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Abstract
This article describes an in-depth methodical approach to the development of
efficient high-frequency (HF) antennas for use in radio frequency identifica-
tion (RFID) systems operating at 13.56 MHz. It presents brief theory relevant
to RFID communication and sets up a framework within which features and
requirements of antennas are linked to key design parameters such as antenna
form-factor and size; RF power level, material and communication protocol.
Tuning circuits necessary to adjust the resonance and power matching charac-
teristics of antennas for good transponder interrogation and response recovery
are discussed. To validate the approaches outlined, a stepwise design and mea-
surement of an HF antenna for an ISO/IEC 15693 compliant read/write device
(RWD) is described. Common practical problems that are often encountered
in such design processes are also commented on. The prototyped antenna was
tuned, connected to the RWD via a 50 Ω coaxial cable and tested.
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1 INTRODUCTION

According to many manufacturing, energy, and service industry experts, radio frequency identification (RFID) has
become arguably the most ubiquitous element for automatic identification and second only to the use of barcoded labels,
in the view of others.1,2 Although the barcode reading and other methods are still popular due to their low prices and/or
longer market existence, the RFID technology has garnered a lot of interest since the turn of the millennium and its
usage has been projected to see massive growth towards becoming the foremost identification method in this decade.3
The widespread use of the RFID technology and its projected growth burst is mainly attributed to its optimal solutions
to the low data storage capacity and nonreprogrammability problems associated with the other identification methods.4
The technology’s popularity is also on account of its faster, more secure and hardier means of power and data transfer
between a read/write device (RWD) and a tag located on/in a remote object of interest through wireless media. Owing to
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this principle of operation, RFID possesses the capability for nonline of sight and multiple object identification: two very
important features required in applications like inventory control and automation.

RFID systems exist in many variants and can be differentiated by certain fundamental features. These include opera-
tion type, operating principle of data carrier, power supply, operating frequency range, and mode of data transfer. Based
on the RWD transmission frequency, RFID devices may be considered low frequency (LF): 30–300 kHz, high frequency
(HF): 3–30 MHz, ultra-high frequency: 0.3–3 GHz or microwave: >3 GHz systems. The HF class of RFID devices operate
generally at f op=13.56 MHz (wavelength, 𝜆op ≈ 22 m) in the ISM band. They use inhomogenous magnetic field as means
for data and power transfer; and are able to achieve read ranges up to 1 m. Like most mainstream technologies, the oper-
ation of HF devices are regulated by various standards and are also required to conform to local (national/regional) radio
regulations. These include ISO/IEC 18000, 14443, 15693 standards, and the EPCglobal Class-1 HF-RFID Air Interface pro-
tocol specifications. These standards define key radio interface parameters such as modulation, subcarrier frequencies,
bandwidth, and coding. Specifically, the ISO/IEC 15693 standard is designed for the so-called vicinity coupling systems:
RFID devices which offer maximum read distance of up to 1 m. Tags complying with the standard are referred to as
vicinity integrated circuit cards (VICCs) whiles RWDs or interrogators are called vicinity coupling devices (VCD). The
three-part standard was originally designed for systems where a single or small number of VICCs are to be used at a time
like access control applications. Thus, systems conforming to the standard are not so ideal for applications where large
number of tag could be present in the interrogator zone. Part 1 of ISO/IEC 15693 defines the physical characteristics of
VICCs.5 In addition, this part of the standard provides some information on mechanical and EM compatibility testing.4
Part 2 standardizes the VICC-VCD power and communications interface whiles Part 3 specifies transmission protocols
and anticollision measures.

ISO/IEC 14443 is a four-part standard tailored towards proximity coupling systems: very close coupled settings where
maximum interrogation range is about 10 cm thereby allowing for secure interactions. Parts 1 and 2 define mechani-
cal properties of tags and the RF power/signal interface, respectively.6,7 The last two parts detail anticollision measures
and the transmission protocol.8,9 Compliant RWDs and tags are termed as proximity coupling devices (PCDs) and prox-
imity integrated circuit cards (PICCs), respectively. The standard defines two types of PICCs—Type A and B, which
differ based on transmission procedures. In detail, although both types share the same transmission protocol, the two
have different modulation methods, coding schemes and initialization procedures. PCDs must be able to communi-
cate equally well by the two communication procedures, and thus support all PICC types. Typically, PCDs do this by a
periodic switching between both procedures in an “idle” mode. The polling is suspended once a PICC-PCD communica-
tion link is established. Notable implementations of proximity coupling systems include biometric passports, ticketing,
and some financial payment systems. The very popular near field communication technology is based in part on the
ISO/IEC 14443.

The ISO/IEC 18000 standard provides a framework to define common communications protocols for internationally
usable RFID frequencies. It also determines the possible multifrequency use of such protocols with minimized migra-
tion problems, implementation costs, and system management overhead.10 Part 3 of the 18000 standard (18000-3) defines
physical layer, collision management and transmission protocol parameter values for passive RFID systems with focus on
item identification at 13.56 MHz. This standard is believed to have been created to address some of the aforementioned
issues associated with the ISO/IEC 15693 standard. ISO/IEC 18000-3 classifies conforming systems into three noninter-
fering, noninteroperable modes—Modes 1, 2, and 3 which are intended to address different application areas. Mode 1
points to ISO/IEC 15693 and provides some enhancements to its item management performance. Mode 2 specifies an air
interface which allows high speed RWD-tag communication links and Mode 3 combines a high-speed version of Mode 1
with optional Mode 2 features for improved performance.

