Multiclass

As shown in Figure 6, in the multiclass scenario, even though the metrics achieved high (near
perfect) values overall, only data15 achieved the 100% of performance. Nevertheless, the metrics
associated with the data sets from 3 to 14 achieved values very close to the ones of data15, that

FIGURE 4 Results for the Binary schema. The results are reported as average evaluated on the different
classes. The worst case is represented by data11, which achieved 98.91%, 97.73%, 99.29%, 97.73%, and 98.48% for
Accuracy, Sensitivity, Specificity, Precision, AUC, and F_measure, respectively [Color figure can be viewed at
wileyonlinelibrary.com]
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is greater than 99%. Besides, unlike data15, the sensitivity associated with other data sets
achieved lower values with respect to both Binary and three‐class schemes. However, it should
be noted that all the metrics assumed high values. Indeed, the worst case, corresponding to
data6, achieved performance higher than 90%.

FIGURE 5 Results for the three‐class schema. The results are reported as average evaluated on the different
classes. The worst cases are associated with data4 and data3 with an Accuracy of 99.17% and 99.08%, respectively
[Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Results for the multiclass schema. The results are reported as average evaluated on the different
classes. The worst‐case corresponds to data6, which achieved performance higher than 90% [Color figure can be
viewed at wileyonlinelibrary.com]
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4.4 | Comparison and discussion

As shown in the previous sections, our approach achieved very high performance in all the
scenarios. In addition, we want to remark that the training procedure was very fast (80 s on
average, despite operating with limited computing resources) and for all the experiments the
accuracy evaluated on the training sets achieved 100%. To give further proof of the effectiveness
of the proposed architecture, Figures 7–9 show a comparison with the state‐of‐the‐art based on
ML. In particular, we compared our approach with seven different algorithms presented in
Reference [27], that is, OneR,30 NNge,31 Random Forests,32 Naive Bayes,33 SVM,34 JRipper,35

and Adaboost.36 The results refer to the average value of the Accuracy computed by using the

FIGURE 7 Comparison with the state‐of‐the‐art—Binary‐Class schema. Our approach outperformed the best
state‐of‐the‐art solution (i.e., Adaboost) by around5% on average [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 8 Comparison with the state‐of‐the‐art—Three‐Class schema. Our proposal outperformed the best state‐
of‐the‐art solution (i.e. Adaboost) by around 10% on average [Color figure can be viewed at wileyonlinelibrary.com]
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10‐fold cross‐validation method. Accordingly, for any schema (i.e., binary, three, and multi-
class), each data set was partitioned into 10 subsets including random instances coming from
each category. Any subset was employed as a testing set and used for the performance eva-
luation, while the remaining sets were used as training set. All the considered approaches were
tested on the same data set. No other particular setting was used in the comparison.27

As depicted, our approach outperformed the others in all the testbed evaluation schemes. In
particular, for both the Three‐Class and Multi‐Class schemes, our proposal outperformed the best
ML‐based algorithms by around10% on average. While, for Binary‐Class, although the performance
achieved by some ML‐based algorithms are very high, our approach outperformed the best state‐of‐
the‐art solution (i.e., Adaboost) by around 5% on average. Finally, it should be noted that, differently
from most of the available state‐of‐the‐art solutions, the results of our approach remain steady with
respect to the specific evaluation schemes and data sets used. Besides, to highlight how the pro-
posed neural network configuration, and in particular the usage of the SAEs, influences the clas-
sification performance, we compared our findings with ones obtained by using only a CNN or an
LSTM network followed by a fully connected soft‐max network (referred to as CNN‐NN and LSTM‐
NN, respectively). To ensure a fair comparison, all the configurations have been compared starting
from the same operating conditions, that is same training/testing data set pair for each fold of the
10‐fold cross‐validation approach. Tables 3 and 4 reports the evaluation metrics averaged across all
data sets (i.e., Data1–Data15) and classes. As it is depicted, for both the network configurations, the
metrics achieved lower values than our proposal (see Table 5). The best performance was achieved

FIGURE 9 Comparison with the state‐of‐the‐art—Multi‐Class schema. Our proposal outperformed the best state‐
of‐the‐art solution (i.e., Adaboost) by around 10% on average [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Evaluation metrics averaged across all data sets and classes for the CNN‐NN configuration

Acc Sens Spec Prec AUC Fmea

Binary‐Class 0.92 0.89 0.89 0.92 0.89 0.90

Three‐Class 0.93 0.76 0.91 0.88 0.84 0.79

Multi‐Class 0.96 0.30 0.98 0.33 0.64 NaN

20 | D'ANGELO AND PALMIERI

http://wileyonlinelibrary.com


for the CNN‐NN configuration when applied to the Binary‐Class scheme (cf. Table 3). Although
both Sensitivity and Specificity achieved a good score of 89%, they were around 10% lower than
ones obtained by our proposal, which achieved 100% performance.

5 | CONCLUSIONS AND FUTURE WORKS

In this paper, a stacked autoencoder‐based convolutional and recurrent DNN is presented for
detecting cyber‐attacks in power control systems interconnected over the IoT. More specifically,
the proposed architecture leverages two SAEs whose encoder‐decoder functions are replaced
with a convolutional (CNN‐SAE) and a recurrent neural network (RNN‐SAE), respectively. The
encoders' functions are combined and fed into a softmax‐based classifier for inferring the
operation status of the control system.

Such detection architecture can be particularly useful for supporting early alerting and automatic
reaction systems involved in situations in which the reactivity time and precision are crucial. Indeed,
extensive performance evaluation experiments on realistic power system data resulted in almost
perfect classification outcomes in both binary‐ and multi‐class scenarios. The proposed architectural
framework also exhibits good adaptivity to any kind of ICS applications without requiring pre-
liminary field knowledge, since autoencoders with convolutional and recurrent encoding demon-
strated to be effective in autonomously mining new more meaningful features from data. In
particular, they have allowed the extraction of hard‐to‐detect correlations among data (spatial de-
pendencies) and among data over time (temporal dependencies). Besides, because each autoencoder
has been separately trained, it is evident that the architecture does not suffer from the vanishing
gradient problem that affects large neural networks. Also, the compact representation (latent space)
offered by autoencoders has allowed overcoming the training problem related to unbalanced data
sets. Finally, the proposed architecture has proven to have a very low training latency. Indeed, the
training procedure required only 80 s on average despite using very limited computing resources.
Nevertheless, for all the experiments the accuracy evaluated on the training sets has always achieved
100%. The excellent results, obtained from the proposed approach without using preliminary
knowledge of the applicant field, suggest us to continue the investigation in this direction. In this
regard, in the future, we intend to evaluate the performance of the proposal on a number of scenarios

TABLE 4 Evaluation metrics averaged across all data sets and classes for the LSTM‐NN configuration

Acc Sens Spec Prec AUC Fmea

Binary‐Class 0.84 0.77 0.77 0.83 0.77 0.79

Three‐Class 0.88 0.88 0.88 0.88 0.88 0.88

Multi‐Class 0.95 0.09 0.97 NaN 0.53 NaN

TABLE 5 Evaluation metrics averaged across all data sets and classes for the proposed network
configuration

Acc Sens Spec Prec AUC Fmea

Binary‐Class 1.00 1.00 1.00 1.00 1.00 1.00

Three‐Class 1.00 1.00 1.00 1.00 1.00 1.00

Multi‐Class 0.99 0.95 1.00 0.94 0.97 0.94
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that include any type of application field, and not necessarily related to power systems. As a con-
sequence, we intend to generalize the proposed architecture and then implement a web‐based service
capable to offer an anomaly detection framework usable online through the Internet network.
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