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Abstract. In this paper, the modeling of extreme rainfall is carried out in Pakistan by 

analyzing annual daily maximum rainfall data via frequentist and Bayesian approaches. In 

frequentist settings, the parameters and return levels of the best fitted probabilistic model (i.e. 

generalized extreme value) are estimated using maximum likelihood and linear moments 

method. On the other side, under the Bayesian framework, the parameters and return levels are 

calculated both for non-informative and informative priors. This task is completed with the 

help of the Markov Chain Monte Carlo method using the Metropolis-Hasting algorithm. This 

study also highlights a procedure to build an informative prior through historical records of 

the underlying processes from other nearby weather stations. The findings attained from the 

Bayesian paradigm demonstrate that the posterior inference could be affected by the choice of 

past knowledge used for the construction of informative priors. Additionally, the best method 

for the modeling of extreme rainfall over the country is decided with the support of 

assessment measures. In general, the Bayesian paradigm linked with the informative priors 

offers an adequate estimations scheme in terms of accuracy as compared to frequentist 

methods, accounting for ambiguity in parameters and return levels. Hence, these findings are 

very helpful in adopting accurate flood protection measures and designing infrastructures over 

the country. 

Keywords: Annual Daily Maximum Rainfall series, Generalized Extreme Value, Maximum 

Likelihood Estimation, Return Levels, Bayesian Method, Informative Priors. 
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1. Introduction   

Pakistan is a country with exclusive rainfall patterns and appearances than 

other countries in the world (Arif et al., 2019). In particular, Pakistan faces 

two different rainfall seasons namely summer and winter. In summer, rainfall 

happens mainly during the monsoon season (early July to September).  

Therefore, July and August are considered the peak months for monsoon 

rainfalls. In winter, mostly rainfall events occur from (mid-December to 

March) (Ahmed et al., 2013). Unquestionably, extreme rainfall events are 

frequently connected with climate fluctuations, which may cause a series of 

natural disasters such as flash floods, heavy winds, and landslides. 

Consequently, rapid fluctuations in the climate have frequently increased the 

number of heavy floods in the country.  

During the 2020 monsoon rainfall spell, numerous rain-related losses were 

reported in Pakistan. According to (Aljazeera news 2020), 31 casualties were 

reported in the southern Sindh province, whereas 23 people expired in Khyber 

Pakhtunkhwa province. Furthermore, 15 deaths were reported in southwestern 

Baluchistan province and 8 in Punjab province. Likewise, 13 more people 

passed away elsewhere in Pakistan's northern areas, including three in 

Pakistan administered Kashmir. 

 According to the Federal Flood Commission (FFC) report, floods have 

now become a regular feature in the country. Due to downpours, the 

government has faced an overall financial loss of more than US$ 38 billion 

during the past 70 years. The massive defeat in the economy, particularly in 

the agriculture sector, has dramatically influenced the country's progress. 

Rainfall patterns that have continuously been examined including the 

estimation of the rainfall distribution and the identification of damp or dry 

events on a specific day. However, information about the amount and 

happenings of extreme rainfall is inevitable for different purposes such as 

sustainable water resource management, government planning for water-

related disasters, and preparation of different hydraulic structures (Ahmad et 
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al., 2016; Hussain et al., 2017). On the other side, it is unquestionable that the 

infrastructures and the region's economy might be affected by extreme events. 

For these reasons, statistical modeling and prediction of extreme 

environmental events are required for future planning. Moreover, the 

challenging task in modeling extreme events is to realize the happening 

probabilities linked with events that are extrapolated beyond the observed 

data. 

Procedures to analyze extreme values comprise the frequency of happening 

of extreme events with the practice of probabilistic models for both similar or 

dissimilar processes for one or more climate variables (Noto & La Loggia, 

2009; Lenderink & Fowler, 2017). Several research studies exist in literature 

in favor of selection and evaluation of different extreme value probabilistic 

models for extreme data, but due to the accessibility of the small length of 

observed data as compared to return periods of interest, continuously this work 

has been challenging and provocative (Fadhilah et al., 2007; El Adlouni & 

Ouarda, 2010; Olofintoye et al., 2009; Suhaila et al., 2011; Rahman et al., 

2013; Ho and Yusof, 2013; Khudri & Sadia, 2013; Marani & Ignaccolo, 2015; 

Ahmad et al., 2016, Ahmad et al., 2019).  

Extreme value analysis might be helpful to assess both the probability of 

happening and the magnitude of extreme events. So, extreme value theory 

authorizes researchers to measure an event's random behavior that originates 

in the upper or lower tails. Standard extreme value analysis is frequently 

performed based on the most straightforward inferential procedure; however, 

the data structure might be complex. Consequently, the statistical modeling of 

extreme weather events using extreme value theory agrees to accomplish the 

complex system that is natural in the extreme data to enhance inferential 

procedures. 

For the modeling of extreme weather variables, the two essential methods 

are engaged in extreme value theory, namely block maxima and peak-over-

threshold (POT) (see, for example, Coles, 2001; Rivas et al., 2008; Bücher & 
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Zou, 2019). In the block maxima method,  we model a maximum value of 

each year acquired from the large sample via generalized extreme value 

(GEV) distribution (Ferreira & De Haan, 2015). On the other side, the POT 

method deals with those values that exceed the high threshold level in the 

observed data with the application of generalized Pareto distribution (Ferreira 

& De Haan, 2015; Davison and Smith, 1990). However, according to (Madsen 

et al., 1997; Eastoe and Tawn, 2012), the block maxima is the favorite for 

modeling extremes, whereas in the POT procedure, sometimes selecting an 

appropriate threshold is not an easy task.    

From the advances in the statistical modeling point of view, extreme value 

analyses customarily have been carried out using frequentist approaches. For 

instance, (Hosking, 1990) introduced the linear moments (LM) method for the 

study of extreme data. Many studies are available in the literature concerned 

with applying the LM method (for instance, Elamir & Sehheult, 2003; 

Hosking, & Wallis, 2005, Khan et al. 2021). Further, (Ahmad et al., 2013; 

Ahmad et al., 2016) used LM method to model the monsoon rainfalls patterns 

in Pakistan. They establish the best fit distribution among five extreme value 

distributions by classical modeling. On the other side, (Coles and Dixen, 1999; 

Coles, 2001; Ahmad et al., 2019) used likelihood-based inference methods for 

modeling extreme value models. Researchers are more interested in Bayesian 

modeling than a classical setup to obtain more valuable results about 

uncertainty extreme environmental events. 

Meanwhile, extreme data are scarce by their nature. The statistical 

inference on extremes could be enhanced by the Bayesian paradigm's support 

that allows supplementary evidence about the processes via prior knowledge. 

