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Abstract. Preconditioning for Krylov methods often relies on operator theory when mesh in-
dependent estimates are looked for. The goal of this paper is to contribute to the long development
of the analysis of superlinear convergence of Krylov iterations when the preconditioned operator is
a compact perturbation of the identity. Mesh independent superlinear convergence of GMRES and
CGN iterations is derived for Galerkin solutions for complex non-Hermitian and noncoercive oper-
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1. Introduction. Preconditioned Krylov methods are a central tool in the so-
lution of discretized boundary value problems. In this paper we aim to contribute to
the long development of the analysis of superlinear convergence of Krylov iterations
based on operator theory, most of which was published in SIAM journals. Robustness,
that is, mesh independent convergence estimation, is the focus of our investigations.

Superlinear convergence is often a typical second stage in the convergence history
of a Krylov iteration; see, e.g., [1, 47]. This notion (called more precisely R-superlinear
convergence; see [31]) expresses, roughly speaking, that the number of iterations re-
quired to achieve a new correct digit will be decreasing in the course of the iteration.

When mesh independent estimates are looked for, operator preconditioners are
often involved. Then the preconditioning matrix is obtained as the discretization
of a suitable operator in the function space. This approach naturally invokes the
use of Hilbert space theory and of operator versions of Krylov iterations. For linear
convergence, such a theory of so-called equivalent operators was elaborated in [17,
27, 41], which has given a solid and organized framework to derive mesh independent

*
Received by the editors December 22, 2021; accepted for publication (in revised form) November

22, 2022; published electronically April 27, 2023.
https://doi.org/10.1137/21M1466955
Funding: This research has been supported by the National Research, Development and Inno-

vation Office (NKFIH), grants K137699 and SNN125119.
\dagger 
Institute of Geonics AS CR, IT4 Innovations, Ostrava, Czech Republic.

\ddagger 
Department of Applied Analysis and ELKH-ELTE Numerical Analysis and Large Networks Re-

search Group, E\"otv\"os Lor\'and University, Budapest, Hungary; and Department of Analysis, Budapest
University of Technology and Economics, Hungary (kajkaat@caesar.elte.hu).

\S 
CentraleSupelec, Universit\'e Paris-Saclay, France, and University of P\'ecs, P\'ecs, Hungary

(frederic.magoules@hotmail.com).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1057

https://doi.org/10.1137/21M1466955
mailto:kajkaat@caesar.elte.hu
mailto:frederic.magoules@hotmail.com


1058 O. AXELSSON, J. KAR\'ATSON, AND F. MAGOUL\`ES

convergence results, and has lead to various applications; see also [23, 24, 40, 46] for
some recent developments.

Superlinear convergence is related to more special situations: when the precondi-
tioned operator is a compact perturbation of the identity. Since the classical papers
[49, 50], it has become a general principle to expect superlinear convergence in this
case. On the other hand, as we briefly summarize below, it has required a long devel-
opment to gradually extend this principle to more and more general settings, involving
new ideas and techniques. We only indicate the main steps and papers; for further
details see the references therein.

\bullet The well-known first results [30, 49] to yield superlinear convergence were
obtained for self-adjoint positive operators, later also analyzed in [7, 34].

\bullet In the nonsymmetric case, a first classical result in real Hilbert spaces is due
to [50]. A general convergence estimate is given in [42] on the operator level.

\bullet Regarding mesh independence, in the nonsymmetric case for coercive prob-
lems, robust superlinear convergence estimates for Galerkin discretizations
have been established in [2] and further described in an organized way in [3]
by the authors; see also the more recent application [5]. This was based on
the elaboration of a theory of so-called compact-equivalent operators for the
coercive case, also allowing mesh independent bounds of the estimates.

\bullet The next step was a more recent analysis [31] for symmetric operators, where
superlinear estimates were extended to the indefinite case and a detailed
analysis was given in Hilbert space.

As shown by the above, an important missing stage of the existing results is to
establish mesh independent superlinear convergence for the complex non-Hermitian
and noncoercive case. Such operators arise in important applications, such as in
acoustics or electromagnetics, and mesh independent convergence results are desirable
in order to provide robust estimates for the finite element solution of such problems.

The goal of this paper is to establish robust superlinear convergence estimates of
Krylov iterations for Galerkin solutions when the underlying Hilbert space is com-
plex and the operators (both the original one and the preconditioner) are in general
non-Hermitian and noncoercive. The theoretical challenge is to develop the required
substantial changes, mainly due to lack of coercivity, in the techniques compared to
our previous work in [3]. The proofs have to be redone: instead of coercivity, they
must be based just on the invertibility of the operators, using proper inf-sup condi-
tions in the Babu\v ska--Aziz framework, and suitable projections have to be introduced
connected with theoretical background from the singular values of compact operators.
In particular, in contrast to coercive problems, an inf-sup condition is not inherited by
Galerkin discretizations for a general operator equation, which might cause a major
difficulty. However, in our case we are able to prove it in an asymptotic sense using
the compact perturbation property in the problem. Altogether, compact-equivalence
is shown to result in mesh independent superlinear convergence in the lack of coerciv-
ity as well. Finally, in addition, it was a shortcoming of [3] that only CGN iterations
were considered. Now we also include the practically more relevant GMRES iteration
in the results.

In this paper, after brief preliminaries, the Hilbert space results are presented in
sections 3 and 4, which contain the operator framework and the derivation of robust
superlinear estimates in Galerkin subspaces, respectively. Then section 5 provides
some applications in H1 spaces. Here detailed attention is paid to interior Helmholtz
equations and shifted Laplace preconditioners, to which a lot of recent research has
been devoted (e.g., [13, 25, 20, 37]), however only focused on the aspects of linear
convergence. We also indicate other applications and further directions. In the last
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ROBUST SUPERLINEAR KRYLOV CONVERGENCE 1059

section the theoretical results are illustrated with experiments for two acoustic model
problems, providing numerical results in accordance with the theoretical estimates.

2. Preliminaries.

2.1. Singular values of compact operators. Here, and in what follows, the
notations \langle ., .\rangle H and \| .\| stand for the inner product and the corresponding norm of
a complex Hilbert space H. We summarize briefly some required facts on compact
linear operators to be used later.

Definition 2.1.

(i) We call \lambda j(F ) (j = 1,2, . . .) the ordered eigenvalues of a compact self-adjoint
linear operator F : H \rightarrow H if each of them is repeated as many times as its
multiplicity and | \lambda 1(F )| \geq | \lambda 2(F )| \geq . . . .

(ii) The singular values of a compact operator C :H \rightarrow H are

sj(C) := \lambda j(C
\ast C)1/2 (j = 1,2, . . .),

where \lambda j(C
\ast C) are the ordered eigenvalues of C\ast C. In particular, if C is

self-adjoint, then sj(C) = | \lambda j(C)| .
A basic property of compact operators is that sj(C)\rightarrow 0 as j \rightarrow \infty . The follow-

ing statements are the consequences of Corollary 3.3 and Propositions 1.3 and 1.4,
respectively, in [26, Chapter VI].

Proposition 2.2. Let C :H \rightarrow H be a compact operator. Then

(a) for any k \in N+ (positive integer) and any orthonormal vectors u1, . . . , uk \in H,

k\sum 
j=1

| \langle Cuj , uj\rangle H | \leq 
k\sum 

j=1

sj(C) ;

(b) if B is a bounded linear operator in H, then

sj(BC)\leq \| B\| sj(C) (j = 1,2, . . .);

(c) if P is an orthogonal projection in H with range ImP , then

sj(PC| ImP )\leq sj(C) (j = 1,2, . . .).

We note that compact operators from a Hilbert space H into its dual H \prime can
be handled via the Riesz isomorphism between H and H \prime ; this will be addressed in
Definition 3.5 later.