Finally, the EPCglobal Network is an internet-based technology which combines data acquisition via RFID technol-
ogy with documentation and location services to provide improved and precise logistics processes using unique identifiers
called electronic product code (EPC).4 The EPCglobal Class-1 HF-RFID document forms one of the basis of the EPC/RFID
technology. The document specifies a signaling layer of the 13.56 MHz RWD-tag communication link, operating proce-
dures for both end devices and a collision arbitration scheme employed in identifying a given transponder in a multitag
setting.11

In this article, we present a methodical approach to designing efficient HF-RFID interrogator antennas which guar-
antees good read ranges and sensitivity to tags. Several design considerations are outlined and practical implementation
options are discussed. The paper extends this discussion and applies the techniques to an ISO/IEC 15693 mid to long
range system where an antenna is designed and prototyped for an industry standard RWD as a means of validation. The
antenna was tuned, connected to the RWD via a 50 Ω coax line and tested.
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This article is organized as follows: Section 2 reviews some theory relevant to HF-RFID communication. Next, key
parameters and considerations for the design of an HF antenna are provided in a comprehensive design flow in Section 3.
An experimental validation of the presented approaches are outlined in Section 4and discussed. The paper concludes
with a validation in Section 5.

2 HF-RFID RWD-TAG COMMUNICATION

HF-RFID systems, like their LF counterparts, operate based on inductive magnetic coupling, as shown in Figure 1. This
sets up a two-way communication link between an RWD and a passive tag and allows for power transfer to a tag at any
position inside the three-dimensional (3D) interrogation zone of the RWD. This zone constitutes the operating volume of
the RWD and can be thought of as an overlap of the reactive near-fields of the two devices’ antennas. A planar cut of this
volume is illustrated by the faint blue shape in Figure 1. Here, the RWD antenna coil transmits a query by generating a
strong amplitude modulated magnetic field. The time-varying field flux crosses the cross-section of the nearby tag antenna
coil thereby inducing a voltage at the tag’s antenna ports. This voltage is stepped up in a resonant circuitry, rectified and
serves as power supply for the tag chip. As shown in Figure 1, the resonant circuit is formed from the capacitor C1 and the
tag antenna impedance Zt whiles the rectifier circuit is an envelope detector consisting of the capacitor C2, diode, and the
tag chip input impedance, Zchip. The draw on magnetic energy by the resonant tag creates feedback on the RWD antenna
which is often represented as a complex transformed impedance, ZF at the RWD antenna coil given by Equation (1).
Provided the mean dimensions of the antennas are small compared with 𝜆op, the RWD-tag system could be represented
by the equivalent lumped element model in Figure 2.

ZF =
(𝜔op𝛾(d))2LtLd

Zt + Zchip
, 𝛾(d) ∈ [0, 1], (1)

where 𝜔op = 2𝜋fop whiles 𝛾(d) is the coupling coefficient. 𝛾(d) depends on the distance between the two antennas, d and
their (equivalent) radii, rt and rd as stated in Equation (2) assuming that the two antenna coils are positioned parallel
to each other and aligned on a common central axis; and provided rd ≥ rt. If coils deviate from this parallel position,
the orientation of the tag loop in space is resolved with respect to the RWD antenna by appropriately weighting 𝛾(d).

F I G U R E 1 Operation of an HF-RFID system. HF,
high frequency; RFID, radio frequency identification

F I G U R E 2 Near-field equivalent lumped element
model showing the introduction of ZF at the RWD. Rd

and Rt are the self-resistances of the RWD and tag
antenna coils, respectively. The RWD is represented by a
voltage source vTX with a series impedance ZS. RWD,
read/write device
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Furthermore, it could be shown that 𝛾(d) is qualitatively related to the self-inductances of the antennas, Lt and Ld; and
their mutual inductance, M (Equation (2)).4,12

𝛾(d) ≈

(
rtrd

d2 + r2
d

) 3
2

= M√
LtLd

. (2)

In the tag, by switching a load (ohmic or capacitive) using data pulses in the tag’s circuitry, ZF varies and voltage at
the RWD antenna output changes accordingly. This is called load modulation and it is used as a means by the remote
tag to signal its unique identification or any other data to the RWD as an answer to its query. In practical systems, this
signaling isn’t strong enough and hence not very distinguishable from the RWD’s significantly stronger signal. A more
robust technique known as load modulation with a subcarrier is often employed where the switching of additional load
creates a new high elementary carrier at frequency, f sub called a subcarrier. In 13.56 MHz systems, typical f sub values
include f op × 2−n where n= 4, 5, and 6. As shown in Figure 3, the subcarrier is first amplitude modulated in time with the
data to be transmitted, creating two spectral lines at ±f sub. The modulated subcarrier is then used to modulate the carrier
f op. This shifts the two sidebands to frequencies f op ± f sub. The data flow rides on these modulated sidebands which upon
transfer, could be easily extracted, conditioned and demodulated at the RWD receiver front-end.

In vicinity coupling systems, the RWD-to-tag or forward path communication uses 10% or 100% amplitude shift keying
(ASK) with pulse position modulation (PPM) coding. Two PPM schemes are common with vicinity systems: 1-of-4 which
gives the “fast mode” and 1-of-256 for the “long-distance mode.” With 1-of-4 PPM, queries can be sent a rate of 26.48
kbit/s whiles a 1.65 kbit/s rate is achieved with 1-of-256 PPM. For tag reply on the return path, the tag reply is sent either
as a 100% ASK pulse-shaped signal on a 423.75 kHz subcarrier or a frequency shift-keyed signal switching between 423.75
and 484.12 kHz subcarriers. In both cases, replies are encoded with Manchester code and data rates of about 6.6 or 26.6
kbit/s can be achieved.13 The two forward path modes coupled with the possibility to use one or two subcarriers in the

F I G U R E 3 Load modulation of the baseband tag response with a subcarrier
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tag replies makes the ISO/IEC 15693 interface quite flexible. This allows vicinity systems to be tuned to suit different
operational requirements ranging from use with low RF noise at long range to high RF noise at short range.