For interested readers, many studies exist in the literature (see e.g., Coles and 

Tawn 1996, 2005; Coles and Powell 1996;  Beirlant et al., 2006; Chu & Zhao, 

2011; Naghettini, 2017, chp. 11; Diriba et al., 2017;  Ahmad et al., 2019; 

Diriba & Debusho, 2020). However, the Bayesian analysis of extreme events 

is not dependent on the critical assumptions that are obligatory for the 
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frequentist framework by the asymptotic theory (Smith, 1985; Coles, 2001; 

Smith, 2005). Generally, the prior knowledge on extreme value model 

parameters is rare to discover that fits the probabilistic models via Bayesian 

procedure. Therefore, impressive results on this strengthen us to increase the 

precision of the estimates. For instance, (Diriba et al., 2017) have been 

examined the properties of priors on the parameter estimates of GEV 

distribution and the prior effect on return levels for the wind speed data of 

Cape Town, South Africa. 

Furthermore (Ahmad et al., 2019) have studied the effects of priors on the 

parameters as well as return levels for the rainfall data of Lahore station, 

Punjab, Pakistan. Although, they did not generalize their results over the 

country because their findings were limited only to one province. They did not 

study any other frequentist procedure except maximum likelihood estimation 

(MLE). These studies inspire the authors to develop extreme rainfall modeling 

over the country and explore an entire narrative of uncertainty in parameters 

and return levels (RLs) of GEV distribution. For this reason, some sites over 

the country are considered for experimental work. Consequently, the essential 

purpose of this modeling is to predict extreme rainfall events in the future over 

the country.  The occurrence of uncertainty in the future forecasts of extremes 

makes the study of extreme events even more vital and critical (Coles et al., 

2003; Zhu et al., 2013; First, 2019). Thus, it is mandatory to characterize their 

behavior statistically. 

In application point of view, the key objective of the study for extreme 

environmental events is to recognize the properties of the larger RLs of the 

variable of interest. For instance, the estimates of RLs for an annual maximum 

of the extreme event could be predicted as these observations provide an 

expected value of return level that exceeds once, on average, in a given return 

period  (Coles, 2001; Diriba & Debusho, 2020). Hence, statistical findings 

from the systematic study of extreme climatic events suggest high analytical 

power. Also, this research study aims to examine extreme climate fluctuations 
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and varying patterns of events which may help to know the behavior of 

extreme weather events. 

The rest of the paper is organized as follows. In section 2, the materials and 

methods are presented for data analysis. The data description with their 

exploratory analysis and generalized extreme value model with block maxima 

are explained. Also, both frequentist (MLE and LM methods) and Bayesian 

Markov Chain Monte Carlo (MCMC) paradigm with non-informative (NIPs) 

plus Informative Priors (IPs) for parameters estimation and RLs are 

established in the same section. Also, the assessment measures are described 

in section 2. In section 3, the results are discussed. For instance, how NIPs and 

IPs affect parameter estimates of GEV and RLs in Bayesian settings, the 

results of all three methods are compared based on assessment measures. 

Conclusion and some recommendations are given in the final section 4. 

2 Materials and Methods  

2.1 Data description and exploratory analysis 

Throughout this paper, the data comprises a daily aggregate of rainfall (in 

millimeters) of eleven weather stations all over Pakistan recorded by 

automatic weather stations. The data had been taken from Pakistan 

Metrological Center Karachi corresponds to 32 years from 1985 to 2016. Data 

has been selected on the following standard criteria: the length of the data, 

variability, quality, urbanization, and climate changes.  Later, the ADMRS 

was extracted from the daily rainfall data using the block maxima method. 

AMDRS is a single maximum value for any specific year and station among 

all recorded daily rainfall values. The extracted data of eleven weather 

stations, namely Lahore, Drosh, Chitral, Jacobabad, Khuzdar, Rohri, 

Nawabshah, Lasbela, Hyderabad, Chhor and Pasni were utilized for analysis 

and prediction. For deriving of IPs, the rainfall characteristics of two new 

weather stations at various distances were engaged, namely Mohenjodaro and 
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Dera Ismael Khan (D.I. Khan). The length of the data for these stations was 30 

years from 1987 to 2016.     

The D.I. Khan station is considered for the construction of IPs and it is located 

in the center of the country. Besides, the D.I. Khan district is situated between 

district Bhakkar of south Punjab, Mianwali of North Punjab, Zhob of 

Baluchistan, Indus river and South Waziristan of Pakistan tribal belt. The 

Mohenjodaro station was chosen for prior elicitation due to very short 

distances from other various sites of the Sindh and Baluchistan provinces. The 

plots under the google map spatial linkage encompass selected areas studied in 

the present research are shown in Figure 1. Blue pinpoints highlight the 

observed weather stations, and green pinpoints indicate the stations used for 

IPs construction. 

 [Figure 1 place here] 

The descriptive analysis for the amount of ADMRS of different stations 

selected all over the country is briefed in Table 1. The mean of ADMRS 

fluctuates from 34.44 mm to 87.61 mm. The ADMRS of the Jacobabad station 

has comparatively large variation, i.e., the observations are more spread 

(sample CV) than other data sets. One observation (e.g. 323 mm) in the 

Jacobabad ADMRS is big enough compared to others and may be a source for 

this large CV. It can be observed that the Drosh station gained less relative 

variation against other stations in the study. 

[place Table 1 here] 

Besides, most Sindh province stations have larger sample CVs compared to 

Punjab and Khyber Pakhtunkhwa (KPK). The ADMRS of two Baluchistan 

sites (i.e. Lasbela and Khuzdar) and one station of KPK province as Chitral 

are pretty more skewed compared to other data sets.  

Moreover, it is necessary to test the fundamental assumptions of any annual 

maximum series before conducting a final analysis in the field of statistical 

hydrology because the final results could be doubtful without satisfying the 

basic assumptions. The hydrological series fundamental assumptions are 
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independence, homogeneity, randomness, and stationarity (Naghettini, 2017, 

chp. 7). Thus, we ensured that the data fulfilled the basic assumptions and can 

be used to model extreme rainfall. The most suitable probability model for 

ADMRS is decided among various models (generalized extreme value, 

Pearson type three, generalized Pareto, generalized logistic) by using some 

nonparametric procedures. Hence, the GEV distribution remains most suitable 

for the observed ADMRS from various country sites.  Moreover, the best-

fitted probability model and estimation of its parameters via frequentist and 

Bayesian techniques are presented in the subsequent section. 

2.2 Block maxima and generalized extreme value distribution 

To model the extreme observations using GEV, a data of N  independent 

values Nwww ,...,, 21  is first blocked into k block of size n, with n essentially 

large, and hence .knN   For rainfall data, the block size is usually a month, 

season or a year. For instance, 1 year stands for 365n  days. Then the 

maxima or extreme value ),,...,1,( kiM i   is selected from each block. This 

produces a data of k annual maxima series named block maxima to which the 

GEV distribution family can be fitted. Suppose the yearly maxima 

nwww ,...,, 21  are independent and identically distributed (i.i.d) with distribution 

function of  ).(wG  Let  nwwwM nn ),,...,,max( 21  and if there are 

sequences of normalizing constants }0{ nc  and nd such that 

 
)()( wFdwcGw

c

dM
pr nn

n

n

nn 











  (1) 

as ,n  where F is a non-degenerate distribution function, the distribution 

function G is called to be in the domain of attraction of extreme value 

distribution F,{i.e. )(wFG }. Besides, the F follows the family of the 

probability distribution that has the form      
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where   /)(1:  ww ; 0,  and  are location, scale and shape 

parameters of GEV distribution (Beirlant et al., 2006). The shape parameter 

affects the behavior of the upper tail of the distribution. Moreover, GEV 

distribution is the mixture of three limiting extreme value distributions, i.e., 

Gumbel distribution, Freshet distribution and Weibull distribution. If 0  

the GEV distribution in (2) relates to the Gumbel distribution. For 0 and 

0 , the expression given in (2) called Frechet and negative Weibull 

distributions, respectively (Coles et al. 2001). 