2.2. Superlinear convergence of Krylov type methods. We briefly sum-
marize some basic facts on the iterative solution of linear systems

(2.1) Au= b

with a nonsingular matrix A\in Cn\times n, with a focus on superlinear convergence rates.
When A \in Rn\times n is a real-valued symmetric positive definite matrix, then the

widespread iterative solution is the standard CG method; see, e.g., [1, 49]. One
is generally interested in the energy norm \| ek\| A = \langle Aek, ek\rangle 1/2 of the error vector
ek := uk  - u. A well-known superlinear convergence estimate is expressed in terms of
the decomposition

(2.2) A= I +E

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



1060 O. AXELSSON, J. KAR\'ATSON, AND F. MAGOUL\`ES

(where I is the identity matrix). Then (see, e.g., [1, section 13.2.3]),

(2.3)

\biggl( 
\| ek\| A
\| e0\| A

\biggr) 1/k

\leq 2\| A - 1\| 
k

k\sum 
j=1

| \lambda j(E)| (k= 1,2, . . .).

Here the moduli of eigenvalues | \lambda j(E)| are in nonincreasing order, hence the right-
hand side (r.h.s.) of (2.3) is nonincreasing, and numerically approaches zero. This is
the main contrast to the linear convergence estimates, where the convergence factor
should only be bounded.

For non-Hermitian matrices A\in Cn\times n, several Krylov algorithms exist; see, e.g.,
[1, 11, 44]. In particular, GMRES and its variants are widely used. There exist
similar superlinear convergence estimates for the GMRES as in (2.3), using singular
values and the residual vectors rk := Auk  - b. In fact, the sharpest one, proved in
[42] on the Hilbert space level for an invertible operator A \in B(H), uses the product
of singular values, which implies (using the inequality between the geometric and
arithmetic means) that

(2.4)

\biggl( 
\| rk\| 
\| r0\| 

\biggr) 1/k

\leq \| A - 1\| 
k

k\sum 
j=1

sj(E) (k= 1,2, . . .),

which is a proper analogue of (2.3) and tends to zero again as k tends to infinity.
Further, note that by denoting the r.h.s. of (2.4) by qk, we can rewrite it as \| rk\| \leq 
\| r0\| (qk)k, and then the ``error equation"" Aek = rk implies the following estimates for
ek itself:

\| ek\| \leq \| A - 1\| \| r0\| (qk)k \leq cond(A)\| e0\| (qk)k .

Another possible way to solve (2.1) with non-Hermitian A\in Cn\times n is to consider

(2.5) A\ast Au=A\ast b

(the ``normal equation"") and apply the symmetric CG algorithm for the latter [11,
17]. The resulting CGN method (i.e., ``CG for the normal equation"") is often avoided
due to a larger condition number, but it involves a very simple recursion, in contrast
to the GMRES method; thus for many non-Hermitian problems it has proved to be
efficient [10, 17], and it has also been used in the study of equivalent operators to
produce mesh independent linear [17] and superlinear [3] convergence. In terms of
the decomposition (2.2), using the relations \| ek\| A\ast A = \| Aek\| = \| rk\| for the residual
error vectors, further, that \| (A\ast A) - 1\| = \| A - 1\| 2 and A\ast A= I+(E\ast +E+E\ast E), the
analogue of the superlinear estimate (2.3) for (2.5) becomes

(2.6)

\biggl( 
\| rk\| 
\| r0\| 

\biggr) 1/k

\leq 2\| A - 1\| 2

k

k\sum 
j=1

(| \lambda j(E
\ast +E)| + \lambda j(E

\ast E)) (k= 1,2, . . .).

The above estimates also hold in a Hilbert space level for a proper compact operator
E in (2.2).

In what follows, we will formulate our estimates for both the GMRES and CGN.

3. Hilbert space setting. Let (H, \langle ., .\rangle H) be a complex Hilbert space with dual
H \prime and pairing \langle ., .\rangle . Let us consider an operator equation

(3.1) Lwu= g

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



ROBUST SUPERLINEAR KRYLOV CONVERGENCE 1061

with a given bounded linear operator Lw : H \rightarrow H \prime and r.h.s. g \in H \prime . The index w
follows the terminology of [41], since typical realizations of such bounded linear oper-
ators are the weak forms of elliptic operators from a Sobolev space into its dual; see,
e.g., (5.1) and (5.11) later.

The operator Lw may be non-Hermitian and noncoercive. We only require well-
posedness of (3.1), using the following.

Definition 3.1. The bounded linear operator Lw : H \rightarrow H \prime is regular if it pos-
sesses a bounded inverse.

In fact, if Lw is bijective, then it is regular owing to Banach's theorem. More-
over, this regularity is equivalent to the following well-known conditions, called by
various names (Babu\v ska--Aziz, Babu\v ska--Ne\v cas, or generalized Lax--Milgram theorem
[6, 14]).

Assumption 3.2. The linear operator Lw :H \rightarrow H \prime satisfies

(i) M := sup u\in H
\| u\| =1

sup v\in H
\| v\| =1

| \langle Lwu, v\rangle | <\infty ;

(ii) m := inf u\in H
\| u\| =1

sup v\in H
\| v\| =1

| \langle Lwu, v\rangle | > 0;

(iii) for any u\in H \setminus \{ 0\} : supv\in H | \langle Lwv,u\rangle | > 0.

Remark 3.3. Such an Lw is regular due the Babu\v ska--Aziz theorem, and moreover,
\| L - 1

w \| = 1/m. Hence, in particular, (3.1) has a unique solution.
Condition (ii) is sometimes called weak coercivity, as opposed to standard co-

ercivity requiring m := inf\| u\| =1\langle Lwu,u\rangle > 0. Thus, altogether, the Babu\v ska--Aziz
conditions impose boundedness, weak coercivity, and adjoint injectivity.

Equation (3.1) will be solved numerically using a Galerkin discretization: let

Vh = span\{ \varphi 1, . . . ,\varphi n\} \subset H

be a given finite-dimensional subspace, where \varphi i are linearly independent vectors,
and

Lh := \{ \langle Lw\varphi j ,\varphi i\rangle \} ni,j=1

the stiffness matrix. Finding the discrete solution uh \in Vh requires solving the n\times n
system

(3.2) Lh c= b

with b= \{ \langle g,\varphi j\rangle \} nj=1.
We have introduced the notion of compact-equivalent operators in [3] for the

coercive case. Roughly speaking, such operators differ only up to a compact pertur-
bation, hence preconditioning yields a compact perturbation of the identity. Such
compact-equivalence can be similarly defined in our more general situation.

Definition 3.4. The regular operators Lw and Nw from H to H \prime are called
compact-equivalent if

(3.3) Lw = \mu Nw +Qw

for some constant \mu > 0 and compact operator Qw :H \rightarrow H \prime .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



1062 O. AXELSSON, J. KAR\'ATSON, AND F. MAGOUL\`ES

Clearly, the property compact-equivalence is an equivalence relation.
Later we will need the singular values of such compact operators. This can be

reduced to Definition 2.1 via the Riesz isomorphism

(3.4) S :H \rightarrow H \prime , \langle Su,v\rangle = \langle u, v\rangle H

as follows.

Definition 3.5. Let Qw :H \rightarrow H \prime be a compact operator, and let QS := S - 1Qw.
(Then QS maps from H to H and is also compact.) The singular values of Qw are
defined as

sj(Qw) := sj(QS) (j = 1,2, . . .).

Note that by definition

(3.5) \langle Qwu, v\rangle = \langle QSu, v\rangle H .

Remark 3.6. As described in this section, operators will be considered as mapping
fromH toH \prime , which is usual for elliptic problems. An alternative setting is to consider
operators mapping from H into H itself, which is widespread in a large portion of
classical Hilbert space theory [43], e.g., when the identity operator is involved such
as in spectral theory, eigenvalues, compact perturbations of the identity, etc. Clearly,
(3.1) can be recast to this setting with the same idea as used above for singular values.
Let S denote the Riesz isomorphism (3.4), define the operator LS := S - 1Lw :H \rightarrow H,
and let gS := S - 1g \in H be the Riesz representant of the functional g \in H \prime . Then (3.1)
is equivalent to the following equation in H:

(3.6) LSu= gS .