For ISO/IEC 14443 conforming systems with Type A cards, a 100% ASK modulation with modified Miller bit encoding
is used in the forward transfer. For the return link, an on/off keyed 847 kHz subcarrier is modulated with a Manchester
coded reply. In Type B, PCD-to-PICC data transfer is achieved with a 10% ASK modulation with nonreturn-to-zero (NRZ)
coding. In its response, the PICC uses an 847 kHz subcarrier which is binary phase shift keying (BPSK) modulated with
a NRZ coded reply. For both Type A and B, the baud rate in both forward and return transfer directions is 106 kbits/s.4,7

ISO/IEC 18000 Mode 1 uses the “Interrogator-talks-first” (ITF) technique similar to ISO/IEC 15693 and achieves
speeds of about 26 kbit/s. In Mode 2, a ±3◦ to ±4◦ phase jitter modulation (PJM) of the powering field coupled with
modified frequency modulation (MFM) encoding is used for RWD to tag transmission. The total forward link data rate
for Mode 2 is fixed at 424 kbit/s. Here, RWDs can be full duplex providing the possibility for transmitting queries whilst
receiving multiple tag replies simultaneously. On the other hand, the return path employs an MFM-encoded, BPSK mod-
ulated subcarrier and eight simultaneous reply channels allowing for a maximum achievable path speed to 848 kbit/s
(each channel is 106 kbit/s). Tags can select from one of the eight subcarrier frequencies which range between 0.969
and 3.013 MHz. Tag replies are band limited to reduce data and subcarrier harmonic levels, enabling the simultaneous
reception of information from tags transmitting on the different channels. Tags are half duplex. With Mode 3, compliant
systems use ITF with random slotted anticollision medium access. The air interface uses a mandatory ASK modulated
pulse-interval encoded (PIE) communication and gives a higher speed air interface (higher than ISO/IEC 15693). Mode
3 RWDs are also able to recognize large quantities of tags in the field. Data rates include a 100 kbit/s forward link speed
and 424 kbit/s or a maximum of 848 kbit/s on the return path. Slower rates are also available. There is also an optional
PJM modulated, MFM-encoded communication with PJM compliant tags. Available speeds for this method are 212 kbit/s
forward link and a 106 kbit/s/channel for tag-to-RWD transmissions.10

In the EPCglobal Class-1 case, reader-to-tag communication employs PIE encoding with ASK (double-sideband,
single-sideband or phase-reversal) and can achieve a maximum data rate of about 160 kbits/s. In response to the RWD
query, the tag uses ASK or PSK with FM0 baseband for single-reader mode or Miller modulation with a 40–640 kHz sub-
carrier for multi/dense-reader mode. The dense-reader mode is useful for preventing adjacent readers from interfering.
Transmission rates range from 5 to 640 kbit/s.11

3 ANTENNA DESIGN

3.1 Design considerations

Based on their operational principle, HF-RFID antennas are typically designed as electrically small loops. Designing
RWD antennas for optimum performance requires knowledge of the complete RFID system’s specifications such as RWD
front-end, antenna RF feed and possible tag characteristics. Since most systems operate at 13.56 MHz, antennas are to be
tuned to that frequency and have an impedance that matches the RWD feed with a minimal reflection loss. Furthermore,
when connected to the antenna, the RWD must exhibit a very good frequency selectivity in order to capture tag responses.
Another important design goal is the maximum read distance of tags, dmax. Since passive tag hardware depends on field
launched by the RWD for power, the RWD antenna must be designed such that the magnetic field it produces at dmax
is sufficient for both tag chip operation and RF communication. The transformer-type magnetic nature of the RWD-tag
coupling implies that dmax cannot be very large and that the read distance must be confined to the reactive near field of
the antenna, that is, dmax <<

𝜆op

2𝜋
. Indeed, the interrogation magnetic field H can be shown to attenuate rapidly beyond

a certain distance with a decay of about 60 dB per decade in free space.4 Moreover, if the tag is located outside the near
field region, it will receive a traveling wave instead of a quasi-static H field and the modifications to the field due to the
presence of the tag will never be sensed by the RWD. Such a quasi-static H field is guaranteed in the near field if the coil
is supplied with a constant current.

3.1.1 Form factor and sizing

Loop antennas are inexpensive, versatile and can take the form of numerous easily constructible shapes. They are
particularly suited HF-RFID systems which depends solely on near-field magnetic induction for power transfer and
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wireless communication. For short-range inductive radio links, the circular loop is often preferred. This is because
the current on the entire antenna is in phase and as such contribute constructively to the H field at a given dis-
tance d from the loop. Under the constant loop current assumption, the H field produced is found to achieve its
largest strength at a certain ratio of the loop radius, rd to d (𝜉 = rd

d
). That is, for every dmax specification, there exists

an optimal rd. Taking into account the phase difference along the total loop length, a compact cylindrical/circular
antenna coil of radius rd (i.e., total thickness, t <<rd) produces a magnetic field with component at an observa-
tion point P along the center line perpendicular to the coil’s plane, Hx with magnitude given by Equation (3)
(refer to Figure 4).

|Hx| = |||||||
D

∫
0

I cos 𝜃e2𝜋fopl

4𝜋(d2 + r2
d)

dl
||||||| =

Ird sin( 2𝜋2d
𝜆op

)

4𝜋2
√

(d2 + r2
d)

3

||||||
N−1∑
n=0

e
j 4𝜋2nrd

𝜆op

|||||| , (3)

where D = 2𝜋rdN is the total length of the loop material, N is the number of loop turns, I is the loop current amplitude
and 𝜃 is the loop’s tilt angle indicated in Figure 4.