 

2.3 Parameter Estimation of GEV Distribution 

Primarily, the maximum likelihood estimation method and linear moments 

method were applied to estimate GEV distribution parameters. In MLE, we 

differentiate the function given in (2) for iw , for instance, when  0 the 

density of GEV is given by  
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The Maximum Likelihood Estimates (MLEs) of the parameters ,   and

, say ˆ ˆ,  and ,̂  are calculated by maximizing the logarithm of the joint 

likelihood, that is, maximizing 
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concerning unknown parameters, say ,   and  . Since the solution of log-

likelihood is not an easy task, in particular, the maximization is solved by 

quasi-Newton procedure with numerical iteration (Diriba et al. 2017, Diriba & 

Debusho, 2020).  

     In LM method computations, we use the linear combinations of order 

statistics values. This method was introduced by (Hosking, 1990). The LM 

provides simple and more efficient estimators of extremal data characteristics 

and the parameters of the distribution. Let rWWW ,...,, 21  be the random sample 

of magnitude n, with cumulative distribution function )(wF  and quantile 

function )(Fw . Suppose rrrr WWW ::2:1 ... be the order statistics of the 

selected random samples. For the random variable W , the r
th  

population LM 

as explained by (Ahmed et al., 2016): 
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Usually, we require the first four LM for .4,3,2,1r  Additionally, LM can also 

be considered as the linear combinations of probability-weighted moments as 

given: 
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The first four LM are:  
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 
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             (10) 

The LM ratios 12 /  , 3  and 4  denote the linear coefficient of 

variation, linear skewness, and linear kurtosis, respectively. The GEV 

parameters were estimated by using some approximations discussed by 

(Hosking & Wallis, 2005,  p.196).  Moreover, the theoretical estimates of the 

parameters of GEV are given as follows 

 





ˆ

1)ˆ1(ˆ
ˆ

1



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)ˆ1()21(

ˆ
ˆ

ˆ

2






 



              (12) 

2ˆ95554.2ˆ8590.7ˆ cc                (13) 

where,   
3log

2log

3

2
ˆ

3







c               (14) 

2.4 Return level estimation for GEV model 

The attention to extreme environmental events analysis sometimes does not 

generally rely on the estimates of extreme value distribution parameters; 

however, it applies the fitted model to calculate the other quantities. Return 

level estimates play a dynamic role in rainfall modeling for calculating the 

future hazard associated with return periods conforming to a fitted model. For 

instance, the estimates of extreme quantiles for ADMRS of an event could be 

calculated because these observations assess the return level of the event 

predicted on averagely exceeds once in a specific number of years.  

The RLs for the GEV model corresponding to the return period pT /1 , 

denoted by pw   where )1( pwF p  and 0 1p  , is attained by using 

quantile function by the inverse of (2) given by (Coles, 2001) and also 

discussed by (Ahmad et al., 2019; Diriba & Debusho, 2020). 
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        (15) 

 

The return level pw  is determined by quantiles of GEV distribution 

associated with the upper tail probability .p  For the GEV model, the MLEs of 

the return level pw , indicated by ˆ
pw  is gained by substituting the MLEs ,̂

,̂  and ̂  (Rao, 1973). 

2.5 Bayesian Analysis 

As in the maximum likelihood procedure, suppose ADMRS 

),...,,( 21 nwwww   are i.i.d and their distribution falls within the parametric 

GEV family. Moreover, now in the Bayesian setting, the GEV distribution 

parameters ( ,   and ) are dealt as random variables for which we identify 

the prior distributions. The prior information helps us enhance the knowledge 

provided by the observed data. Let ),,(    and suppose the prior for   

with no evidence to the actual data can be expressed by a probability density 

function ( )g  . Then using Bayes theorem to combine the likelihood and 

prior knowledge and to get the posterior density for  has the following form: 

)()/(
)()/(

)()/(
)/( 




 



 gwL
dgwL

gwL
wf 

 

             (16) 

Where ( / )L w  indicates the likelihood function of GEV distribution given 

in (4) and )/( wf   is the posterior distribution for  , and the integral is set 

over the parametric space  . In this research, both the NIPs and IPs were 

engaged. The NIPs were specified by considering there is least or no external 

information accessible about the parameters, separate from the data. To 

generate the NIPs for the GEV parameter designated ),,(   , the 

parametrization  log  is done in the place of   due to more manageable 

tasks in the specification of prior and to secure the positivity of scale 


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parameter . Since for priors specification, the joint density for   was 

supposed in the following form  

)()()(),log,()(   ggggg              (17) 

The following marginal independent NIPs in different studies (Coles & Tawn, 

2005; Fawcett & Walshaw, 2008; Eli et al., 2012; Diriba et al., 2017; Ahmad 

et al., 2019; Diriba & Debusho, 2020) were used 

),10000,0(~)( Ng   ),10000,0(~)( Ng   )100,0(~)( Ng         

(18) 

These are known as independent Gaussian priors with mean 0 and large 

variances (e.g., )10000,0(N  indicates Gaussian distribution with 0 mean and 

10000 variances). The higher variances of the distribution enforce enough to 

create flat marginal priors, which confirm the lack of external information. On 

the other hand, the IPs were built by using the procedure given by (Coles and 

Tawn, 1996), that is,  prior knowledge was provoked in terms of extreme 

quantiles. The method engaged for GEV is briefly described in the following 

paragraph. 

Remember that the return level 3,2,1, iw
ip in expression (15) with 

1 2 3p p p  , be the quantiles calculated corresponding to T  return period 

from historical extreme rainfall data of two suitable sites over the country. For 

example, the quantiles 
ipw are estimated independently for both Mohenjodaro 

and D.I. Khan stations by replacing MLEs of GEV parameters in equation (2). 