4. Iterative solution and robust superlinear convergence in Hilbert
space. Based on the previous section, let us consider the Galerkin discretization
(3.2) of the operator equation (3.1) for a regular operator Lw. We apply a precondi-
tioned Krylov method, GMRES or CGN, to solve (3.2), and our goal is to establish
robust superlinear convergence independently of Vh.

4.1. Compact-equivalent operator preconditioning. Let Nw be a(n in gen-
eral non-Hermitian) regular operator, which is compact-equivalent to Lw in the sense
of Definition 3.4. For simplicity we may consider compact-equivalence with \mu = 1 in
(3.3), which is clearly no restriction. (Indeed, if a preconditioner Nw satisfies (3.3)
with some \mu \not = 0, then we can consider the preconditioner \mu Nw instead.) Thus (3.3)
becomes

(4.1) Lw =Nw +Qw .

Proposition 4.1. The preconditioned operator N - 1
w Lw : H \rightarrow H is a compact

perturbation of the identity.

Proof. We have N - 1
w Lw = I +N - 1

w Qw from (4.1). Since Nw is regular, we have
N - 1

w bounded; thus we obtain that N - 1
w Qw is also compact.

Using the preconditioning operator Nw, we introduce its stiffness matrix

Nh := \{ \langle Nw\varphi j ,\varphi i\rangle \} ni,j=1

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



ROBUST SUPERLINEAR KRYLOV CONVERGENCE 1063

as preconditioner for the discretized system (3.2). Conditions to ensure regularity of
Nh will be discussed in the next subsection. We wish to solve

(4.2) N - 1
h Lh c= \^b

(with \^b=N - 1
h b) using a Krylov iteration. Here, using (4.1) and letting

Qh := \{ \langle Qw\varphi j ,\varphi i\rangle \} ni,j=1 ,

we have the decomposition Lh =Nh +Qh; thus system (4.2) takes the form

(4.3) (Ih +N - 1
h Qh)c= \~b,

where Ih is the n\times n identity matrix, i.e., we have a counterpart of (2.2). In order to
define an energy inner product on Rn we use the Gram matrix corresponding to the
inner product of H,

(4.4) Sh = \{ \langle \varphi j ,\varphi i\rangle H\} ni,j=1 ,

and we endow Rn with the Sh-inner product \langle c,d\rangle Sh
:= Sh c \cdot d. Then the GMRES

and CGN algorithms for the matrix A = N - 1
h Lh, and with the Sh-inner product,

provide the following counterpart of estimates (2.4) and (2.6).
For the GMRES, the matrix E :=N - 1

h Qh and its Sh-adjoint E
\ast = S - 1

h Q\ast 
hN

 - \ast 
h Sh

yield the singular values sj(E) = \lambda i(S
 - 1
h Q\ast 

hN
 - \ast 
h ShN

 - 1
h Qh)

1/2; hence (2.4) implies

\biggl( 
\| rk\| Sh

\| r0\| Sh

\biggr) 1/k

\leq 
\| (N - 1

h Lh)
 - 1\| Sh

k

k\sum 
i=1

\lambda i(S
 - 1
h Q\ast 

hN
 - \ast 
h ShN

 - 1
h Qh)

1/2(4.5)

(k= 1,2, . . . , n). Similarly, for the CGN, (2.6) implies\biggl( 
\| rk\| Sh

\| r0\| Sh

\biggr) 1/k

\leq 
2\| (N - 1

h Lh)
 - 1\| 2Sh

k

\times 
k\sum 

i=1

\bigl( 
| \lambda i(S

 - 1
h Q\ast 

hN
 - \ast 
h Sh +N - 1

h Qh)| + \lambda i(S
 - 1
h Q\ast 

hN
 - \ast 
h ShN

 - 1
h Qh)

\bigr) 
.(4.6)

Our goal is to give bounds on the above estimates that are independent of Vh.

4.2. The discrete inf-sup condition. By Assumption 3.2(ii), the regular op-
erator Lw satisfies the inf-sup condition. The same holds for Nw. For the discrete
case we formulate the analogous property below as an assumption. Then we show
that this assumption is asymptotically always satisfied for compact perturbations of
the identity.

Assumption 4.2. The operators Lw and Nw satisfy the following discrete inf-sup
conditions w.r.t. the considered family of subspaces Vh (h> 0):

(4.7) inf
uh\in Vh
\| uh\| =1

sup
vh\in Vh
\| vh\| =1

| \langle Lwuh, vh\rangle | =:m0 > 0, inf
uh\in Vh
\| uh\| =1

sup
vh\in Vh
\| vh\| =1

| \langle Nwuh, vh\rangle | =:m1 > 0,

where the constants m0,m1 > 0 are independent of Vh.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



1064 O. AXELSSON, J. KAR\'ATSON, AND F. MAGOUL\`ES

Corollary 4.3. If Assumption 4.2 holds, then for each subspace Vh, system
(3.2) has a unique solution.

Based on Remark 3.6 and (3.5), the inf-sup conditions can be reformulated with
the inner product of H and the operator LS , because \langle Lwuh, vh\rangle = \langle LSuh, vh\rangle H and
similarly for NS . In this context we can now show that the inf-sup condition for
an operator implies asymptotically the same discrete inf-sup conditions under the
compact perturbation property, for sufficiently fine discretizations.

Proposition 4.4. Let A\in B(H) be a regular operator in a Hilbert space H, and
in particular,

(4.8) m := inf
u\in H

\| u\| =1

sup
v\in H

\| v\| =1

| \langle Au,v\rangle H | > 0,

and let the compact perturbation property (2.2) hold for some compact operator E,
that is, A = I + E. Let (Vn)n\in N+ be a sequence of closed subspaces of H such that
the following approximation property holds:

(4.9) for any u\in H, dist(u,Vn) :=min\{ \| u - vn\| : vn \in Vn\} \rightarrow 0 (as n\rightarrow \infty ).

Then the sequence of real numbers

mn := inf
un\in Vn
\| un\| =1

sup
vn\in Vn
\| vn\| =1

| \langle Aun, vn\rangle H | (n\in N+)

satisfies

(4.10) lim infmn \geq m (> 0).

Proof. Let the operators Pn \in B(H) denote the orthogonal projections to Vn

(n\in N+). That is, for any x\in H, let xVn
and xV \bot 

n
denote the components in Vn and

in its orthocomplement, respectively: then

x= xVn + xV \bot 
n

\Rightarrow Pnx := xVn .

Further, we have

(4.11) m= inf
z\in H

\| z\| =1

\| Az\| and mn = inf
zn\in Vn
\| zn\| =1

\| PnAzn\| .

Now, assume for contradiction that (4.10) is false, i.e., lim infmn <m. Then, for
some \delta > 0, there exists a subsequence (ekn

)\subset H such that

(4.12) ekn
\in Vkn

, \| ekn
\| = 1 and \| Pkn

Aekn
\| \leq m - \delta (\forall kn \in N+).

We may assume without loss of generality that kn = n (n \in N+). Here Aen =
(Aen)Vn

+ (Aen)V \bot 
n
, hence PnAen := (Aen)Vn

= Aen  - (Aen)V \bot 
n
. Since \| en\| = 1,

(4.11) implies \| Aen\| \geq m, hence \| PnAen\| \geq m - \| (Aen)V \bot 
n
\| . Then (4.12) implies

(4.13) \| (Aen)V \bot 
n
\| \geq \delta (\forall n\in N+).

Here, by (2.2),

(Aen)V \bot 
n

= (en)V \bot 
n

+ (Een)V \bot 
n

= (Een)V \bot 
n

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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since en \in Vn has no component in V \bot 
n . Now, the sequence (en) is bounded, hence it

has a weakly convergent subsequence. We may assume again without loss of generality
that (en) itself is weakly convergent, i.e., en \rightharpoonup y \in H. Since E is compact, we have
Een \rightarrow Ey (in norm). Then

(Aen)V \bot 
n

= (Een)V \bot 
n

= (Ey)V \bot 
n

+ (E(en  - y))V \bot 
n
.