The optimal 𝜉 value can be found by computing the limiting case, d→ 0, of the null-derivative condition for |Hx|, that
is, 𝜕|Hx|

𝜕𝜉
= 0. An elaborate derivation of the general N case of this condition is performed in Reference 14. A simplified

approach for the case of a single turn loop is shown in Equation (4).

lim
d→0

𝜆op(2𝜉2 − 1)
𝜉

−
2𝜋2d(1 + 𝜉2) sin

(
4𝜋2rd
𝜆op

)
1 − cos

(
4𝜋2rd
𝜆op

) = 0. (4)

The solution to Equation (4) shows that, for optimal performance, rd =
√

2d.15,16 The result also holds for any given
N. It should be noted that although a loop with radius rd(opt) is required for optimal performance of tags, an accu-
rate assessment of a system’s dmax requires knowledge of the minimum interrogation field strength, Hmin of the tag to
be used. That is the tag can still be sensed until a distance corresponding to the larger of the two intersection points
of the |Hx| vs rd curve and the line |Hx| = Hmin for a given current and number of turns. The derived condition sug-
gests that longer read distances can be achieved by increasing the loop radius accordingly. However, this relationship
is limited by the constant current precondition. The alternating current fed from the RWD front-end can be assumed
to be constant if D is small compared with 𝜆op. As a rule of thumb, the condition D < 0.2𝜆op is often used. Under this
assumption, the static field strength at point d from Equation (3) can be simplified as shown in Equation (5) using the
Biot–Savart law.17

F I G U R E 4 Loop antenna
geometry and path of magnetic flux lines
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|Hx| =
||||||||

NIr2
d

2
√

(d2 + r2
d)

3

||||||||
. (5)

When considering small loops with optimal radius, Equation (5) gives a notion that for a given current source, by
taking more turns, the loop will produce a large H field at the tag position P. However, this is not necessarily true and
the use of more loop turns becomes counter-productive even for moderately high N. With high N, the total loop length
D becomes considerable with respect to 𝜆op. In such a case, there exists more current carrying conductor parts which
contribute to the H field. These contributions are weaker due to the increased distance from these current carrying parts
to point P hence the total field at the tag is very weak. In addition, due to the phase differences along the larger loop,
the contributions of all loop parts will be out of phase at P resulting in partial destructive interference, exacerbating the
dip in field strength.14 Furthermore, for D equal to 0.5𝜆op, or a multiple, standing wave effects are noticed. The loop
experiences self-resonance, affecting the usability of the loop in the antenna set-up as the design of required current
enhancing techniques (discussed in Section 3.2) is difficult and highly constrained. In cases like this, the antenna system
will resonate at multiple frequencies and the energy will be divided amongst them.14,18 It is noteworthy that if such
enhancement techniques are employed, read distances d can be achieved with smaller radii rd, that is, rd <

√
2d since

the feed current is amplified. The value of rd would depend on the nature of the enhancement circuit but a conservative
choice in such a case is rd ≈ 0.5d.

Power transferred in the antenna near-field region is predominantly inductive. Hence, the antenna’s reactive
impedance is of primary importance although its real part cannot be neglected. Provided the D < 𝜆op condition is met, a
loop antenna can be modeled fairly accurately with lumped components as shown in Figure 5. The real component of the
loop conductor’s internal impedance is due to ohmic phenomena like skin and proximity effects. L is the loop inductance
whiles the parasitic per unit length capacitance between each pair of turns is quantified by Cp. For a loop made of solid
wire with radius b, the ohmic resistance could be evaluated using Equation (6). The reactive quantities, L and Cp of such a
loop are given in Equations (7) and (8).15,19 𝜎, 𝜇, and 𝜖 are respective notations for the wire conductivity, magnetic perme-
ability of medium and the electric permittivity of the wire insulation. In the absence of insulation, 𝜖 → 𝜖o = 8.85 × 10−12

F/m. It should be noted that equations for evaluating the lumped quantities may vary slightly depending on the shape of
loop and the nature of materials used. As examples, expressions for square/rectangular loops are discussed in Reference
15 and that for loops formed from hollow conductor tubes are given in Reference 20.

R = Nrd

b
Rs

(Rp

Ro
+ 1

)
(6)

L = N2𝜇rd

(
ln

[
8rd

b

]
− 2

)
(7)

Cp = 2𝜋2rd𝜖

ln

[
t

2bN
+
√(

t
2bN

)2
− 1

] , (8)

where Rs =
√

𝜔op𝜇

2𝜎
is the surface impedance of the loop conductor, Rp denotes the per unit length proximity effect ohmic

resistance, and Ro = NRs
2𝜋b

is the per unit length skin effect ohmic resistance. The ratio Rp

Ro
is discussed in Reference 15 as a

F I G U R E 5 Equivalent lumped parameter circuit
model of multiturn loop antenna
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function of the ratio c
b

for loops with 2≤N ≤ 8 with an interturn spacing of 2c. In that analysis, it is shown that for close

spacing ( c
b
→ 1), R is twice as large as that in the absence of proximity effect, that is, Rp

Ro
= 0. From Equations (6) and (7),

it is easy to infer that loop’s resistance R is very small compared with the inductive impedance 𝜔opL. To study the relation
between loop’s inductance and the strength of the H field it generates, the antenna is considered to be fed by a voltage
source V d in the RWD front-end. From Equation (5), the H field generated is directly related to the magnetomotive force,
MMF in the RWD equivalent magnetic circuit. Discarding the small R and high impedance shunt loading of V d by Ch;
and employing Ampere’s circuital law:

MMF = NI = N Vd

𝜔opL
= N Vd

𝜔op
× S

N2 ∝ VdS
N

, (9)

where S is the reluctance of the magnetic circuit and essentially represents the inverse of the inductance L′ of single turn
loop with the same cross-sectional area. Therefore, affirming aforementioned sizing criteria to maximize |Hx|, it is best
to use an optimally small size single turn loops made of large diameter wire, that is, N = 1 and small L′. Furthermore, by
using the single turn loop, the problem of high ohmic losses due to proximity effect is eliminated. This is especially good for
the communication properties of the RFID system. This is because the larger loop resistance translates to higher antenna
thermal noise whose voltage spectral density is described by the Johnson–Nyquist formula (vn =