Coles and Tawn (1996) discuss a joint prior distribution for GEV parameters 

generated from extreme quantile (
321

,, ppp www ) by employing given 

probabilities 1 2 3p p p  .  One minor complication with these techniques is 

that the quantiles 3,2,1, iw
ip  must be in natural order (e.g., 

321 ppp www  ); hence the fundamental assumption of independent priors 
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3,2,1, iw
ip would not be fulfilled. Subsequently, they recommended to use 

the quantile differences: 

3,2,1,~
1




iwww
iii ppp                          (19) 

where 
0pw denote a physically lower endpoint of the process variable (e.g., 

rainfall) and supposed to be 0
0
pw . It can be noticed that the change in 

quantile endorses the ordering of quantiles. Since independent marginal priors 

based on the quantile differences are now supposed to be independent gamma 

distribution with parameters ( ii  , ), 1,2,3,i   and can be written in the 

following form 

~ ( , )
ip i iw G   , 0i ,       ;0i  1,2,3.i              (20) 

From equations (19) and (20), we can develop the joint prior for the ( ii  , ),

1,2,3,i   from the Gamma distribution in the following form 

1

1 1 1

1

1 1 1~ ( , ) exp( ),p p pw G w w
  

   

2

2 2 1 2 1

1

2 2 2~ ( , ) ( ) exp( ( )),p p p p pw G w w w w
  

     

and 

3

3 3 2 3 2

1

3 3 3~ ( , ) ( ) exp( ( )).p p p p pw G w w w w
  

     

Then the joint prior for (
321

,, ppp www ), by considering 0
0
pw , is stated as  

1 2

1 2 1 1 1 2 1

1 1

1( , , ) exp( ) ( )p p p p p p pg w w w w w w w
  

      

  3

2 1 3 2 3 2

1

2 3exp{ ( )} ( ) exp{ ( )}p p p p p pw w w w w w
 

       

and has written in a short form 







3

2

1

1

1
)~exp(~)~exp(~),,(

1

1

1121

i

pipppppp i

i

i
wwwwwwwg  

    

(21) 

with 
321 ppp www  discussed by (Diriba et al, 2017; Diriba & Debusho, 

2020; Ahmed et al., 2019). Then incorporating expression (15) in equation 

(21) and multiply by the Jacobian of the transformation from 

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.



),,(
321 ppp www ),,(   , it provides an expression for the prior in 

terms of the GEV parameter vector  . Moreover, it has the following form 







3

1

1
J)~exp(~)(

i

pip i

i

i
wwg  

              (22) 

for 
321 ppp www  . According to (Diriba & Debusho, 2020) the Jacobean 

used in (22) is found in such a way 











































333

222

111

J

ppp

ppp

ppp

www

www

www

 

and their results expressed in equation (23) as follows  

 















































,logloglog)1(
2

,log)()1(

J

2

i

j

jiji

ji

i

j

jiji

ji

z

z
zz

z

z
zz







 

0);3,2,1(,

0);3,2,1(,









ji

ji

        

(23) 

where .3,2,1),1log(  ipz ii   

 

2.6 Assessment measures  

Assessment measures were used to compare the performance between the 

classical or frequentist (i.e. MLE & LM approaches) and the Bayesian MCMC 

paradigm with NIPs and IPs in estimating GEV parameters and RLs for 

ADMRS recorded from different weather stations over the country. Moreover, 

these measures could distinguish the accuracy among results obtained through 

classical and Bayesian procedures. So, the proposed assessment measures are 

relative root mean square error (RRMSE), relative absolute error (RAE). Both 

measures encompass evaluating the difference between the observed and the 
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estimated values corresponding to the assumed distribution (Ahmad et al., 

2019). The mathematical form of the tests are given in (24)  and (25) 

2

:

1 :

ˆ( )1 n
j n j

j j n

w q F
RRMSE

n w

 
  

  
              (24) 

:

1 :

ˆ( )1 n
j n j

j j n

w q F
RAS

n w


                (25) 

where 
:j nw  means the observed sample values of jth  order statistics of a 

random sample, while )(ˆ jFq  are estimated quantiles parallel to jth  Weibull 

plotting position )1/(  njF , where j  show the ranks of the data. The 

method that gained the lowest RRMSE and RAS would be considered an 

efficient method for modeling Pakistan's extreme rainfall data.   

3. Results and discussion  

3.1 Generalized extreme value distribution using frequentist methods 

In this section, the GEV model of equation (2) with a block maxima was fitted 

to ADMRS using MLE and LM methods. Moreover, the parameter estimates (

,̂ ,̂  and ̂ ) with their standard errors (SE) of the GEV stationary model are 

given in Table 2.  

[place Table 2 here] 

It can be noted from Table 2 that the shape parameter ̂  obtained through 

the LM method is less than zero for the Hyderabad station. This specifies a 

bounded upper tail to the distribution of ADMRS. The negative shape 

parameter suggests a heavier tail for GEV distribution, which offers smaller 

quantiles, particularly when the quantiles for ADMRS are estimated for longer 

return periods (Hosking, 1990).  

The estimated RLs for different return periods are presented in Table 3, for 

both MLE and LM procedures. As a result, the RL estimates are smaller and 
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consistent for the LM method, while RLs are larger for the MLE method. 

Moreover, the variations in RLs could be due to the skewness in the ADMRS. 

Consequently, to distinguish the summary of a series for skewed distributions, 

the median is more energetic to deal with outliers than the mean. The variation 

between the median and the mean can signify the magnitude of unusual values 

in the RLs (Diriba & Debusho, 2020). Hence, this task is further examined 

with the Bayesian paradigm application. 

[place Table 3 here ] 

3.2 Bayesian modeling of ADMRS using non-informative and informative 

priors 

This section deals with inferences about ADMRS obtained through 

Bayesian analysis by NIPs and IPs support. The IPs were constructed 

independently for Mohenjodaro and Dera Ismael Khan. Therefore, two sites 

were used to elicit prior distributions. Both sites were lying at different 

distances from the observed sites. The distance's influence on the parameters 

and the RLs were evaluated in general. 

The NIPs were built for the GEV parameters ),,(     by assuming 

there is no reliable prior information about the process to express the prior 

distributions apart from the data. Thus, the priors joint density for   given in 

expression (17) was assumed with the parametrization  log . Hence, the 

non-informative independent priors given in (18) were incorporated. The scale 

parameter of GEV (i.e.,  ) was reparametrized as  log  to hold the 

positive property of variance. The Gaussian distributions having zero mean 

and higher variances in expression (18) enforce the flat independent marginal 

priors (also known as diffuse or vague priors), which exhibit the lack of 

external information (Eli et al., 2012; Ahmad et al., 2019). 

The MCMC procedure with the Metropolis-Hasting (M-H) recipe was used 

for generating the samples from posterior distributions. By applying H-M, 

50000 iterations were produced for all sites, of which the initial 10000 were 

burn-in. For simulation, different starting points were considered to perceive 
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the chain convergence. Hence, all the chains had mixed well with the original 

data. The posterior means (PMs), standard deviations (SDs), and 95% CIs via 

NIPs for the GEV parameters for different sites are given in Table 4. Hence, it 

can be observed that the PMs and SDs are close to MLEs and LM estimates of 

GEV parameters except for the shape parameter estimates for various sites 

obtained through L-moments (see Table 2).  It is anticipated that for vague 

priors PMs would be close to L-moments and MLEs as they incorporate slight 

evidence to the likelihood.   