Here \| (Ey)V \bot 
n
\| =dist(Ey,Vn)\rightarrow 0 by (4.9), and \| (E(en  - y))V \bot 

n
\| \leq \| E(en - y)\| \rightarrow 0,

hence

(Aen)V \bot 
n

\rightarrow 0,

which contradicts (4.13).

4.3. Robust superlinear convergence results. In order to find uniform
bounds for the sequences in (4.5)--(4.6), the following proposition relates the singular
values of the arising matrices to those of the proper continuous operators. Recall the
connection of the operators Lw, Nw, and Qw with the stiffness matrices Lh, Nh, and
Qh, respectively: for any i, j = 1, . . . , n,

(4.14) (Lh)i,j = \langle Lw\varphi j ,\varphi i\rangle , (Nh)i,j = \langle Nw\varphi j ,\varphi i\rangle , (Qh)i,j = \langle Qw\varphi j ,\varphi i\rangle ,

and similarly, from (4.4), the matrix Sh corresponds to the H-inner product.

Proposition 4.5. Let Nw be a compact-equivalent preconditioner for Lw such
that (4.1) holds for some compact operator Qw, and let sj(Qw) (j = 1,2, . . .) denote
the singular values of Qw. Further, let Assumption 4.2 hold with m0,m1 > 0 defined
in (4.7), and let M := \| Nw\| . Then the following relations hold:

\lambda j(S
 - 1
h Q\ast 

hN
 - \ast 
h ShN

 - 1
h Qh)\leq 

1

m2
1

sj(Qw)
2 (j = 1,2, . . . , n),(a)

k\sum 
j=1

\bigm| \bigm| \lambda j(S
 - 1
h Q\ast 

hN
 - \ast 
h Sh +N - 1

h Qh)
\bigm| \bigm| \leq 2

m1

k\sum 
j=1

sj(Qw) (k= 1,2, . . . , n),(b)

\| (N - 1
h Lh)

 - 1\| Sh
\leq M

m0
.(c)

Proof. First, using (3.5), we can rewrite (4.14) as

(4.15) (Lh)i,j = \langle LS\varphi j ,\varphi i\rangle H , (Nh)i,j = \langle NS\varphi j ,\varphi i\rangle H , (Qh)i,j = \langle QS\varphi j ,\varphi i\rangle H .

(a) Let \lambda j := \lambda j(S
 - 1
h Q\ast 

hN
 - \ast 
h ShN

 - 1
h Qh) (j = 1, . . . , n) and let cj = (cj1, . . . , c

j
n) \in 

Cn be corresponding eigenvectors, i.e.,

(4.16) S - 1
h Q\ast 

hN
 - \ast 
h ShN

 - 1
h Qhc

j = \lambda jc
j

with the additional normalization property

(4.17) Sh c
j \cdot cl = \delta jl (j, l= 1, . . . , n),

where \cdot denotes the ordinary Euclidean inner product. Let uj :=
\sum n

s=1 c
j
s\varphi s \in 

Vh. Further, let p = (p1, . . . , pn) \in Cn be arbitrary and let v :=
\sum n

s=1 ps\varphi s \in Vh.
Then, multiplying (4.16) with Sh from the left and p from the right, we obtain
Q\ast 

hN
 - \ast 
h ShN

 - 1
h Qhc

j \cdot p= \lambda j Shc
j \cdot p= \lambda j \langle uj , v\rangle H . Denote

(4.18) ej :=N - \ast 
h ShN

 - 1
h Qhc

j ,
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and let ej = (ej1, . . . , e
j
n) and yj :=

\sum n
s=1 e

j
s\varphi s \in Vh; then

Q\ast 
hN

 - \ast 
h ShN

 - 1
h Qhc

j \cdot p=Q\ast 
h e

j \cdot p= ej \cdot Qhp

=Qhp \cdot ej = \langle QSv, yj\rangle H = \langle yj ,QSv\rangle H = \langle Q\ast 
Syj , v\rangle H .

Equating the above two expresssions, we obtain \langle Q\ast 
Syj , v\rangle H = \langle \lambda juj , v\rangle H (for all v \in 

Vh). Hence, denoting by Ph the orthogonal projection of H into the subspace Vh, we
have

(4.19) PhQ
\ast 
Syj = \lambda juj .

Now, multiplying (4.18) with N\ast 
h from the left and with an again arbitrary p \in Cn

from the right, we obtain N\ast 
he

j \cdot p = ShN
 - 1
h Qhc

j \cdot p . Denoting dj := N - 1
h Qh c

j ,

we thus have ej \cdot (Nhp) = Shd
j \cdot p . Let zj :=

\sum n
s=1 d

j
s\varphi s \in Vh; then we obtain

\langle yj ,NSv\rangle H = \langle zj , v\rangle H for all v \in Vh, i.e., \langle N\ast 
Syj , v\rangle H = \langle zj , v\rangle H (v \in Vh), which yields

(4.20) PhN
\ast 
Syj = zj .

Finally, similarly as above, the definition of dj yields Nhd
j \cdot p=Qh c

j \cdot p (for all p\in 
Cn), hence \langle NSzj , v\rangle H = \langle QSuj , v\rangle H (v \in Vh) and thus

(4.21) PhNSzj = PhQSuj .

Consider now the mapping (PhNS)| Vh
: Vh \rightarrow Vh. Here, from (4.7), for all z \in Vh

m1\| z\| \leq sup
v\in Vh
v \not =0

| \langle Nwz, v\rangle | 
\| v\| 

= sup
v\in Vh
v \not =0

| \langle NSz, v\rangle H | 
\| v\| 

= sup
v\in Vh
v \not =0

| \langle PhNSz, v\rangle H | 
\| v\| 

= \| PhNSz\| ,

hence (PhNS)| Vh
is regular and

(4.22) \| (PhNS)
 - 1
| Vh

\| \leq 1

m1
.

It follows by definition that

(4.23)
\bigl( 
(PhNS)| Vh

\bigr) \ast 
= (PhN

\ast 
S)| Vh

,

hence (PhN
\ast 
S)| Vh

is also regular and

(4.24) (PhN
\ast 
S)

 - 1
| Vh

=
\Bigl( 
(PhNS)

 - 1
| Vh

\Bigr) \ast 
.

Here, (4.20)--(4.21) yield yj = (PhN
\ast 
S)

 - 1
| Vh

zj and zj = (PhNS)
 - 1
| Vh

PhQSuj . Substituting

these into (4.19), and using that uj , yj \in Vh, we altogether obtain

(4.25) (PhQ
\ast 
S)| Vh

(PhN
\ast 
S)

 - 1
| Vh

(PhNS)
 - 1
| Vh

(PhQS)| Vh
uj = \lambda juj .

Let us define the operator

F := (PhNS)
 - 1
| Vh

(PhQS)| Vh
.

By virtue of properties (4.23)--(4.24), the operator on the left of (4.25) equals F \ast F
and thus \lambda j is an eigenvalue of F \ast F (with eigenvector uj), i.e., \lambda j is the square of a
singular value of F . Moreover, due to (4.17), the eigenvalues \lambda j (j = 1, . . . , n) possess
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orthonormal eigenvectors. Using the ordering as in Definition 2.1, let \lambda j be the square
of the kjth singular value of F , i.e., \lambda j = skj (F )2. Moreover, since the ordered values
\lambda j (j = 1, . . . , n) are present in the ordered nonincreasing sequence s2j (j \in N+), we
have

(4.26) \lambda j \leq sj(F )2.