√
4kTR). Therefore, in

the receive mode, though the signal level at the antenna output may be large, the signal-to-noise ratio (SNR) is poor
and faint tag responses may be lost in the background noise. In addition, with large (multiloop) antennas, it is often
difficult to meet legal transmitted power guidelines from local and international regulatory bodies such as the ETSI and
FCC in Europe and the USA, respectively. According to the ETSI EN 300 330 standard, the strength of the generated
magnetic field measured at 10 m should be at most 42 dBμA/m.21 Usually, larger loops are barely able to comply with
this regulation and require extra special shielding to operate within this limit.22 Other issues with large loops include
the emergence of magnetic flux holes in the interrogation zone resulting in insensitivity to some tags and the very high
loop L (Equation (7)) which may make power matching very difficult to achieve. However, in cases such as longer range
systems where larger loops must be used, field shaping techniques such as the use of so-called magnetic field repeaters
could be employed.23 Alternatively, in order to eliminate or correct flux dead zones, an array of smaller independent and
appropriately distributed loops could be used rather than a single large coil.24

3.1.2 Construction methods: Materials and technologies

Each HF-RFID application is unique and techniques used in realizing the RWD antennas may vary from one use case
to another. Loops can be made from any conductive material provided the structure is constructible. Such materials
may be general purpose or rather closely associated with a particular construction technology employed. Commonly
used conductors include copper (Cu) and aluminum (Al). Some Cu alloys like brass are also sometimes used, albeit
not very common. Cu has been and largely remains the material of choice due to its superior conductivity and relative
strength. Al has been touted and explored as an attractive substitute to copper due to its comparable electrical properties
and additional advantages of abundant availability, lightness and lower cost. However, aluminum poses challenges in
construction processes like soldering and may require some special care, tools, or materials. For instance, since most
commercial cables and connector elements are Cu-based (Cu/brass core or Cu-clad steel), the use of aluminum for loops
make the coils highly susceptible to corrosion due to the high electrochemical potential buildup at Cu-Al contact areas
especially when antennas are used in humid outdoor spaces. With time and use, the continuous galvanic action severely
degrades the antenna’s electrical and structural performance. In addition, such dissimilar metal contacts could result
in high resistance connections which can alter the antenna response. Counteracting the aforementioned effects require
treatment such as tin-plating copper contacts to slow the galvanic attack. Alternatively, same material cables and contacts
could be used.

Another popular material for antenna realization is silver (Ag), which is the most electrically conductive metal avail-
able, only ∼7% better than Cu in this regard. However, Ag is less dense compared with Cu, thus on a resistivity-to-mass
basis, the two materials are quite identical, with Ag being the rarer and more expensive of the two. Cu is more ductile and
malleable than Ag and can be shaped easier and stressed without damage. On the other hand, wires drawn from Ag are
susceptible to crack when twisted or kinked. Consequently, Ag is reserved for printing antennas in the form of inks and
pastes; a procedure which will also need curing for maintaining structural integrity of coil tracks. However, Ag inks are
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quite resistant to oxidation, which is a major weakness of both Cu and Al inks. When printed, Cu traces must be coated
with masks to prevent corrosion. Recent innovations such as the Cu nanoparticle technology has produced Cu inks which
are easily printable, hardy to oxidation, and have great electrical performances.

Available methods of constructing HF loop antennas range from the use of conductive tubes to screen printing. Tube
antennas are very robust and can be created from standard pipes and fittings. However, they are often bulky and can be
tough to work with, especially for circular loops. Hence, such antennas are molded as simple polygons in order to easily
achieve neater loops. Tube antennas require large driving sources and oft complex unstable structures for tuning and
current enhancement. In addition, for good ohmic contacts, construction of antennas with tubes require special tools and
skills such as high power blow-torch soldering/brazing. Nonetheless, compared with other technologies, tube antennas
are known to provide large read ranges provided they are driven high enough.25 In cases where higher RF output power
may be required, an external power amplifier locked at f op could be introduced at the RWD output. HF-RFID interrogator
antennas could also be made from conductive-backed tapes.22 Unlike the tube ones, tape antennas are very simple and
less bulky. However, they are not hardy and require some protection from environmental conditions.

For miniature systems, antennas can be created on PCBs and interfaced directly and neatly with onboard single-chip
transceivers such as the NXP CLRC632 and TI TRF79xxA series. With fully onboard modules, the sizes of antennas must
be controlled as a very large antenna may not be properly driven by the low output power RWD chip (∼200 mW at 5 V).
Thickness of substrate and distance between trace windings are key additional factors affecting the performance of PCB
antennas. Very thin substrates could cause fluctuations in 𝜇 values and loose loop windings could decrease L.26 However,
it should be noted that the tightness of windings is limited by the manufacturing process. Such antennas may be etched
by an average skilled person and do not necessarily require industry-grade processes or equipment. However, etching
PCB antennas involve the use of harmful materials such as ferric chloride acid, hence the manufacturing process should
be carried out meticulously and with safety equipment.