On the other hand, the historical data of rainfall of two weather stations, 

namely Mehenjodaro and D. I. Khan were used to formulate the IPs. Using the 

procedure given in section 2.5, the prior distributions for the GEV model were 

built with the support of quantiles i

ip 10 , 3,2,1i . From the historical data 

of Mehenjodaro station, we found 
1

~ (8.760,8.071)pw G ,

2
~ (0.423,273.255)pw G  and 

3
~ (0.076,3400.395)pw G . Similarly, from 

D. I. Khan station historical data, authors have also attained 

1
~ (39.612,2.457),pw G

2
~ (1.301,50.941)pw G and 

3
~ (0.294,282.395)pw G . 

The PMs with their SDs and 95% CIs of GEV parameters from IPs are also 

given in Table 5. The findings show that PMs for the GEV model parameters 

from the settings of informative priors are very close to the results gained from 

the NIPs. Also, the IPs built from Mehenjodaro and D. I. Khan stations 

abridged the posterior SDs of GEV parameters for various sites than the SDs 

obtained via NIPs and frequentist methods. The smaller SDs indicate a 

reduction in uncertainty. This is happened due to the use of historical 

information from two nearby weather stations over the country. 

[place Table 4 here] 

To understand how GEV parameters were affected by the IPs based on the 

historical data of two different weather stations.  The posterior densities (PDs) 

of the parameters found through NIPs and IPs were compared. The estimated 

densities of GEV parameters ( ,  and  ) for three sites, namely Hyderabad, 
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Khuzdar and Chitral are plotted in Figure 2.  The posterior densities of the 

parameters of the model for remaining are given in Figure S1 (see e.g, 

supporting information file). Notice that the distributions of location 

parameters are symmetric for all three sites. 

On the other hand, the distributions of scale and shape parameters are 

positively skewed. Furthermore, the location, scale and shape parameters for 

IPs are built using the information from Mehenjodaro and D. I. Khan showing 

high peaks. The fluctuations in posterior densities indicate that the posterior 

distributions are sensitive to the IPs from which the prior knowledge was 

produced. As we discussed earlier, IPs were based on the knowledge that 

considered the functions of two stations over the country with the combination 

of mean and quantiles of the data. Weather conditions of those regions from 

which the data acquired are assumed to be relatively homogeneous. For 

instance, the Lahore station was selected by pretending that the environmental 

conditions of other cities of the province Punjab similar to Lahore. According 

to our evaluation, the estimates of GEV parameters based on IPs are 

susceptible. Therefore, selecting appropriate weather stations for the 

formulations of IPs is also an important task. The validation and robustness of 

estimates are verified by observing the effect of other IPs on the model 

parameters. For this purpose,  the IPs were elicited by exploiting the Jaisalmer 

station historical records of the neighboring country India. Figure S3 (see e.g., 

supporting information file) shows that the influence of IPs on parameters of 

the models for Rohri data was similar to IPs generated from Mohenjodaro and 

D.I. Khan historical records. Based on this evidence, our current methodology 

could be extended easily to other ungagged sites of the country. Moreover, the 

same discussion can be followed to interpret the remaining stations namely 

Rohri, Nawabshah, Chhor, Lasbela, Pasni, Jacobabad, Drosh and Lahore.   

[ Table 5 place here]  

 

[Figure 2 place here ]  
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Generally, the above-discussed sites are very important from a 

geographical point of view over the country. A spatial map of the country and 

three sites (namely Hyderabad, Khuzdar and Chitral) with their neighboring 

areas in concern division are presented in Figure 3. In addition Figure 3 (b) 

covered the area of the Hyderabad division of the Sindh province and the red 

area indicates the Hyderabad city which was quite affected during the latest 

monsoon seasons. The left bottom map described the Kalat division of the 

Balouchistan province. The red color indicates the Khuzdar district of the 

Kalat division. This division also received a lot of damages during monsoon 

seasons. Figure 3 (d) presented the Malakand division of KPK province, and 

the red color indicates the Chitral district.  During the 2020 monsoon, the 

Malakand division got extreme rain events and faced land sliding problems, 

and flashed floods. Further, the daily life of the people in these areas of the 

country is mostly affected by heavy rainfalls during every monsoon. The 

modeling presented in this paper could be very helpful in policymaking and 

the country's development.  

[Figure 3 place here] 

3.3 Influence of priors on return levels  

     To inspect the influence of the NIPs and IPs on RLs, the posterior density 

plots for ( 10  p ) were constructed by considering the vector of 

observations. Consequently, these are obtained from the marginal posterior 

distributions of GEV parameters.  For instance, the posterior densities for 10-, 

25-, 50-, 100- and 500- years were obtained against the different posterior 

distributions. The RLs are also sensitive in the context of the choice of values 

p (e.g. ,1.0p ,04.0 ,02.0 01.0  and 005.0 ) 

 [Figure 4 place here ].  

    The posterior densities plots of site Khuzdar for 10-, 25-, 50-, 100- and 500- 

years RLs based on NIPs and IPs are presented in Figure 4. Also, the posterior 

densities plots for the RLs of the remaining sites namely Rohri, Nawabshah, 
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Hyderabad, Chhor, Lasbela, Pasni, Jacobabad, Drosh, Chitral and Lahore are 

presented in Figure S2 (see e.g., supporting information file). From the plots 

given in Figure 4, it can be realized that the IPs also affected the RLs 

distribution. Further, the PDs of IPs have appeared with high peaks as 

compared with PDs of NIPs. Also, to some extent, the distributions of all RLs 

are skewed to the right side. On the other hand, the posterior densities for 

higher RLs of stations (i.e., Rohri, Hyderabad and Jacobabad) are not 

interpretable for the case of NIPs.  So far, when comparing MLE with the LM 

method in a frequentist framework, we acquired different mean RLs, which 

could be due to the heavy tail of the GEV distribution or skewness detected in 

the data. The mean RLs obtained for Jacobaabad weather station through MLE 

are very high as compared to the LM method. Thus, the RLs estimates could 

be improved for all sites by choosing suitable summary measures for the 

inference. Generally, the posterior medians could be used in place of means in 

the Bayesian setting. Additionally, the skewed densities of return levels 

indicate the uncertainty inside the model for developing reasonable upper 

bounds of the return levels as compared to lower limits for higher return 

periods (Coles and Tawn, 2005) and  (Ahmad et al., 2019). Therefore, 

posterior medians were obtained as the best choice than the posterior mean for 

10-, 25-, 50-, 100- and 500- years RLs of ADMRS using NIPs and IPs. The 

RLs via NIPs are provided in Table 6 while the RLs based on the IPs are given 

in Table 7. 

 [Table 6 place here ] 

      The posterior medians of RLs obtained via IPs are close to RLs based on 

MLEs except for the Jacobabad weather station. From the results of  Table 7, 

it can be seen that the posterior RLs are quite reasonable also for Jacobabad 

station. On the other hand, RLs calculated through L-moments are smaller as 

compared to other methods. This might be happened due to the negativity of 

the shape parameter. The best estimation method for future modeling could be 

decided by assessment measures. For this purpose, we used two assessment 
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measures. A useful discussion for those procedures was given in the next 

section. 