Here, using statements (b)--(c) of Proposition 2.2 and estimate (4.22), respectively,
we obtain

sj(F ) = sj

\Bigl( 
(PhNS)

 - 1
| Vh

(PhQS)| Vh

\Bigr) 
\leq \| (PhNS)

 - 1
| Vh

\| sj
\bigl( 
(PhQS)| Vh

\bigr) 
\leq 1

m1
sj

\bigl( 
(PhQS)| Vh

\bigr) 
\leq 1

m1
sj(QS),

hence \lambda j(S
 - 1
h Q\ast 

hN
 - \ast 
h ShN

 - 1
h Qh) =: \lambda j \leq sj(F )2 \leq 1

m2
1
sj(QS)

2 = 1
m2

1
sj(Qw)

2 .

(b) Now let \lambda j := \lambda j(S
 - 1
h Q\ast 

hN
 - \ast 
h Sh +N - 1

h Qh) and let cj = (cj1, . . . , c
j
n) \in Cn be

corresponding eigenvectors, i.e.,

(S - 1
h Q\ast 

hN
 - \ast 
h Sh +N - 1

h Qh)c
j = \lambda j c

j

with the orthonormality property (4.17). Then multiplying with Sh and cj ,

\lambda j = \lambda j Sh c
j \cdot cj = Q\ast 

hN
 - \ast 
h Sh c

j \cdot cj + ShN
 - 1
h Qh c

j \cdot cj(4.27)

= 2Re ShN
 - 1
h Qh c

j \cdot cj = 2ReQh c
j \cdot ej ,

where ej :=N - T
h Sh c

j for all j. Here for all v =
\sum n

s=1 ps\varphi s \in Vh, with notation p=

(p1, . . . , pn)\in Cn, we obtain ej \cdot (Nhp) = Sh c
j \cdot p, which means \langle yj ,NSv\rangle H = \langle uj , v\rangle H

for all v \in Vh, where zj =
\sum n

s=1 e
j
s\varphi s and uj =

\sum n
s=1 c

j
s\varphi s, or

(4.28) \langle N\ast 
Szj , v\rangle H = \langle uj , v\rangle H (v \in Vh).

Hence

(4.29) uj = PhN
\ast 
Szj .

We have seen before that the linear mapping (PhNS)| Vh
: Vh \rightarrow Vh is regular and

satisfies (4.22), and further that (PhN
\ast 
S)

 - 1
| Vh

= ((PhNS)
 - 1
| Vh

)\ast . It follows that the latter
inherits the same bound for its norm:

(4.30) \| (PhN
\ast 
S)

 - 1
| Vh

\| \leq 1

m1
.

Now, first, using (4.29), we obtain

(4.31) Qh c
j \cdot ej = \langle QSuj , zj\rangle H = \langle QSuj , (PhN

\ast 
S)

 - 1
| Vh

uj\rangle H = \langle uj , Q
\ast 
S(PhN

\ast 
S)

 - 1
| Vh

uj\rangle H .

Here the operator (PhN
\ast 
S)

 - 1
| Vh

has a norm-preserving extension \^NS from Vh onto H

(namely, with \^N | (Vh)\bot := 0), and from (4.30) we have \| \^N\| \leq 1
\^m . Altogether, using

(4.27), (4.31) and statements (a)--(b) of Proposition 2.2, respectively, we obtain

k\sum 
j=1

| \lambda j | \leq 2

k\sum 
j=1

| Qh c
j \cdot ej | = 2

k\sum 
j=1

\bigm| \bigm| \bigm| \langle Q\ast 
S(PhN

\ast 
S)

 - 1
| Vh

uj , uj\rangle 
\bigm| \bigm| \bigm| = 2

k\sum 
j=1

\bigm| \bigm| \bigm| \langle Q\ast 
S
\^Nuj , uj\rangle 

\bigm| \bigm| \bigm| 
\leq 2

k\sum 
j=1

sj

\Bigl( 
Q\ast 

S
\^N
\Bigr) 
\leq 2

m1

k\sum 
j=1

sj (Q
\ast 
S) =

2

m1

k\sum 
j=1

sj (QS) =
2

m1

k\sum 
j=1

sj (Qw) .
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(c) Let c \in Cn be arbitrary, d := N - 1
h Lhc. Let u =

\sum n
s=1 cs\varphi s \in Vh and z =\sum n

s=1 ds\varphi s \in Vh. Then for all v =
\sum n

s=1 ps\varphi s \in Vh, with notation p = (p1, . . . , pn) \in 
Cn, we have \langle LSu, v\rangle H =Lh c \cdot p=Nhd \cdot p= \langle NSz, v\rangle H , hence from (4.7)

m0\| u\| \leq sup
v\in Vh
v \not =0

| \langle Lwu, v\rangle | 
\| v\| 

= sup
v\in Vh
v \not =0

| \langle LSu, v\rangle H | 
\| v\| 

= sup
v\in Vh
v \not =0

| \langle NSz, v\rangle H | 
\| v\| 

\leq \| NSz\| = \| Nwz\| 

and thus

\| N - 1
h Lhc\| 2Sh

\| c\| 2Sh

=
Shd \cdot d
Sh c \cdot c

=
\| z\| 2

\| u\| 2
\geq m2

0

\| z\| 2

\| Nwz\| 2
\geq m2

0

M2
.

This implies statement (c), which concludes the proof.

Theorem 4.6. Under the assumptions of Proposition 4.5, the GMRES and CGN
iterations for the n\times n preconditioned system (4.2) provide mesh independent super-
linear convergence estimates, i.e., we have

(4.32)

\biggl( 
\| rk\| Sh

\| r0\| Sh

\biggr) 1/k

\leq \varrho k (k= 1,2, . . . , n),

where (\varrho k)k\in N+ \rightarrow 0 and it is a sequence independent of n and Vh. Namely, in the
case of GMRES,

(4.33) \varrho k \leq 
M

m0m1
\cdot 1

k

k\sum 
j=1

sj(Qw) \rightarrow 0 (as k\rightarrow \infty ),

and in the case of CGN

(4.34) \varrho k =
2M2

m2
0

\cdot 1

k

k\sum 
j=1

\biggl( 
2

m1
sj(Qw) +

1

m2
1

sj(Qw)
2

\biggr) 
\rightarrow 0 (as k\rightarrow \infty ).

Proof. The estimates follow directly from (4.5)--(4.6) and Proposition 4.5. The
convergence of \varrho k to zero follows from the compactness of Qw.

5. Applications to noncoercive boundary value problems. In this sec-
tion we illustrate the applicability of the obtained superlinear convergence results to
various problems arising for elliptic PDEs. We discuss in detail the case of interior
Helmholtz equations (an important model in wave propagation and acoustics) us-
ing shifted Laplace preconditioners in the Krylov iteration. Then we indicate other
applications and further directions.

5.1. Interior Helmholtz equations in acoustics. Let us consider the follow-
ing interior Helmholtz equation with impedance boundary condition on a bounded
domain \Omega \subset Rd:

(5.1)

\Biggl\{ 
Lu :=  - \Delta u - \kappa 2u = g in \Omega ,

\partial u
\partial n  - i\kappa u = 0 on \partial \Omega ,

where \kappa > 0 is the wave-number, i is the imaginary unit, and g \in L2(\Omega ) is given.
Such problems serve as a basic model of great importance in the formulation of time-
harmonic wave propagation, arising in cavities in electromagnetics, acoustics, etc.
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We look for the weak solution, i.e., u\in H1(\Omega ), for which

(5.2)

\int 
\Omega 

(\nabla u \cdot \nabla v - \kappa 2uv) - i\kappa 

\int 
\partial \Omega 

uv =

\int 
\Omega 

gv (\forall v \in H1(\Omega )),

where v denotes the complex conjugate of v. Here we endow the complex space H1(\Omega )
with the usual inner product \langle u, v\rangle H1 :=

\int 
\Omega 
(\nabla u \cdot \nabla v + uv). Owing to the imaginary

coefficient in the boundary condition, the positive real number \kappa 2 cannot attain an
eigenvalue, i.e., the homogeneous problem with g \equiv 0 has only the trivial solution
u \equiv 0; see, e.g., [33]. The Fredholm alternative then ensures that problem (5.1)
has a unique weak solution in H1(\Omega ). Moreover, the Fredholm well-posedness result
involves the invertibility of the corresponding operator on the l.h.s. of (5.2), which in
particular implies that the inf-sup condition holds:

(5.3) inf
u\in H1(\Omega )

u \not =0

sup
v\in H1(\Omega )

v \not =0

\bigm| \bigm| \int 
\Omega 
(\nabla u \cdot \nabla v - \kappa 2uv) - i\kappa 

\int 
\partial \Omega 

uv
\bigm| \bigm| 

\| u\| H1\| v\| H1

=: \^m0 > 0.