A relatively new printing technique for realizing HF loop antennas is screen printing conductive patterns with pastes
or inks onto low cost flexible substrates such as paper, polyethylene terephthalate (PET), polyimide, or polylactic acid
(PLA).27 Ag particle and nano Cu inks are common printing materials for antennas where a coil resolution of 50 lines/cm
and a track thickness as low as 11 μm is achievable.28,29 For substrates, paper is the popular choice for these antennas due
to its biodegradability and ultra-low cost. Moreover, it is resistant to thermal deformation, which is beneficial to the curing
of printed conductive tracks. However, paper substrates require special coating before use for antenna printing, has lim-
ited mounting methods for surface mounted device (SMD) components, and its relative permittivity is not very stable with
environmental changes, for example, moisture and temperature. Depending on the SMD package, the component could
be mounted on cured ink tracks by using either hot air soldering with low temperature paste (like Sn42/Bi57.6/Ag0.4), fix-
ing with Ag epoxy glue or applying both methods together.24 PET is another low cost substrate option. PET is not widely
used since it is not environmentally friendly and deforms when heated; in addition to its limited SMD mounting tech-
niques. Polyimide solves the problem of temperature endurance and supports conventional SMD mounting technology
(SMT) like reflow soldering. Nonetheless, the use of polyimide is unattractive because it is expensive to use and a possible
environmental pollutant. Like paper, PLA is biodegradable and nontoxic. Furthermore, PLA substrates are themselves 3D
printable and are available in both rigid and flexible forms. High fabrication complexity, low temperature endurance, and
limited SMT are some drawbacks of PLA use.30 In HF-RFID technology, screen printing has mostly been used for manu-
facturing flexible transponders for applications like electronic article surveillance31 and environmental monitoring.32 For
RWDs, this printing technique is particularly useful in configuring antennas for handheld systems, large areas, and non-
flat surfaces. Despite the low cost and great design flexibility advantages of this method, printed antennas are plagued
with reduced read performance (poor frequency selectivity and low SNR).33,34 These problems can be alleviated by using
special curing techniques to condense the microstructures of the printed antenna coils.24 In addition, applying the con-
ductive inks multiple times on the same coil track has been reported to reduce the DC resistance to tolerable levels.35

However, the thick film technique increases the overall cost and difficulty of the screen printing process.
Wire antennas are typically preferred as they provide a good balance of the pros and cons discussed above. These are

the simplest of all the available methods and wire used could be bare or insulated.

3.1.3 Environmental influences

The setting in which the antenna would be used, as well as its final mechanical casing, if any, are key to antenna perfor-
mance and hence should be considered carefully. The presence of any metal (including other antennas) in close proximity



10 of 17 OFOSU ADDO et al.

to the loop, dampens and decreases the loop L hence detuning the antenna. In addition, eddy currents in the metal gen-
erates an opposing H field and lower sensitivity to tag response signals.36 These phenomena degrade the antenna’s read
range performance and the minimum separation from metal for noticeable detuning effects, grows with the loop size. For
unavoidable exposure to metal, ferrite backing could be employed. This is a technique where a ferrite sheet is introduced
to screen the loop from metal thus limiting detuning effects and improving antenna performance. Generally, it is advised
that antennas always be tuned in their final positions or enclosures to account for inductance changes caused by both the
metal and ferrite sheet.26

Radio noise is another classical influence on antenna performance. Depending on the levels, radio noise can severely
reduce RWD receiver performance and limits its read range. Thus, noise sources are to be identified by surveying the
site, preferably before starting the antenna design. Indoor electronic appliances, industrial equipment, and broadcasting
radios are common sources due to the unwanted radio emissions from their electrical oscillators employed. Locating such
interference at HF could be done using the approach explained in Reference 37. The antenna must also be sufficiently
shielded to lessen the effect of such noise.

Interaction of physical elements of the environment with loop material also affect antenna performance. As discussed
in Section 3.1.2, Cu and Al antennas corrode in humid and warm space. This phenomenon is worse in areas near salty
water bodies. In such environment, Al oxidizes readily and a hard outer layer of electrically insulating oxide quickly
forms around and strongly attaches to the metal. For Cu, components oxidize upon exposure but the oxide formed is
relatively soft and conductive, although not as conductive as the base metal. These changes in the conductor alter antenna
parameters like the voltage standing wave ratio. When bare Al or Cu is used, conductors must regularly be wire brushed to
remove the oxide layer. A more effective solution is to use tin-coated cable and connectors whiles applying oxide inhibiting
compound immediately during installation. In PCB antennas, resins like epoxy are used to mask conductive traces for
this purpose. For tape antennas, the conductive material tends to peel when exposed to ultraviolet light, humid climates
and fluctuating temperatures. In very cold temperatures, tapes lose tack and adhesion. They crack and become brittle.
Conversely, when the environment is too warm, tapes may become soft and adhesives begin to break down and run. Extra
adhesive suited for the corresponding surrounding conditions should be used to reinforce tapes. For example, rubber
adhesives are good for temperatures in the range −5–60◦C whiles silicone or acrylic adhesives are effective for extreme
temperatures. Generally, efforts must be made to regulate the environment or shield antenna assembly from the elements
by using appropriate enclosures.

3.2 Tuning and current enhancement network

Standards for HF-RFID systems specify the minimum interrogation magnetic field strength, Hmin to be produced by
RWD antennas for proper operation of tags, that is, to build up a high enough voltage to power up the tag hardware.
The ISO/IEC 15693 specifies Hmin = 0.115 A/m (rms) whiles the ISO/IEC 14443 standard recommends Hmin = 1.5 A/m
(rms).7,13 However, it should be noted that there are tags from some manufacturers that are designed to operate very well
with less (e.g., for NXP cards, Hmin = 0.09 A/m). Let us study a VCD antenna design case where the desired maximum read
distance is 0.6 m. Using the optimal radius criterion with Equation (5) yields Equation (10). With R < 𝜔opL, the voltage to
be applied to the RWD antenna to achieve d is given in Equation (11) where Imin is the minimum rms current needed in
the antenna for Hmin. For a single turn loop with L= 1.5 𝜇H, |Vd| ≈ 60 V. Feeding the loop with such high voltage directly
from the RWD front-end is not practical, hence enhancement techniques are required. This can be done either actively
with the aid of an amplifier (e.g., Class E) or passively by means of an RLC circuit.

|Hx| =
||||||||

NIr2
d

2
√

(d2 + r2
d)