[Table 7 place here ] 

 

3.4 Model selection through assessment measures 

      The methods used for the analysis and/or for the modeling of extreme 

rainfall data were compared in this section. The comparison task was carried 

out by using the assessment measures namely RRMSE and RAE given in 

equations (24) and (25), respectively. Also, Table 8 was created by using the 

"Fgmutils” R package.  

 [Table 8 place here ]   

      From the findings of Table 8, it can be observed the Bayesian MCMC 

approach have smaller values for both RRMSE and RAS when compared with 

those of the frequentist methods. Besides, the Bayesian paradigm with the 

support of IPs also had smaller values for RRMSE and RAS than Bayesian 

analysis based on non-informative priors. Further, the results of RRMSE and 

RAS for the Bayesian MCMC method linked with the IPs generated from the 

data of D.I. Khan station were smaller than the Bayesian MCMC method 

based on IPs built from the data of Mohenjo-Daro station. Honestly speaking, 

overall results based on the Bayesian method when compared with classical 

approaches discovered the reputation of Bayesian inference for the extreme 

rainfall data. This approach deals with the uncertainties linked with excesses 

of weather variables efficiently. Essentially, the IPs for the Bayesian method 

constructed from surrounding weather stations increase the accuracy of the 

parameter estimates than the frequentist approaches. This study partially 

supports the Bayesian paradigm results of (Ahmad et al., 2019). Even though 

it is arguable to say which of the methods offer accurate estimates, it can be 

contended that the supplement of uncertainties via IPs in the Bayesian 

framework significantly enhanced the findings of the estimates for ADMRS at 
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different weather stations over the country. Conversely, the precision of the 

estimates could be more improved with a suitable choice of weather stations 

used for the elicitation of IPs. 

Conclusion 

In this paper, our attention was to develop the modeling of extreme rainfall 

patterns all over the country by applying frequentist and Bayesian methods. 

Frankly speaking, we were unable to analyze the data of all stations across the 

country.  Therefore, the ADMRS of suitable weather stations of the country 

were chosen by keeping in mind that the environmental conditions are 

homogenous across the stations in the provinces of the country. The data used 

for this study from different weather stations around the country were shown 

to follow the family of extreme value distributions (i.e. GEV distribution). In a 

frequentist setting, the parameters of GEV distribution were estimated through 

MLE and LM methods. Furthermore, RLs for (10, 25, 50, 100, and 500-years) 

were also calculated for MLE and LM methods. The RLs based on LM were 

showed consistency while examined by the birds-eye view. But, the results 

obtained from both methods provided evidence that there would be extreme 

rain events across the country in the future. 

Modeling the behavior of such extremes events within the Bayesian 

paradigm at different weather stations throughout the country offers more 

beauty to this paper. Bayesian MCMC is respected when climatic indications 

are unusual, and also the behavior of extreme rainfall is similar over the region 

from which the data were acquired. Consequently, in these circumstances, the 

authors have preferred a Bayesian paradigm over the frequentist methods. This 

needs a genuine construction of IPs, thus it provides great estimation accuracy. 

Similar to the frequentist setting, in the Bayesian framework, the parameter of 

GEV distribution and RLs for (10, 25, 50, 100, and 500-years) were estimated 

via NIPs and IPs formulated from two suitable weather stations over the 
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country. Moreover, the parameter estimates and RLs for GEV were sensitive 

to those sites used for the elicitation of IPs. Consequently, the present study 

also supports proper choices of the neighboring stations, since the devising of 

IPs is significant as the estimates and the accuracies are profound to these 

priors.  

 Additionally, assessment measures were used to adopt a superior method 

for modeling ADMRS among frequentist and Bayesian approaches. The 

smaller values of assessment measures proved the precision of the Bayesian 

MCMC method associated with IPs. Thus, our current methodology could be 

implemented easily to other ungagged sites of the country. Also, the 

information from the neighboring countries (for instance, India, Afghanistan, 

and Iran)  could be utilized as prior knowledge. On the other hand, the 

findings of the proposed method could be very helpful for policymakers and 

hydrologists. Hence, engineers can take help from this study in designing 

dams, bridges, culverts, and flood control devices in Pakistan. The study could 

be improved more by considering non-stationary rainfall series and by 

inspecting a linear time trend in the location parameter of GEV, and also with 

the exercise of spatial modeling.  
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Figure 1. Spatial map plot of selected sites used in the study for the period of 1985-2016. 

Blue pinpoints are denoted the observed data and green indicates those sites used for 

generating the informative priors.  
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Figure. 2 Posterior densities of GEV distribution parameters for Hyderabad, 

Khuzdar and Chitral weather stations via non-informative and informative priors. 
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Figure 3. (a) The Pakistan spatial map with the elevation above the sea level (m) 

(b) the Hyderabad division of the province Sindh, the red color indicates Hyderabad 

district, which is most affected due to heavy rains, (c) the Kalat division of the 

province Baluchistan, the red color represents the affected site namely Khuzadar 

and (d) described the Malakand division of the province Khyber Pakhtunkhwa, the 

red color indicates the affected area Chitral with substation Darosh. 
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Figure. 4 Posterior densities of 10-, 25-, 50-, 100-, and 500-year return levels 

via non-informative and informative priors. 
 

                                                                     Khuzdar 

 

 

40 60 80 100 120

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4
0

.0
5

10-year return period

q0.1

d
e

n
s
it
y

50 100 150 200 250

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

0
.0

3
0

25-year return period

q0.04

d
e

n
s
it
y

50 100 150 200 250 300 350

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

50-year return period

q0.02

d
e

n
s
it
y

100 200 300 400 500

0
.0

0
0

0
.0

0
4

0
.0

0
8

0
.0

1
2

100-year return period

q0.01

d
e

n
s
it
y

200 400 600 800

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

500-year return period

q0.002

d
e

n
s
it
y

1.0 1.2 1.4 1.6 1.8 2.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Legend

D
e

n
s
it
y

non informative
Mohenjodaro

D.I.Khan

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.



Table 1. Summary Statistics of the AMDRS recorded from different stations

Table 2. Estimated parameters with their SE through MLE and LM methods for the GEV model based on 
ADMRS from different stations over the country.