5.1.1. Shifted Laplace operator preconditioners. Finite element approxi-
mations of problem (5.1) are widely used in acoustics, automotive applications, and
electromagnetics, and their solution is still a challenging task [15, 38]. Therefore,
efficient iterative solvers for the resulting linear algebraic systems are of great interest
in practice. Recently a lot of research has been devoted to preconditioners arising as
the discretization of the so-called complex shifted Laplace problems of the form

(5.4)

\Biggl\{ 
Nu :=  - \Delta u - (\kappa 2 + i\varepsilon )u = g in \Omega ,

\partial u
\partial n  - i\mu u = 0 on \partial \Omega ,

where \varepsilon > 0 is a properly chosen ``absorption"" parameter, and \mu > 0 is a suitably
chosen constant; see, e.g., [12, 13, 16, 18, 20, 37] in the context of multigrid solvers
and [18, 28, 39] involving domain decomposition methods. The behavior of such
preconditioners and choices of shifting parameters have also been analyzed [15, 16,
19]; typically \varepsilon = O(\kappa 2) or \varepsilon = O(\kappa ) are used. Mesh independent linear convergence
follows theoretically from [17, Theorem 3.11] in the framework of equivalent operators
and was numerically observed in [25]. Operator equivalence was also used in a first-
order least-squares approach [35]. The basic idea in the preconditioner (5.4) is that the
complex shift improves significantly the spectral properties by moving the spectrum
further away from zero.

Therefore, as summarized in the paper [37], the shifted Laplacian preconditioner
has become a basic tool in the most successful multigrid approach for solving highly
indefinite Helmholtz equations. The main point is that such preconditioning sig-
nificantly accelerates Krylov iterations, and coupled with MG, the method is more
efficient than MG that directly addresses the original Helmholtz equation. Hence the
shifted Laplacian approach has a prominent place among modern solution methods
for interior Helmholtz equations [9, 13].

However, all the above works were focused on the aspects of linear convergence
of Krylov iterations. In what follows, our goal is to complete the above studies with
establishing and estimating superlinear convergence.

We will use the fact that the inf-sup condition holds for the shifted Laplace
operator as well:

(5.5) inf
u\in H1(\Omega )

u\not =0

sup
v\in H1(\Omega )

v \not =0

\bigm| \bigm| \int 
\Omega 
(\nabla u \cdot \nabla v - (\kappa 2 + i\varepsilon )uv) - i\mu 

\int 
\partial \Omega 

uv
\bigm| \bigm| 

\| u\| H1\| v\| H1

=: \^m1 > 0,
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since the complex shift in (5.4) implies readily that no eigenvalue is attained and the
problem is uniquely solvable, as was the case for the original Helmholtz operator.

5.1.2. FEM discretization, iterative solution, and preconditioning. We
consider finite element discretization of problem (5.1): let Vh \subset H1(\Omega ) (h > 0) be a
family of FEM subspaces, depending on some mesh parameter h.

Assumption 5.1. The discrete inf-sup conditions for operators Lw and Nw, that
is, the analogues of (5.3) and (5.5) in Vh, are satisfied for suitable constants m0 and
m1 > 0 independent of h. (In other words, (4.7) holds in the space H :=H1(\Omega ).)

On the other hand, the above assumption always holds for fine enough meshes.
Namely, it is well-known that the weak form of the Helmholtz problem leads to a
compact perturbation of the identity inH1(\Omega ). In fact, one can write the l.h.s. of (5.2)
as the perturbation of the H1 inner product with lower order terms that generate a
compact operator, which leads to an operator equation of the form (I + E)u = b in
the space H =H1(\Omega ) in the setting of Remark 3.6. The same applies to the shifted
operator. Altogether, we can apply Proposition 4.4.

Corollary 5.2. The discrete inf-sup conditions, imposed in Assumption 5.1,
are satisfied for both the original and the shifted Helmholtz operators if h < h0 for
some suitable h0 > 0, that is, for fine enough meshes.

For a fixed FEM subspace Vh = span\{ \varphi 1, . . . ,\varphi n\} , the discrete solution requires
solving the n\times n system

(5.6) Lh c= b,

where

(5.7) (Lh)i,j =

\int 
\Omega 

\bigl( 
\nabla \varphi j \cdot \nabla \varphi i  - \kappa 2\varphi j\varphi i

\bigr) 
 - i\kappa 

\int 
\partial \Omega 

\varphi j\varphi i (i, j = 1, . . . , n)

and bj =
\int 
\Omega 
g\varphi j (j = 1, . . . , n). We wish to apply a preconditioned Krylov iteration

to solve (5.6). The preconditioner is based on the complex shifted Laplacian operator
(5.4), that is, we introduce the stiffness matrix Nh of Nw as preconditioner for system
(5.6):

(5.8) (Nh)i,j =

\int 
\Omega 

\bigl( 
\nabla \varphi j \cdot \nabla \varphi i  - (\kappa 2 + i\varepsilon )\varphi j\varphi i

\bigr) 
 - i\mu 

\int 
\partial \Omega 

\varphi j\varphi i (i, j = 1, . . . , n).

Remark 5.3. Regarding the invertibility of Lh and Nh, it follows from Corollary
5.2 that both matrices are nonsingular if h is small enough. In fact, much more can
be said.

First, the nonsingularity of Lh has been widely studied; see, e.g., [8, 45] and the
references therein. Various conditions of the type h\leq Cres\kappa 

 - \gamma have been found, where
\kappa is the wave-number and \gamma = 2, 3/2, or 1, depending on conditions on the domain
and the used FEM. However, a more practical result than these is given in the recent
paper [8], where a computable criterion and a simple checking algorithm are given to
guarantee in an a posteriori way that a given mesh provides a well-posed Helmholtz
discretization.

Second, Nh is nonsingular for any mesh, due to the complex shift. Namely, (5.8)
yields that the skew-Hermitian part of Nh is  - i (\varepsilon Mh + \mu Bh), where Mh and Bh

denote the bulk and boundary mass matrices, respectively, hence the sum in the
brackets is positive definite.
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Henceforth, we can precondition system (5.6) with Nh:

(5.9) N - 1
h Lh c= \~b

(with \~b = N - 1
h b). We will solve (5.9) using the GMRES or CGN iteration. Our

analysis will use the discrete H1-inner product on Cn, generated by the matrix

(5.10) (Sh)i,j :=

\int 
\Omega 

(\nabla \varphi j \cdot \nabla \varphi i +\varphi j\varphi i) (i, j = 1, . . . , n).

5.1.3. Mesh independent superlinear convergence in the FEM sub-
spaces. Our goal is to apply Theorem 4.6 to the above situation in the space
H := H1(\Omega ). Here the weak forms of the operators (5.1)--(5.4) are as follows:
Lw : H1(\Omega ) \rightarrow H - 1(\Omega ) and Nw : H1(\Omega ) \rightarrow H - 1(\Omega ) are the bounded linear opera-
tors defined by the identities

\langle Lwu, v\rangle :=
\int 
\Omega 

(\nabla u \cdot \nabla v - \kappa 2uv) - i\kappa 

\int 
\partial \Omega 

uv (\forall v \in H1(\Omega )),(5.11)

\langle Nwu, v\rangle :=
\int 
\Omega 

(\nabla u \cdot \nabla v - (\kappa 2 + i\varepsilon )uv) - i\mu 

\int 
\partial \Omega 

uv (\forall v \in H1(\Omega )),(5.12)

respectively. Further, let us define the operator Qw : H1(\Omega ) \rightarrow H - 1(\Omega ) by the
identity

(5.13) \langle Qwu, v\rangle := i\varepsilon 

\int 
\Omega 

uv + i(\mu  - \kappa )

\int 
\partial \Omega 

uv (v \in H1(\Omega )).