3

||||||||
=
||||||

NI√
27d

|||||| (10)

|Vd| ≈ Imin × 𝜔opL =
||||||
√

27𝜔opdHminL
N

|||||| . (11)

The extent of enhancement is not unbounded. In a passive approach, this can be quantified by the quality factor Q
of the resonator. In the tag-to-RWD communication, the modulated tag response is captured by the RWD antenna and
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relayed to the receiver front-end for demodulation. The received signal is conditioned and the subcarrier signal in the
spectrum sidebands are extracted. Although guaranteeing larger RF power for the loop antenna, a large Q = fop

BW
results

in narrower bandwidth BW which conflicts with the RWD bandpass characteristics resulting in poor carrier-subcarrier
separation. Furthermore, the RWD becomes susceptible to ringing issues which could interfere with protocol parameters
such as bit timing.29 A good compromise is to design for sufficient bandwidth allowing the undistorted reception of a
modulated carrier signal whiles having enough power to meet the Hmin criterion. For ISO/IEC 14443 applications, the
standard prescribes Q ranging between 6 and 10 and for ISO/IEC 15693 systems, the loaded antenna’s Q must lie in
the range of 15–20 for good performance (Figure 6).5,6 The more relaxed Q requirement for vicinity coupling systems is
because they have lower f sub and lower data rates as compared with PCDs, hence requiring narrower bandwidths (see
Section 2). To design applications that comply to both standards, Q= 7 is recommended.26

To enhance the current, the antenna must be made to behave as a parallel RLC circuit or slight variant of it. From
Equation (8), it can be assumed that the impedance due to Cp is high enough at f op and that the antenna loop is equiva-
lently a series RL circuit as shown in Figure 8. Hence, the antenna is approximately a single time constant system whose
dynamics are described by a large time constant 𝜏 = L

R
. Therefore, the unloaded quality factor of the antenna, Qo = 𝜔op𝜏.

The large Qo could be reduced to an overall recommended value, QL by loading the antenna with a large shunt resistance
Rpar to produce an effective antiresonance with a lower quality factor Qext =

Rpar

𝜔opL
. Since Rpar >>R , it can be proven that

QL =Qo||Qext ≈Qext. Therefore, in designing damping network, a desired QL is first selected and the appropriate shunt
resistor value can be determined as Rpar ≈ 𝜔opLQL. This resistance value could be fine-tuned for optimum performance.
To achieve a parallel RLC chain which resonates at f op, a (tunable) capacitance Cpar = 1

𝜔2
opL

should be introduced into the
network.

Finally, when isolated from the tag, the impedance of the loop antenna together with the enhancement and tuning
networks should be matched to the RWD source impedance, Zs. Matching ensures that maximum power leaves the RWD
and also prevents undesired effects such as parasitic power emissions and power reflections which may arise due to the
nonstationary nature of RF voltages at HF frequencies. In typical industrial RWDs, Zs = 50 Ω and hence 50 Ω coaxial
(or shielded) cables are used to feed antennas. To achieve power matching between the antenna and the RWD output
module via the coax supply, the damped antenna impedance Zin = (R + j𝜔opL)||Rpar must be transformed to RX = 50 Ω.
There are numerous techniques for matching antennas, some suitable for some construction technologies than oth-
ers. Common methods include T-matching, gamma matching, and transformer matching. A technique which combines
tuning, enhancement, and matching in a compact way is capacitance matching with damping. This technique is essen-
tially an all-capacitor L-section since Zin falls outside both unit resistance and conductance circles on the Smith Chart.
Here, Cpar is split into series and shunt elements Cs and Ch adding an extra degree of freedom to the network design.
Cs shifts Zin in the direction of the jX axis shown in Figure 7 (i.e., unto the unit conductance circle), while Ch shifts the
impedance point away from the origin in a circular path in the z plane (i.e., along the unit conductance circle to RX ).
A simplified dimensioning of the shunt and series capacitance elements from Cpar, RX , and Rpar are approximated in
Equations (12) and (13), respectively. The values obtained for Ch and Cs are not exact and may need tuning. The circuit is
then adapted to function as a balun to eliminate common mode noise, ringing and other effects due to the large voltage
difference between the coax core and the outer grounded shield. Figure 8 shows the balanced version of the capacitance
matching circuit.

F I G U R E 6 Bandpass characteristics observed for
read/write devices with adequate and very high Q
antennas
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jX

RRXR

X
Zin

Cs

Ch

XCh

XCs

F I G U R E 7 Z plane representation of Zin transformation by Cs on Ch

F I G U R E 8 Circuit representation of damped loop antenna with a
capacitance matching network

Ch ≈ Cpar

√
Rpar

RX
(12)

Cs =
ChCpar

Ch − Cpar
. (13)

4 EXPERIMENT

A single turn circular loop HF antenna was designed, prototyped, and tested for read range dmax = 0.6 m to validate the
discussed methods and formulas. Following considerations in Section 3.1.1, the antenna was formed from 1 mm diam-
eter copper wire and molded into a loop of radius rd = 0.3 m on a cardboard substrate. From Equations (6) and (7), the
impedance of the antenna at f op was estimated to be 0.59+ j208.02 Ω. The antenna was modeled in CST Microwave stu-
dio and its impedance was simulated to confirm the results obtained from the analysis. The simulated input impedance
was 0.64+ j215.69 Ω. The model of the antenna loop and its impedance plot is shown in Figure 9. Figure 10 shows the
simulated magnetic field strength produced in the plane perpendicular to the loop plane. The input impedance of the
realized antenna was determined by first measuring the complex power reflection coefficient Γ at the antenna port using
the Agilent E5071c vector network analyzer and a balun (Figure 11(B)). The measured input impedance of the antenna at
f op was then obtained from Γ as Zin = 2.25+ j211.48 Ω using Equation (14). The simulated and measured loop reactances
bore close agreement. However, there was a discrepancy between the calculated and measured resistances which may be
attributed to error in loop sizing, difference in material properties (simulated and prototyping), or other sources of ohmic
losses such as imperfect circuit contacts.