MLEs L-Moments EstimatesStudy 
Locations         )(ˆ se )(ˆ se )(ˆ se )(ˆ se )(ˆ se )(ˆ se

Rohri
Nawabshah
Hyderabad

Chhor
Khuzdar
Lasbela
Pasni

Jacobabad
Drosh
Chitral
Lahore

26.15 (4.73)
25.26 (4.51)
32.45 (5.29)
51.04 (6.28)
32.14 (2.24)
30.89 (3.44)
22.85 (3.38)
23.58 (4.81)
43.04 (2.51)
37.99 (2.40)
69.30 (5.67)

22.14 (4.02)
21.95 (3.60)
25.05 (4.09)
31.66 (4.64)
11.62 (1.74)
17.61 (2.76)
16.77 (2.62)
22.47 (4.97)
13.01 (1.83)
12.08 (2.12)
27.88 (4.29)

0.30 (0.20)
0.18 (0.16)
0.05 (0.18)
0.05 (0.13)
0.21 (0.10)
0.25 (0.12)
0.15 (0.15)
0.63 (0.23)
0.09 (0.10)
0.37 (0.15)
0.07 (0.16)

26.63 (4.72)
24.91 (4.40)
33.06 (5.27)
49.85 (6.29)
31.15 (2.35)
29.50 (3.45)
22.51 (3.44)
25.17 (4.79)
42.40 (2.48)
37.57 (2.38)
68.84 (5.64)

23.84 (4.08)
22.61 (3.64)
27.65 (4.09)
31.36 (4.60)
9.735(1.77)
14.64 (2.78)
17.21 (2.58)
25.54 (4.88)
11.80 (1.92)
11.78 (2.01)
28.82 (4.21)

 0.21 (0.21)
 0.16 (0.15)
-0.03 (0.11)
 0.10 (0.12)
 0.41 (0.10)
 0.42 (0.11)
 0.14 (0.14)
 0.43 (0.11)
 0.19 (0.12)
 0.38 (0.14)
 0.07 (0.15)

Summary statistics of selected weather stations
Study 

Locations Minimum 
(mm)

Maximum 
(mm) Mean Standard 

Deviation
Coefficient of 

Variation Skewness Kurtosis
Jacobabad

Rohri
Nawabshah
Hyderabad

Chhor
Mohenjodaro

Khuzdar
Lasbela
Pasni

D.I Khan
Drosh
Chitral
Lahore

3.00
5.00
0.00
4.00
2.30
5.00
15.00
8.00
0.00
21.1
22

23.40
29.40

323
173.7
143
153

214.6
119.6
223

269.6
131.8
150
131

161.20
189.70

58.83
46.75
42.49
48.35
71.27
34.44
43.33
48.22
35.35
59.09
51.95
51.43
87.61

70.87
40.58
34.52
33.63
44.26
25.44
34.55
46.55
26.64
27.01
21.21
28.62
38.71

1.20
0.87
0.81
0.69
0.62
0.79
0.80
0.96
0.75
0.45
0.41
0.55
0.44

2.25
1.49
1.07
0.878
1.14
1.28
4.34
3.49
1.56
1.49
2.10
2.13
0.89

4.94
1.97
0.49
0.77
1.36
1.63
19.87
13.41
3.13
2.47
5.15
4.81
0.17

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.



Table 3. Estimated return levels for ADMRS of different weather stations over the country by 
using MLE and L-moments methods

MLE method L-moment methodStudy 
Locations         

10 25 50 100 500 10 25 50 100 500
Rohri

Nawabshah
Hyderabad

Chhor
Khuzdar
Lasbela
Pasni

Jacobabad
Drosh
Chitral
Lahore

97.40 
86.71
92.39 
127.18
65.82
84.28
67.78
136.43
75.67
80.64
137.57

145.22
121.42
119.90
162.23
85.69
117.64
91.75
259.55
91.63
112.48
169.91

190.62
151.46 
141.24 
189.55
103.29
148.06
111.87
413.21
104.43
144.57
195.40

246.27
185.46 
163.24 
217.78
123.62
184.14
134.07
651.77
117.10
185.96
222.05

429.89
283.28
217.34
287.51
184.13
296.44
195.20
1846.23
152.99
335.03
289.15

95.56 
86.31
93.57
128.73
67.15
84.35
68.43
122.63
75.627
79.605
139.08

136.13 
119.68
118.07
167.47
95.53
128.25 
92.81
202.22
94.536
111.42
172.16

172.02 
147.97
135.88
198.613
124.99
174.17
113.23
286.44
110.96
143.69
198.16

213.41 
179.42
153.23
231.69
163.96
235.35
135.69
399.75
129.62
185.56
225.26

336.37 
267.26
192.21
317.27
310.77
468.66
197.33
839.37
183.62
337.96
293.18

Table 4. Posterior Means, standard deviations and confidence intervals for GEV parameters to 
ADMRS data of different weather stations via non-informative priors.
 

Parameters estimates of GEV distribution
Study 

Locations
)(ˆ se

[CI]

)(ˆ se
[CI]

)(ˆ se
[CI]

Rohri

Nawabshah

Hyderabad

Chhor

Khuzdar

Lasbela

Pasni

Jacobabad

Drosh

Chitral

Lahore

26.07 (4.97) 
[17.13, 36.44]
25.21 (4.83)

[16.43, 35.29]
31.96 (5.42)

[21.52, 42.95]
50.61 (6.65)

[37.99, 64.14]
32.12 (2.45)

[27.46, 37.11]
30.94 (3.71)

[24.04, 38.67]
22.95 (3.56)

[16.17, 30.26]
24.23 (5.11)

[15.43, 35.35]
42.78 (2.69)

[37.88, 48.36]
38.18 (2.58)

[33.47, 43.60]
69.18 (5.99)

[57.54, 81.57]

23.80 (4.68)
[15.97, 34.23]
23.77 (4.19)

[16.84, 33.50]
26.56 (4.51)

[18.85, 36.27]
34.15 (5.51)

[25.20, 46.74]
12.56 (2.08)
[9.17, 17.33]
19.04 (3.30)

[13.63, 26.51]
18.19 (2.98)

[13.24, 24.95]
24.92 (5.93)

[15.57, 39.04]
14.046 (2.160)
[10.444, 18.92]
13.251 (2.53)
[9.158, 19.17]
30.205 (4.91)

[21.846, 41.18]

0.35 (0.22)
 [0.01, 0.87]
0.22 (0.18)

[-0.09, 0.61]
0.13 (0.19)

[-0.17, 0.57]
0.08 (0.13)

[-0.15, 0.37]
0.25 (0.11)
[0.07, 0.51]
0.29 (0.13)
[0.08, 0.60]
0.18 (0.15)

[-0.07, 0.51]
0.66 (0.23)
[0.27, 1.18]
0.12 (0.12)

[-0.05, 0.37]
0.39 (0.16)
[0.12, 0.74]
0.09 (0.16)

[-0.17, 0.42]
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Table 5. Posterior Means, standard deviations and confidence intervals for GEV parameters to 
ADMRS data of different weather stations via informative priors.