Proposition 5.4. The operator Qw is compact.

Proof. The operators Q1 and Q2, defined by

\langle Q1u, v\rangle :=
\int 
\Omega 

uv and \langle Q2u, v\rangle :=
\int 
\partial \Omega 

uv (v \in H1(\Omega )),

are known to be compact (see, e.g., [27]; this essentially follows from the compact
embeddings of H1(\Omega ) into L2(\Omega ) and of H1(\Omega )| \partial \Omega into L2(\partial \Omega )). We have Qw =
i\varepsilon Q1 + i(\mu  - \kappa )Q2, hence Qw is also compact.

We will also use the constant

(5.14) M := \| Nw\| ,

which can be easily bounded, e.g., as M \leq 1 +
\surd 
\kappa 2 + \varepsilon 2C2

\Omega + \mu C2
\partial \Omega , where C\Omega and

C\partial \Omega are the embedding constants of H1(\Omega ) into L2(\Omega ) and L2(\partial \Omega ), respectively.

Theorem 5.5. Let sj(Qw) (j = 1,2, . . .) denote the singular values of the operator
Qw in (5.13). Further, let Assumption 5.1 hold with inf-sup constants m0,m1 > 0,
and let M be defined by (5.14).

Then the GMRES and CGN iterations for the n\times n preconditioned system (5.9)
provide mesh independent superlinear convergence estimates, i.e., we have

(5.15)

\biggl( 
\| rk\| Sh

\| r0\| Sh

\biggr) 1/k

\leq \varrho k (k= 1,2, . . . , n),

where (\varrho k)k\in N+ \rightarrow 0, and it is a sequence independent of n and Vh. Namely, in the
case of GMRES,

(5.16) \varrho k \leq 
M

m0m1
\cdot 1

k

k\sum 
j=1

sj(Qw) \rightarrow 0 (as k\rightarrow \infty ),
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and in the case of CGN

(5.17) \varrho k =
2M2

m2
0

\cdot 1

k

k\sum 
j=1

\biggl( 
2

m1
sj(Qw) +

1

m2
1

sj(Qw)
2

\biggr) 
\rightarrow 0 (as k\rightarrow \infty ).

Proof. We wish to apply Theorem 4.6. The definitions (5.11)--(5.13) imply the
decomposition Lw = Nw + Qw, where Qw is compact by Proposition 4.1. Assump-
tion 4.2 coincides with Assumption 5.1 for the operators (5.11)--(5.12). Hence the
conditions of Theorem 4.6 are satisfied in the space H :=H1(\Omega ).

In addition to the fact of superlinear convergence, its magnitude and the pres-
ence of parameters can also be derived from the asymptotic behavior of sj(Qw). We
illustrate this below for the case of GMRES.

Theorem 5.6. Under the conditions of Theorem 5.5, the sequence (5.16)
satisfies

\varrho k \leq (\varepsilon c(\Omega ) + (\mu  - \kappa ) c(\partial \Omega ))
logk

k
= O

\biggl( 
logk

k

\biggr) 
if d= 2,(5.18)

\varrho k \leq \varepsilon c(\Omega )
1

k2/d
+ (\mu  - \kappa ) c(\partial \Omega )

logk

k
= O

\biggl( 
1

k2/d

\biggr) 
if d\geq 3(5.19)

for some constants c(\Omega ), c(\partial \Omega )> 0 independent of h.

Proof. Using the notations of Proposition 4.1, we have Qw = i\varepsilon Q1 + i(\mu  - \kappa )Q2.
Using [26, Chapter II, Corollary 3.2] and the equality sj(cA) = | c| sj(A), and since
Q1, Q2 are self-adjoint positive operators, we obtain

k\sum 
j=1

sj(Qw)\leq 
k\sum 

j=1

sj(i\varepsilon Q1) +

k\sum 
j=1

sj(i(\mu  - \kappa )Q2) =

k\sum 
j=1

\varepsilon \lambda j(Q1) +

k\sum 
j=1

(\mu  - \kappa )\lambda j(Q2),

where \lambda j denotes the jth eigenvalue of the given operator. Here Q1 and Q2 correspond
to the embeddings of H1(\Omega ) into L2(\Omega ) and of H1(\Omega )| \partial \Omega into L2(\partial \Omega ), respectively.
Using the variational characterization of the eigenvalues, it follows that the asymp-
totics of \lambda j(Q1) and \lambda j(Q2) are inversely related to those of the Neumann Laplacian
eigenvalues on \Omega and to the Steklov eigenvalues on \partial \Omega , which are known to be O(k2/d)
and O(k), respectively [36, 48]. Taking reciprocals and summation, elementary analy-
sis implies the desired estimates.

5.2. Helmholtz problems with more general conditions. Our above re-
sults remain valid for the related problems where the Robin boundary condition in
(5.1) is replaced by a more general mixed one:

u= 0 on \Gamma D, \partial u
\partial n = 0 on \Gamma N , \partial u

\partial n  - i\kappa u= 0 on \Gamma R,

where \partial \Omega = \Gamma D \cup \Gamma N \cup \Gamma R is a proper decomposition of \partial \Omega . Then the underlying
Sobolev space to be used in (5.2) is

(5.20) H1
D(\Omega ) := \{ u\in H1(\Omega ) : u= 0 on \Gamma D\} ,

and
\int 
uv on \partial \Omega is replaced by the one on \Gamma R. The operator Nw is then defined with

the same decomposition of boundary conditions, and \kappa is replaced by \mu on \Gamma R.
Similarly, it is expected that our results can be extended to Helmholtz equations

with variable coefficients, which arise, e.g., in seismic applications.
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5.3. Elliptic systems at nonresonance. Let us consider the coupled elliptic
system

(5.21)
 - \nu \Delta ui  - 

\sum s
j=1Kijuj = gi, ui | \Gamma D

= 0, \partial ui

\partial n | \Gamma N
= 0 (i= 1, . . . , s),

where \partial \Omega = \Gamma D \cup \Gamma N , for some constant \nu > 0, given matrix-valued function K \in 
L\infty (\Omega , Cs\times s) and r.h.s. gi \in L2(\Omega ) (i= 1, . . . , s). The weak form reads as

\langle (\nu I  - \scrK )u, v\rangle H1
D(\Omega )s \equiv 

\int 
\Omega 

(\nu \nabla u :\nabla v - Ku \cdot v) =
\int 
\Omega 

g \cdot v (\forall v \in H1
D(\Omega )s),

where H1
D(\Omega )s is the product space of H1

D(\Omega ) in (5.20). We consider nonresonance,
that is, when \nu is not an eigenvalue of the compact operator \scrK . Then, by the Fredholm
theory, \nu I  - \scrK is regular.

The preconditioner can be defined as the discretization of separate (uncoupled)
problems

 - \nu \Delta ui  - \varrho iui = gi, ui | \Gamma D
= 0, \partial ui

\partial n | \Gamma N
= 0 (i= 1, . . . , s),

where \varrho i/\nu are not eigenvalues of  - \Delta , hence the preconditioning operator is also
regular. One can choose the constants \varrho i such that the matrix diag(\varrho 1, . . . , \varrho s) is
a uniform diagonal approximation of K, obtained, e.g., by lumping or by spectral
averaging. The solution with these uncoupled operators is much cheaper than for the
original one, in particular when s is large.