Zin = 50(1 − Γ)
1 + Γ

. (14)

The unloaded Q of the antenna coil was Qo ≈ 94, which was about five times the recommended limit. Designing for
QL=18, a shunt resistor Rpar = 𝜔opLQL ≈ 3.80 kΩ was used as an initial design value. Capacitance matching was used to



OFOSU ADDO et al. 13 of 17

(A) (B)

F I G U R E 9 Model and simulation of input impedance of the loop antenna

F I G U R E 10 Plot of simulated |Hx| as a function of distance in cm. Area under the curve bounded by the reference tag Hmin represents
the two-dimensional operating region for antenna connected to RWD with 4 W RF output power. Simulated dmax≈ 75 cm. RWD, read/write
device

transform the damped antenna impedance to RX . The resonance capacitance Cpar was determined to be 1
𝜔2

opL
= 55.5 pF

whiles Ch and Cs were 483.83 and 60 pF from Equations (12) and (13), respectively. The equivalent lumped element circuit
of the antenna connected to a balanced capacitance matching network was simulated and tuned in the NI AWR Design
Environment. The optimized damping and matching circuit parameter values were Rpar = 3.76 kΩ, Ch = 374 pF, and
Cs = 62.50 pF. The optimized antenna assembly resonates at 13.86 MHz and has an input impedance, Zin = 50.34− j0.0077
Ω at f op achieving a simulated return loss of about 50 dB at its input port when fed with a 50 Ω source. The tuning
and enhancement network was fabricated on FR-4 PCB, connected to the loop antenna. The complete antenna fixture is
shown in Figure 11(A). It should be noted that in such a circuit, high rated components were used in order to withstand
the high voltage that is generated in the resonant circuit. Furthermore, to deal with parasitics and ensure accuracy of cir-
cuit, adjustable components were introduced to allow the tuning of circuit after prototyping. The Γ of antenna-matching
circuit assembly was measured using the VNA and tuned for optimal matching at f op. The measurement setup is shown
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(A) (B)
F I G U R E 11 Prototype of
designed high-frequency
antenna and parameter
measurement set-up

in Figure 11(B). Plots of the antenna’s simulated Zin and Γ as well as that obtained from measurements are shown in
Figure 12.

Using the OBID i-scan® ID ISC.2000-A as RWD and NXP ICODE transponders (Hmin= 0.09 A/m), read range mea-
surements were performed to test the performance of the antenna (Figure 13). The RWD hardware was connected serially
(via RS232 interface) to the ID ISOStart measurement software on a computer. The antenna was fed using an RG-58 coax
cable. The RF power was set to 4 W and the supply was activated. The current in the loop, I was 0.43 A. The noise floor
was first measured to ensure that the amplitude of interference levels was low enough such that tag responses could eas-
ily be identified even at low signal levels. A low noise floor was also an indication of a good antenna matching circuit
and test environment setup. Recommended noise level values are an average less than 30 mV and a dynamic range of
less than 20 mV.38 The measured noise level had an average value of 6 mV and a dynamic range of about 5 mV. Hence,
environmental factors can be assumed to have very little influence on experimental results. The tag was positioned along
the RWD antenna perpendicular axis. The distance between the tag and the reader antenna fixture was increased until
the magnetic coupling between the two units was severed and card reading was lost. The largest recorded dmax was 0.64
m. The simulated dmax with the reference tag sensitivity was 0.75 m. An analytical evaluation of the maximum range
from system parameters produces a dmax= 0.52 m (Equation (15)). The measured and calculated dmax are not exactly
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F I G U R E 12 Plots of simulated and measured Zin, Γ of complete antenna over a 2 MHz band centered at f op
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F I G U R E 13 Read range test set-up

coincident but bear fair agreement. Thus, the presented model provides a good basis for the antenna design. As indicated
in Section 3.1.1, in practical applications, tags would not always be positioned on this axis. A tag positioned at any point
in the RWD’s interrogation zone will be detected. The point corresponding to dmax represents a limit to the 3D zone. The
synthesis of the interrogation zone is treated extensively in References 24,39.

dmax =

√√√√√(
NIr2

d

2Hmin

) 2
3

− r2
d. (15)

5 CONCLUSION

The presented article describes the development of efficient HF antennas for use in RFID systems operating at 13.56
MHz. Various features and requirements of antennas were discussed and linked to key design parameters such as antenna
form-factor and size; RF power level, materials and communication protocol. Tuning circuits necessary to adjust the res-
onance and power matching characteristics of antennas for good transponder interrogation and response recovery were
also discussed. To validate the approaches outlined, a circular loop antenna for a VCD was designed and prototyped.
Practical problems associated with the design processes were also commented on. The antenna was fed using an indus-
try standard ISO 15963 compliant RWD and tested for read range performance. The designed antenna with the RWD
achieved a good read range which bore fair agreement with the calculated theoretical maximum read range. From these
measurement results, it can be concluded that the considerations, methods, and formulas discussed in this article for the
design of efficient loop antennas for HF-RFID RWDs, are valid.

PEER REVIEW INFORMATION
Engineering Reports thanks Piotr Jankowski-Mihułowicz and other anonymous reviewers for their contribution to the
peer review of this work.

PEER REVIEW
The peer review history for this article is available at https://publons.com/publon/10.1002/eng2.12407.

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.



16 of 17 OFOSU ADDO et al.

CONFLICT OF INTEREST
The authors declare that there is no conflict of interest regarding the publication of this article.

ORCID
Benjamin Kommey https://orcid.org/0000-0003-3145-0066

REFERENCES
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