Mohenjo-Daro D.I. KhanStudy 
Locations         )(ˆ se

[CI]

)(ˆ se
[CI]

)(ˆ se
[CI]

)(ˆ se
[CI]

)(ˆ se
[CI]

)(ˆ se
[CI]

Rohri

Nawabshah

Hyderabad

Chhor

Khuzdar

Lasbela

Pasni

Jacobabad

Drosh

Chitral

Lahore

24.92 (4.59) 
[16.58, 34.53]
24.40 (4.49)

[15.86, 33.88]
30.83 (5.18)

[21.12, 41.45]
47.92 (6.22)

[36.15, 60.40]
31.97 (2.12)

[27.48, 36.82]
30.07 (3.45)

[23.60, 37.13]
22.54 (3.47)

[15.98, 29.62]
22.15 (4.26)

[14.69, 31.20]
42.66 (2.67)

[37.51, 47.96]
37.82 (2.46)

[33.30, 42.95]
66.87 (5.65)

[56.04, 78.54]

21.75 (3.89) 
[15.15, 30.19]
22.34 (3.37)

[16.09, 30.59]
25.08 (4.07)

[17.81, 34.11]
30.86 (4.54)

[23.54, 40.98]
12.35 (1.65)
[9.29, 16.58]
17.73 (2.64)

[13.29, 23.61]
17.67 (2.73)

[13.12, 23.91]
20.37 (3.93)

[13.63, 29.13]
12.45 (2.13)
[8.90, 17.22]
12.45 (2.13) 
[8.90, 17.22]
27.22 (4.27) 

[20.11, 37.02]

0.25 (0.14)
[-0.01, 0.54]
0.16 (0.14)

[-0.09, 0.45]
0.07 (0.14)

[-0.17, 0.37]
0.04 (0.10)

[-0.14, 0.25]
0.24 (0.09)
[0.07, 0.45]
0.25 (0.10)
[0.07, 0.46]
0.16 (0.12)

[-0.06, 0.43]
0.43 (0.12)
[0.18, 0.68]
0.34 (0.12)
[0.11, 0.59]
0.34 (0.12) 
[0.11, 0.59]
0.05 (0.12)

[-0.17, 0.29]

27.40 (4.37) 
[19.33, 36.47]
26.52 (4.38)

[18.27, 35.49]
32.32 (5.02)

[22.91, 42.28]
47.54 (5.81)

[36.18, 59.15]
33.38 (2.12)

[28.73, 38.20]
31.70 (3.45)

[25.08, 38.67]
24.73 (3.55)

[18.15, 32.03]
24.91 (4.16)

[17.12, 33.55]
39.11 (2.48)

[34.47, 44.26]
39.12 (2.48) 

[34.47, 44.26]
65.82 (5.22) 

[55.86, 76.33]

23.94 (3.73)
[17.69, 32.04]
24.36 (3.70)

[18.29, 32.70]
26.41 (4.01)

[19.56, 35.30]
30.02 (4.06)

[23.26, 39.11]
13.87 (1.66)

[10.58, 18.09]
19.03 (2.57)

[14.56, 24.64]
19.91 (2.88)

[15.11, 26.42]
22.79 (3.72) 

[11.39, 19.32]
13.68 (2.18)
[9.98, 18.53]
13.68 (2.18)
[9.98, 18.53]
26.10 (3.84) 

[19.74, 34.81]

0.17 (0.108)
[-0.03, 0.38]
0.12 (0.12)

[-0.11, 0.34]
0.04 (0.12)

[-0.18, 0.29]
0.022 (0.08)
[-0.14, 0.19]
0.26 (0.09)
[0.09, 0.44]
0.23 (0.08)
[0.07, 0.40]
0.17 (0.11)

[-0.06, 0.39]
0.29 (0.09) 
[0.12, 0.47]
0.31 (0.10)
[0.09, 0.50]
0.30 (0.10)
[0.09, 0.50]
0.03 (0.10)

[-0.16, 0.23]

Table 6. Estimated return levels corresponding to different return periods of ADMRS for 11 
weather stations across the country by using non-informative priors

Non-informative priorStudy 
Locations         10 25 50 100 500

Rohri
Nawabshah
Hyderabad

Chhor
Khuzdar
Lasbela
Pasni

Jacobabad
Drosh
Chitral
Lahore

107.87
94.00
101.06
135.08
70.23
91.48
73.35
145.86
79.38
86.08
144.79

167.21 
134.53
136.44
175.63 
94.03 
131.50
101.47
278.57
98.00
122.90
181.67

226.00 
170.40
165.57
207.83 
115.76
169.26
125.65
443.95
113.289
160.57
211.21

300.74 
211.77
197.14
241.70
141.53
215.09
152.85
700.33
129.823
209.80
242.50

563.38
334.81
281.54
327.83 
221.74
364.60
230.37
1980.87
173.91
391.32
323.07
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Table 7. Estimated return levels corresponding to different return periods of ADMRS for 11 
weather stations over the country by using Bayesian paradigm under informative priors

Informative prior (Mohenjodaro) Informative prior (D.I. Khan)Study 
Locations 10 25 50 100 500 10 25 50 100 500

Rohri
Nawabshah
Hyderabad

Chhor
Khuzdar
Lasbela
Pasni

Jacobabad
Drosh
Chitral
Lahore

90.43
85.17
92.26
120.89
68.97
83.70
70.71
99.73
77.88
79.97
131.76

131.03
118.27
121.37
153.82 
91.74 
117.08
97.01
162.94
95.75
110.00
161.39

167.93
146.36
144.33
179.15
112.37 
147.51 
119.36
229.76
110.35
139.47
184.32

211.51
77.64
168.34
205.06
136.65 
183.52
144.27
319.56
126.09
176.60
207.89

346.32
265.14
228.82
268.02
211.36 
295.32
214.09
667.32
167.82
305.18
265.67

93.19 
89.78
94.90
116.87
76.12
87.64
79.55
97.78
82.90
83.44
126.54

129.49 
122.19
123.25
147.16 
103.32
121.26
109.88
146.31
103.57
113.43
153.35

160.52 
148.82
145.08
170.06
128.41
151.33
135.82
192.21
120.80 
142.02
173.73

195.26 
177.66
167.45
193.15 
158.41
186.34
164.91
248.25
139.68
177.20
194.37

293.44
254.69
221.93
247.93
253.22 
292.06
247.24
431.93
191.19
293.94 
243.72

Table 8. Assessment measures results for the frequentist methods and Bayesian method (both for 
non-informative and informative priors)

Frequentist methods Bayesian method
MLE L-moments Non-informative Mohenjo-Daro D.I. KhanStudy Locations         

RRMSE   RAE   RRMSE   RAE   RRMSE   RAE   RRMSE   RAE   RRMSE   RAE   
Rohri

Nawabshah
Hyderabad

Chhor
Khuzdar
Lasbela
Pasni

Jacobabad
Drosh
Chitral
Lahore

0.245
0.254
0.239
0.206
0.177
0.220
0.217
0.271
0.114
0.135
0.145

1.576
1.872
1.739
2.044
1.674
1.618
1.776
1.239
1.945
1.396
1.997

0.285
0.293
0.263
0.224
0.182
0.239
0.24
0.257
0.117
0.151
0.154

1.581
1.961
1.930
2.262
1.836
1.946
2.077
1.212
2.023
1.738
2.218

0.230
0.249
0.225
0.202
0.174
0.221
0.215
0.276
0.112
0.134
0.142

1.575
1.824
1.706
2.010
1.103
1.608
1.743
1.282
1.923
1.347
1.991

0.221
0.246
0.210
0.198
0.176
0.204
0.203
0.247
0.111
0.133
0.131

1.358
1.784
1.697
1.672
1.629
1.387
1.661
1.208
1.901
1.302
1.989

0.214
0.231
0.205
0.191
0.173
0.227
0.200
0.198
0.109
0.130
0.114

1.534
1.813
1.690
1.622
1.611
1.401
1.594
1.190
1.894
1.116
1.985
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