It is straightforward that the decomposition (4.1) holds for these operators. To-
gether with the inf-sup conditions, we obtain that Theorem 4.6 can be applied again
to ensure mesh-independent superlinear convergence for the Krylov iterations in FEM
subspaces.

5.4. Boundary integral operators, further applications and directions.
Further directions where the above results might be extended arise for boundary in-
tegral equations forming Fredholm equations of the second kind. For the method
of fundamental solutions, it was found that the monopole and dipole formulations
lead to matrices that approximate linear operators being compact perturbations
of the identity [21, 22]. For electric field integral equations on screens, compact-
equivalent preconditioning operators have been constructed in [32] as solution oper-
ators of variational problems set in low-regularity standard trace spaces. For such
problems, it requires future work to define proper discretizations and find their rela-
tion to the operators in order to extend the robust superlinear results of the present
paper.

6. Numerical experiments. We illustrate the robust superlinear convergence
properties for the complex shifted preconditioner of the Helmholtz equation. We
first consider a three-dimensional (3D) interior acoustic problem, arising from the
automotive industry, in an acoustic cavity of a car compartment. The air within
the car compartment is meshed with hexahedral elements. Three different meshes are
considered with 1,208 finite elements and 1,727 nodes (mesh L1), 9,664 finite elements
and 11,637 nodes (mesh L2), and 77,312 finite elements and 85,001 nodes (mesh L3),
respectively. These meshes are represented in Figure 6.1. We have run our algorithm
for the wave-numbers \kappa = 16, 20, and 32. In what follows, we introduce the ``absolute
wave-number""

\kappa a := \kappa a
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Fig. 6.1. Finite element meshes of the interior car compartment.

(where a is the characteristic length of the domain), which is used in acoustic practice.
For the car we thus have \kappa a = 80, 100, and 160, respectively. These parameters (wave-
numbers and mesh widths) cover real-life interest, since the corresponding noise is
never exceeded in practice in a car. Accordingly, the mesh parameter is bounded
by the standard criterion of acoustic tests, that is, the resolution of six elements per
wavelength must be satisfied for the three meshes.

Q1 stabilized finite elements [29] are considered for the discretization of the
Helmholtz equation. Such stabilized elements have the properties of improving
the numerical stability by appending terms to the basic Galerkin formulation in
order to reduce the pollution and dispersion effect, for which Galerkin finite ele-
ment solutions with low-order piecewise polynomials differ significantly from the best
approximation.

For the iterative solution of the linear system, we have applied the shifted Lapla-
cian preconditioner with the choice \varepsilon = \kappa proposed in [15, 16], and we have also
set \mu = \kappa . In practice, the iterative solution of the preconditioned system is often
executed using one of the simpler algorithms that are mathematically equivalent to
the full GMRES; accordingly, we have used the generalized conjugate residual (GCR)
method [44]. In addition, we have also tested the CGN method, since this method is
often used in the community as mentioned in subsection 2.2. To follow the theoretical
estimates, the error is measured using the discrete Sobolev norm of the residual using
(5.10), that is, \| rj\| Sh

:= (Shrj \cdot rj)1/2. The superlinear convergence behavior then
means that the convergence factor

\varrho j :=

\biggl( 
\| rj\| Sh

\| r0\| Sh

\biggr) 1/j

(j = 1,2, . . .)

approaches zero as j is increased, in contrast to the case of linear convergence, where
\varrho j is only expected to stay bounded away from one.

We present the behavior of \varrho j on meshes L2 and L3. First, on mesh L2, Figure
6.2 plots the values of \varrho j using GCR, and Figure 6.3 plots the same using CGN.

We may observe that the convergence of GCR behaves superlinearly throughout
all the iterations, whereas CGN enters the superlinear phase only after some iterations.
Figure 6.4 plots the values of \varrho j on mesh L3 using GCR. Altogether, the expected
decreasing behavior of \varrho j is seen in these tests, and moreover, we observe that this
superlinear behavior is only slightly affected by the value of \kappa .

To illustrate mesh independence of the bounds of convergence, in Table 6.1 we
give the discrete Sobolev norms of the residuals, i.e., \| rj\| Sh

, on three meshes, using
GCR and CGN, respectively. Here the fixed wave-number has a smaller value \kappa a = 40
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Fig. 6.2. The convergence factors \varrho j on car mesh L2 using GCR for wave-numbers \kappa a = 80,
100, and 160.

2 4 6 8 10 12 14 16 18
0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

2 4 6 8 10 12 14 16 18
0.32

0.34

0.36

0.38

0.4

0.42

0.44

2 4 6 8 10 12 14 16 18
0.32

0.34

0.36

0.38

0.4

0.42

0.44

Fig. 6.3. The convergence factors \varrho j on car mesh L2 using CGN for wave-numbers \kappa a = 80,
100, and 160.

to fit the coarser meshes as well. The results show both a fast convergence of the
iteration and that this indeed does not deteriorate when we use finer meshes.

Second, we consider another 3D interior acoustic problem in an auditorium, which
has a more complex geometry due to the stairs. Here the realistic wave-numbers
correspond to human voice. We plot the results for \kappa a = 5, 60, and 90 in Figure 6.5.
We observe that the iteration produces a general superlinear behavior again, but less
smoothly than for the car test, which may be due to the complex geometry of the
domain.

The above tests for acoustic problems well illustrate the theoretical results of this
paper, both on superlinear behavior and on mesh independence. For other problems
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Fig. 6.4. The convergence factors \varrho j on car mesh L3 using GCR for wave-numbers \kappa a = 80,
100, and 160.

Table 6.1
The norms of the residuals using GCR and CGN on three meshes for \kappa a = 40.

GCR CGN
\#iter. Mesh L1 Mesh L2 Mesh L3 Mesh L1 Mesh L2 Mesh L3

1 0.0035961 0.0041012 0.0041681 0.0076460 0.0083094 0.0082863

2 0.0005941 0.0007629 0.0008109 0.0031451 0.0035655 0.0035947

3 6.0945e-05 8.4985e-05 9.3098e-05 0.0013514 0.0016036 0.0016429
4 7.1500e-06 9.3725e-06 1.0211e-05 0.0005009 0.0006099 0.0006315

5 1.0685e-06 1.5614e-06 1.6957e-06 0.0001863 0.0002224 0.0002299

6 1.1117e-07 1.8910e-07 2.2744e-07 7.2979e-05 8.7221e-05 9.0232e-05
7 1.3598e-08 2.3904e-08 2.7538e-08 2.7728e-05 3.6400e-05 3.8383e-05

8 1.2342e-09 2.8738e-09 3.7767e-09 8.0275e-06 1.1401e-05 1.2324e-05
9 1.5992e-10 3.2629e-10 4.0991e-10 2.4680e-06 3.8882e-06 4.2731e-06

Fig. 6.5. The convergence factors \varrho j in the auditorium for wave-numbers \kappa a = 5, 60, and 90.
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with even finer meshes or higher wave-numbers, entering the superlinear phase might
arise in a later stage or depend more strongly on the parameters. Such investigations
are beyond the scope of this paper and might be the subject of further research.

7. Conclusions. We have derived mesh independent superlinear convergence
estimates of the GMRES and CGN iterations for Galerkin solutions of the operator
equation in complex Hilbert space, when the preconditioned operator is a compact
perturbation of the identity, for the case of non-Hermitian and noncoercive operators.
The results apply to various noncoercive boundary value problems. We have detailed
the case of complex shifted Laplacian preconditioners for interior Helmholtz problems,
where also the asymptotic magnitude of superlinear convergence has been given. The
theoretical results have been reinforced by experiments, first for a 3D interior acoustic
cavity problem arising from the automotive industry: the superlinear convergence
behavior has been demonstrated using different meshes and wave-numbers, and the
mesh independent bounds have been illustrated on three meshes of the same geometry.
A similar (somewhat less smooth) superlinear behavior has been obtained for tests in
an auditorium.
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